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ABSTRACT 

Vast segments of the frequency spectrum are reserved for primary (licensed ) users. These legacy users often un-
der-utilize their reserved spectrum thus causing bandwidth waste. The unlicensed (secondary) users can take advantage 
of this fact and exploit the spectral holes (vacant spectrum segments). Since spectrum occupancy is transient in nature it 
is imperative that the spectral holes are identified as fast as possible. To accomplish this, we propose a novel adaptive 
spectrum sensing procedure. This procedure scans a wideband spectrum using Hilbert Huang Transform and detects 
the spectral holes present in the spectrum. 
 
Keywords: Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD), Intrinsic Mode 

Function (IMF), Noise Assisted Data Analysis (NADA), Cognitive Radio, Guard Band, Spectrum Sensing 

1. Introduction 

Wireless networks, till date, are regulated by fixed spect- 
rum allocation policies to operate in a particular time 
frame, certain frequency bands and are also constrained 
to geographical regions. Recent trends show that certain 
radio bands are overcrowded while some are moderately 
or sparsely used. In order to utilize the spectrum opti-
mally and efficiently, cognitive radio technology has 
been proposed as a potential communication paradigm 
[1]. Cognitive radios are defined by the Federal Commu-
nications Commission (FCC) [2] as radio systems that 
continuously perform spectrum sensing, dynamically 
identify unused spectrum, and then operate in those 
spectral holes where the licensed (primary) radio systems 
are idle. In CR networks secondary users are allowed to 
utilize unoccupied bandwidths provided they do not 
cause interference to primary users. Many have worked 
on the sensing of a wideband spectrum. The main func-
tions of cognitive radios are [3]: 

Spectrum Sensing: refers to detect the unused spectrum 
and sharing it without any interference with other users, 
by sensing spectrum holes. Spectrum sensing techniques 
can be classified into three categories, namely 1) Trans-
mitter detection by inspecting the spectrum generated, 2) 
Cooperative detection, which pools information from 
multiple cognitive radio users and, 3) Interference based 
detection, by using an interference temperature model. 

Spectrum Management: Having known the spectral ho- 

les, it has to decide on the best spectrum band to meet the 
Quality of Service requirements over all available spectr- 
um bands 

Spectrum Mobility: As the objective is to use the spec-
trum in a dynamic manner they should enable transition 
to better spectrum by secondary users. 

Spectrum Sharing: Involves spectrum scheduling for 
efficient spectrum usage. 

In this paper transmitter detection method is used. So- 
me authors used wideband spectrum joint detection for 
the presence of a primary user [4]. Some have used spa-
tial diversity to find the presence of a primary user by 
sharing the information over a network [5].Cognitive Ra- 
dio is essential locally reuse unused spectrum by primary 
users (spectral holes) in order to increase the total chan-
nel capacity. Efficient spectrum utilization can be achi- 
eved by making a secondary user to access a spectrum 
hole created by the primary user at any location and time. 
The greatest task in sensing spectrum is in developing 
techniques which are able to detect even very weak pri-
mary user signals at the same time reasonably fast and 
low computational cost. This can be encountered by util-
izing a novel technique called Hilbert Huang Transform 
[6]. 

2. System Model 

2.1 Hilbert Huang Transform 

Traditional data analysis methods are based on assump-
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tions that the data is linear and stationary. In recent years 
new methods in the field of data analysis have been in-
troduced. For example, wavelet analysis [7] and Wagner- 
Ville distribution [8,9] were designed for linear but non- 
stationary data. Additionally, various nonlinear time ser- 
ies analysis methods [10-12] were designed for nonlinear 
but stationary and deterministic systems. Unfortunately, 
in most real systems, natural or man-made, the data is 
most likely nonlinear and non-stationary. Analyzing the 
data of such a system is very difficult because the most 
sophisticated basis function cannot be relied as a basis 
function. Thus an adaptive basis function should be data 
defined. The Hilbert Huang Transform [6,13-15] seems 
to meet few of the above faced challenges. 

The Hilbert Huang Transform is an empirically based 
data analysis method. Its basis of expansion is adaptive 
so that physical meaning can be derived from the nonli- 
near and non-stationary processes. The Hilbert Huang 
Transform consists of two parts: empirical mode decom- 
position (EMD) and Hilbert spectral analysis (HSA). We 
have incorporated a variant of the EMD called Empirical 
Ensemble Mode Decomposition (EEMD) to deal with 
input signals that are contaminated with noise. 

2.2 Empirical Mode Decomposition 

The empirical mode decomposition method is vital to 
deal with data from non-stationary and nonlinear process. 
The decomposition is based on the assumption that any 
data consists of different simple intrinsic modes of oscil-
lations. Each intrinsic mode, linear or nonlinear, represe- 
nts a simple oscillation, which will have the same num-
ber of extrema and zero-crossings. Furthermore, the os-
cillation will also be symmetric with respect to the “local 
mean.” At any given time, the data may have many diffe- 
rent coexisting modes of oscillation, one superimposing 
on the others. The result is the final complicated data. Ea- 
ch of these oscillatory modes is represented by an intrin-
sic mode function (IMF) with the following definition: 

1) In the whole dataset, the number of extrema and the 
number of zero-crossings must either equal or differ at 
most by one, and 

2) At any point, the mean value of the envelope de-
fined by the local maxima and the envelope defined by 
the local minima is zero. 

An IMF represents a simple oscillatory mode as a co- 
unterpart to the simple harmonic function, but it is much 
more general: instead of constant amplitude and freque- 
ncy, as in a simple harmonic component, the IMF can 
have a variable amplitude and frequency as functions of 
time. 

IMFs can be generated by following the steps: 
1) Identify all the local maxima and join these points 

using a cubic spline to give an upper envelope 
2) Repeat the above procedure for local minima’s to 

give lower envelope. (Figure 1) 

3) The mean of the envelopes is designated as m1. 
4) The difference between the data and mean is the 

first component h1. 
h1 is treated as a proto-IMF. In the next step h1 is tre- 

ated as the input data and this procedure continues until 
the new component satisfies the IMF definition. The in-
put data is then sifted and decomposed and the procedure 
continues until we obtain a monotonic residue. 

2.3 Ensemble Empirical Mode Decomposition 

To overcome some of the shortcomings of EMD, noise 
assisted data analysis method (NADA) EEMD was incor-
porated [6]. EMD cannot deal with signals contaminated 
with white noise efficiently. Due to the presence of noise a 
consequence of signal intermittency occurs which is 
termed as Mode mixing. This consequence causes serious 
aliasing in time-frequency distribution and also makes the 
physical meaning of IMF unclear. The critical concept 
advanced here is based on the following observations: 

1) A collection of white noise cancels each other out in 
a time-space ensemble mean; therefore, only the signal 
can survive and persist in the final noise-added signal 
ensemble mean. 

2) Finite, not infinitesimal, amplitude white noise is 
necessary to force the ensemble to exhaust all possible 
solutions; the finite magnitude noise makes the different 
scale signals reside in the corresponding IMF, dictated by 
the dyadic filter banks, and render the resulting ensemble 
mean more meaningful. 

2.4 Hilbert Spectral Analysis 

After obtaining the IMF (Figure 2) components, Hilbert 
Transform is applied to each IMF component. This tran- 
sform gives the amplitude and the frequency of the IMF 
components as functions of time. The frequency-time dis- 
tribution of the amplitude is termed as “Hilbert amplitude 
spectrum” or simply “Hilbert spectrum” (Figure 3). Squ- 
aring the amplitude gives the energy spectrum (Figure 4) 
which is quite useful in determining the dominant signal 
among a series of signals. 
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Figure 1. The data (blue) and the envelopes (green) defined 
by the local maxima and minima respectively. The mean 
(red) of then upper and lower envelope 
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The combination of the ensemble empirical mode de-
composition and the Hilbert spectral analysis is also 
known as the “Hilbert–Huang transform” (HHT) for 
short. Empirically, all tests indicate that Hilbert Huang 
transform is a superior tool for time-frequency analysis 
of nonlinear and non-stationary data. It is based on an 
adaptive basis, and the frequency is defined through the 
Hilbert transform. Consequently, there is no need for the 
spurious harmonics to represent nonlinear waveform 
deformations as in any of the a priori basis methods, and 
there is no uncertainty principle limitation on time or 
frequency resolution from the convolution pairs based 
also on a priori basis. 

Table 1 [6] shows that the Hilbert Huang transform is 
indeed a powerful method for analyzing data from non- 
linear and non-stationary processes: it is based on an ad- 
aptive basis; the frequency is derived by differentiation 
rather than convolution; therefore, it is not limited by the 
uncertainty principle; it is applicable to nonlinear and 
non-stationary data and presents the results in time-fre-
quency-energy space for feature extraction. 

 

 

Figure 2. The IMF of the input data 

 

 

Figure 3. A frequency plot 

 
Figure 4. A energy plot of the above IMF 

 
Table 1. Comparison of the various transforms 

 Fourier Wavelet Hilbert Huang

Basis a priori a priori Adaptive 

Frequency 
Convolution: 

Global,uncertainty 

Convolution: 
Regional, uncer-

tainty 

Differentiation:
Local, certainty

Presentation
Energy 

-frequency 
Energy-time 
-frequency 

Energy-time 
-frequency 

Nonlinear No No Yes 

Non-stationary No Yes Yes 

Feature 
Extraction 

No 
Discrete: no 

Continuous: yes 
Yes 

Theoretical 
Base 

Theory 
complete 

Theory 
complete 

Empirical 

 

2.5 Adopting HHT in Wideband Sensing 

Hilbert Huang Transform has proven from time to time 
its efficiency in dealing with nonlinear and non-station-
ary input data signals. As mentioned earlier, the day to 
day signals that are encountered are signals that are 
nonlinear and non-stationary in nature. To deal with such 
signals Hilbert Huang Transform is a very good tool. In 
this paper we take a wideband spectrum of 1.5 GHz 
ranging from 250 MHz to 1.75 GHz. The input data sig-
nal is shown in Figure 1.In this paper we utilize this tool 
(HHT) to sense a wideband spectrum for the presence of 
any legacy (primary) signal. We apply the Hilbert Huang 
Transform to the wideband spectrum. 

From the Figure 5 it can be seen that the frequency 
ranges of the input data signal is found. 

2.6 Guard Band 

Every primary user has an interference limit, after identi- 
fying the frequency bands of the primary user a guard 
band is allocated to each of the primary user. This guard 
band is a varying guard band based on the priority each 
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user gets. ‘r’ is a variable that signifies the priority of a 
user. The guard band is formulated as: Guard Band = r x 
(fixed Guard band). In this scenario we have taken the 
guard band as 30 MHz. 

Each primary user is given a priority ranging from 0.1 
to 1. Thus the final guard band a primary user is assigned 
lies between 3 MHz to 30 MHz. A high priority primary 
user gets a 30 MHz guard band whereas on the other 
hand a low priority user might get about 5 MHz of guard 
band. 

In Figure 6 the red band represents the guard band. 
From the figure it can be seen that the thickness of the 
guard band varies for different primary users. This is 
governed by the priority variable ‘r’. 

When the frequency bands that are used have been 
found and the guard band attached to each primary user 
calculated, the frequency bands that are unused have to 
be found. (Shown in Figure 7) 

 

 

Figure 5. Shows the frequency the signal is present (1 for 
presence and 0 for absence of signal) 

 

 

Figure 6. The guard (red) band and the primary user bands 
(blue) 

 

Figure 7. The bandwidth that can be used by secondary users 
 

3. Conclusions 

In this paper we have introduced Hilbert Huang Trans-
form for wideband spectrum sensing in Cognitive Radio 
Networks. The basic strategy is to take into account the 
detection of primary users jointly rather than detecting 
narrow bands individually. We have presented a novel 
technique HHT, explained its various components and 
implemented it in the cognitive radio sensing module. 
The computational cost was found to have reduced con-
siderably when compared to a traditional wideband spec-
trum sensing module. The authors utilized a cognitive 
radio network to deal with weak primary users. Due to 
the high accuracy of HHT this network can be dropped 
as HHT successfully detects weak primary users. We 
utilized SVMTool [17] to find the frequency bands used 
by the legacy users. The results from SVMTool and HHT 
were compared and it was found that there was 98.7% 
accuracy with an ambiguity of 0.0674 per token. The 
above results clearly show that the procedure success-
fully found the spectral holes and also decreases the 
computational cost in a cognitive radio. 
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