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Abstract

This paper presents the problem formulation, development, and use of a robust dynamic genetic algorithm (GA) for

channel allocation in cognitive radio. This approach offers an efficient way to access available spectrum for both

primary and secondary users. The proposed dynamic genetic algorithms based on the new sophisticated crossover

and mutation operators ensure the validity of channels and the fast convergence to the best solution in a highly

dynamic environment. Compared with existing methods, simulation results demonstrate that our approach algorithm

produces satisfactory results with reduced network interference and enhance efficiently the spectrum throughput.

1 Introduction
With the recent growing increases of wireless devices,

radio spectrum scarcity occurs and mandates the estab-

lishment of methods for developing technical description

to access efficiently the available radio spectrum. For

this, cognitive radio (CR) techniques [1] can be used to

provide a promising solution to increase the spectrum

utilization. The principle of the CR, included in the IEEE

802.22 and IEEE 802.16h norms [2], needs an alternative

spectrum management, when each secondary/unlicensed

user (SU) is permitted to sense and access the spectrum

when the spectrum is unoccupied by primary/licensed

users (PUs) [3, 4].

When a PU requests to access its own spectrum, the

SUs using the same spectrum opportunistically should

switch to other unoccupied spectra to protect the trans-

mission of the PU and continue their own data delivery

[4]. However, severe throughput degradation may occur

in this situation [5].

In the literature, several algorithms have been pro-

posed for channel allocation in cognitive radio, whether

they are local or distributed search methods.

In this context, our work consists of presenting a ro-

bust genetic algorithm to solve the channel assignment

problem in cognitive radio systems.

The objective of this problem concerns minimizing

the channel interference to the primary radio users

meeting those requirements for opportunistic spectrum

utilization. The use of genetic algorithm is quite appro-

priate in the context of cognitive radio to control and

avoid interference in the channel assignment problem.

The rest of this paper is organized as follows: section 2

gives a brief analysis of existing methods for spectrum

allocation used in cognitive radio. Section 3 concerns

the representation and the construction of the objective

function for channel allocation. In section 4, we propose

the solution of the problem by using a sophisticated gen-

etic algorithm. Then, in section 5, experimental results

are presented and discussed. We conclude the paper in

section 6.

2 Approaches for cognitive radio
Cognitive radio offers a promising solution for an ef-

ficient and full use of radio channel resources. It has

attracted much research attention, and both distrib-

uted and centralized schemes have been proposed to

facilitate the spectrum sharing between SUs and PUs

[5]. Then, the concept of machine learning was

applied to maximize capacity and dynamic spectrum

access. Different learning algorithms can be used in

CR networks such as Fuzzy Logic, Neural Networks,

Hidden Markov Model, Genetic Algorithms, or Classi-

fication Algorithms [6, 7].

The multilayered neural networks were used to model

and estimate the performances of IEEE 802.11 networks.

They come in the form of a set of interconnected elem-

entary processors that can perform the entire processing

information chain. Each neuron adapts its parameters
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with its neighbors to achieve the objective for which

they have been designed. Therefore, the neural networks

can be considered as a suitable model for a cognitive

radio network, and where a prompt response to the

changing radio environment is required from an

unlicensed user [8, 9].

Fuzzy logic is often combined with neural networks

that can adapt to the environment during the evolution

of a CR system. It can be applied to obtain the solution

to a problem having imprecise, noisy, and incomplete in-

put information.

Instead of complicated mathematical formulations, the

fuzzy logic uses human understandable fuzzy sets and

inference rules to obtain the solution that satisfies the

desired system objectives. The main advantage of fuzzy

logic is its simplicity. It is more suitable for real-time

cognitive radio applications in which the response time

is critical to system performance [7].

A genetic algorithm is a robust evolutionary algorithm

that models biological processes to solve a highly com-

plex computational problem to find optimal solutions.

Crossover and mutation are two basic operators of GA.

Performance of GA depends tightly on these operators,

and new solutions are found based on old solutions

through the use of crossover and mutation processes.

Crossover and mutation perform two different roles.

Crossover is a convergence operation; it is intended to

pull the population toward a local minimum/maximum.

Mutation is a divergence operation; it is intended to oc-

casionally break one or more members of a population

out of a local minimum/maximum space and potentially

discover a better minimum/maximum space.

GA has been applied to spectrum optimization in cog-

nitive radio networks. For example, genetic algorithms

have been investigated through CR test-beds under cer-

tain controlled radio environments [9–11]. In [12], a

genetic algorithm has been used to optimize the Bit

Error Rate (BER) performance in cognitive radio. Unlike

the traditional GA, Kaur et al., in [13], proposed an

Adaptive Genetic Algorithm (AGA) to optimize QoS pa-

rameters in a cognitive radio system. The algorithm uses

different crossover and mutation rates [14]. In [15], the

genetic algorithm is used with two criteria: (1) maximiz-

ing the probability of detection (i.e., the capability of a

SU to determine if a PU is using a certain portion of

spectrum) and (2) minimizing the probability of false

alarm (i.e., sensing the presence of a PU while it is not),

for an optimal space allocation. An improved genetic

spectrum assignment model with the consideration of

interference constraints is proposed in [16], in order to

reduce computational complexity, where the population

of genetic algorithm is divided into two sets: the feasible

spectrum assignment and the randomly updated

spectrum assignment. In [17], the genetic algorithm is

compared to a Particle Swarm Optimization (PSO) algo-

rithm, and authors conclude that in a dynamic environ-

ment, the GA requires more operations to perform than

PSO and hence takes longer time.

In [14] a Chaotic Genetic Algorithm (CGA) was devel-

oped, where a chaotic sequence is used to generate the

initial population and incorporate chaos through the

crossover and mutation processes. In [18], A CGA based

on the new chaotic map is proposed having a better

distribution.

We would like to stress that each of the learning

techniques has its own advantages and disadvantages,

and none of them can be considered on its own to

fully accomplish the realization of cognitive radio sys-

tems. All of the proposed approaches introduced so

far can find solutions for radio resource management

but may not produce the best ones as they have limi-

tations in adapting parameters in a highly varying

radio environment.

Fuzzy logic is a far powerful and flexible method,

based on learning in transmission rate and prediction. It

has potential in either specific problem-solving areas or

as a part of cognitive radio system, to reduce its com-

plexity. Fuzzy logic can approximate the solutions inde-

pendently for certain input, but it does not provide

accurate solutions. Other parameters could be included

to predict the best radio configuration; it should estab-

lish a rule related to the specific situation in which it is

used, and these rules may involve some limitations in

programming.

Neural networks have a lesser need for prior know-

ledge; they can be used in any phase of cognition. They

include extensive training to generate observed behavior,

but they become unstable when constraints are neces-

sary to account for. Their application to different scenar-

ios needs to be analyzed for a CR; each individual node

has to be provided with a pre-trained network or a set of

training examples mapping observations to correct ac-

tions. For the latter case, each CR also has to know the

parameters used for training the neural network so that

all radios can create and reproduce the same neural net-

work deterministically [19].

GA is well suited for multi-objective performance and

non-mathematical optimization problems in cognitive

radio networks as it can search for multiple sets of solu-

tions over a large search space and can enforce con-

straints [20]. Fast convergence, ease of implementation,

and optimization of discrete and continuous radio pa-

rameters render GA as an excellent optimization tool for

making resource management decisions in cognitive

radio networks [21].

One of the main issues involved in successful genetic

algorithm behavior is the selection of the objective func-

tion(s) that is a non-closed form of constraints and may
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be difficult to use in practice for some parameters intro-

duced in cognitive radio algorithms.

The main advantages of the proposed algorithm in this

paper regarding the other approaches might be per-

ceived through the following criteria:

(1)Implicit parallelism and robustness; such algorithm

works on a set of solutions and can explore several

parts of the solution space in parallel,

(2)Distributed memory; the last solutions remain

registered and the GA looks for idle channels to

allocate new call requests, and

(3)The algorithm can operate under the assumption of

limited information exchange.

3 System model
We will use the model described in [5] where the chan-

nel (i.e., frequency band) allocation problem is fo-

rmulated as a graph coloring problem. As in Fig. 1, the

network is abstracted as an undirected graph G = (V,

E, L), where vertices (V) represent users, edges (E)

represent interference, so that no channels can be

assigned simultaneously to any adjacent nodes, and L

represents the availability of channel bands at vertices

of G. For the sake of simplicity, the interference

graph is assumed the same for all channel bands.

This can be generalized to the case where each chan-

nel band has its own interference graph, a possible

scenario due to the different propagation properties

in the environment associated with individual bands.

Furthermore, let K be the number of available chan-

nels in G. Although it is possible that different

channels have different bandwidths, the model treats

all channels with the same bandwidth [19].

The available channel band is divided into orthogonal

channels of the same bandwidth using the FDMA

method. It is assumed that there is a mechanism that

enables wireless devices to use multiple channels to

communicate at the same time.

Let N= |V| denotes the total number of secondary users.

Edges will be represented by the N ×N matrix E = {eij},

where eij = 1 if there is an edge between vertices i and j

and eij = 0 implies that i and j may use the same channel;

note that since G is an undirected graph, E is symmetric.

In a similar notation, we represent the availability of chan-

nels at vertices of G by an N ×K matrix L = {lik}, referred

as the coloring matrix. In particular, lik = 1 means that

channel k is available at vertex i, and lik = 0 otherwise. For

instance, Fig. 1 shows four PUs, represented by num-

bers I to IV, using channel bands A, B, and C. These

channels cannot be utilized by secondary users in the

vicinity and the nodes within a certain range of each

primary user cannot reuse the same channel. The same

Fig. 1 shows five different secondary users, represented

by numbers 1 to 5. If a secondary user is within the

dashed circle of a specific primary user, it cannot access

the channel band used by this primary user. For in-

stance, node 3 is within the interference range of pri-

mary user I, who uses channel B, and is within the

interference range of primary user II, who uses channel

A. Therefore, it cannot reuse channels A and B. As a

consequence, each node has access to a different set of

bands. In Fig. 1, the available channels at vertex 1 are

{A, B, C} and {A, C} at vertex 5 [19]. Figure 1 is then

represented by the following matrices:

Fig. 1 Graph of a model of such a network. PUs are referenced with numbers from I to IV. SUs are represented with numbers from 1 to 5.

Available channels are a, b, and c. Circles delimit PUs interference domains. [19]
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Let us denote a channel assignment policy by an N × K

matrix S = {sik}, where sik = 0 or 1 and sik = 1 if channel k

is assigned to the nodes i and 0 otherwise. We call S a

feasible assignment if the assignments satisfy the inter-

ference graph constraint and the channel availability

constraint. More specifically, for any node i, we have sik
= 0if lik = 0 (i.e., a channel can be assigned only if it is

available at that node). Furthermore,

siksjkeij ¼ 0; ∀i; j ¼ 1; : : : ;N ; k
¼ 1; : : : ;K : ð3:1Þ

In other words, two connected nodes cannot be

assigned the same channels. The objective of the re-

source allocation is to maximize the spectrum

utilization. This problem can be formally represented as

the following nonlinear integer programming problem.

max s

X

N

i¼1

X

K

k¼1

sik

s:t sik≤lik ; siksjkeij ¼ 0; sik ¼ 0; 1;

ð3:2Þ

For each node i, and for k = 1,⋯, K, if sik = 1, the lik = 1

(i.e., a channel is assigned to i), or else if sik = 0, the lik = 1,

(i.e., a channel is available but not assigned at that node).

For all i, j = 1,⋯, N, k = 1,⋯, K. The above problem is

sometimes referred to as a list multicoloring problem.

When time is taken into account, a time index can be

introduced into the equation where the objective is to

maximize the utilization averaged over time and the

three constraints are satisfied at each time instant. The

corresponding decision list coloring problem is formu-

lated below.

Problem 3.1 [19] (DListColor Problem) Given a graph

G = (V, E, L) and a positive integer B, is there a solution

with the same set of constraints as in (3.2)? Such that:

X

N

i¼1

X

K

k¼1

sik > B; ð3:3Þ

3.1 Proposition 3.1

The DListColor problem is NP-complete.

PROOF: This problem is clearly in NP since once a

valid coloring assignment S is obtained, condition (3.3)

may be verified in O(|V| K ) time [19].

Note that a clique is a fully connected subgraph (a

subnet), i.e., a clique consists of a set of nodes where

any pair of its nodes has an edge in between.

We now show that the maximum clique problem can

be reduced to the DListColor problem in polynomial

time and that the maximum clique problem has a solu-

tion if and only if DListColor has a solution.

Let G = (V, E, L) be the undirected graph of the

maximum clique problem. We construct the graph G

′ = (V′, E′, L′) for our DListColor problem, such that

V’ = V, and E′ is the complementary set of E. Further-

more, the color matrix L is of dimension |V| × 1,

where L = [1,1,…, 1]T. Since any pair of nodes connected

in G are not connected in G′ and vice versa, we cannot

simultaneously assign to nodes inG′ the same color if

these nodes form a clique in G. Therefore, there exists a

clique in G of size at least m if and only if there is no solu-

tion for DListColor for B = |V| −m. This reduction is obvi-

ously polynomial time as shown in [19].

3.1.1 Color decoupling

The list coloring problem may be reduced to a set of

maximum-size clique problems when fairness is not in

consideration. In other words, in the process of finding

the maximum in (3.2), nodes are allowed to be assigned

zero channels.

According to the logic diagram of the proposed reso-

lution model, the channel assignment problem in a cog-

nitive radio system is based on opportunist channel

exploitation where each channel will be used by the

maximum number of nodes. Therefore, the initialization

of such “possible channels allocation” for a maximum

clique problem as a list of channels is constructed to

produce a solution for a subnetwork, which can be ex-

tended to the entire network. For each channel, a greedy

assignment is determined to maximize the number of

nodes assigned to this channel, and then a subnet of

connected nodes is generated. Finally, nodes are con-

nected in the original graph G.

The problem of assigning each node a set of colors

(channels) may be solved by coloring the graph in se-

quence with individual colors:

max
s

X

N

i¼1

X

K

k¼1

sik⇔
X

K

k¼1

max
s

X

N

i¼1

sik ð3:4Þ

The feasible assignment matrix is S = {sik} where sik = 1

if channel k is assigned to the nodes i and 0 otherwise.

Sk denotes the channel allocation with respect to chan-

nel (color) k. More specifically, Sk is the kth column in

the assignment matrix S. Note that the equality in (3.4)

does not hold in general situations, e.g., a graph col-

oring problem that requires each node to be colored

with nonempty colors. Note that when fairness is

taken into account, e.g., each node has to be assigned

at least one color, and then the decoupling property

does not apply [19].
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With fewer assigned channel to the connected nodes,

our proposed algorithm can result in very unfair alloca-

tion. Nodes with greatest degrees of saturation will be

first served, and their subnet obtains the maximum

number of used channels. The algorithm will allow the

addition of new assignments in its structure during the

search. This is one of the great primary advantages of

the proposed genetic algorithm.

4 Spectrum allocation using genetic algorithm
A genetic algorithm (GA) is an optimization heuristic

for searching very large spaces that mimic the process of

natural selection. An initial population of individual so-

lutions can be combined to make fitter solutions (Fig. 2).

At each step, the GA uses three main types of rules to

create the next generation from the current population:

selection rules, crossover rules, and mutation rules.

In this section, we first discuss the background of GA

and then the implementation of the proposed solution

model on the channel allocation in CR.

4.1 Main genetic algorithms

Genetic algorithms were originally developed by John

Holland. They are used in order to find a solution, usu-

ally numerical solving of a given problem, without hav-

ing a prior knowledge on the search space [20].

4.2 Genetic operators

The main steps of the proposed genetic algorithm are

individual coding, and then for each generation, child

population division, niche crowding operation, and by

evaluating the fitness function the GA can exclude indi-

viduals that do not accord with constraint conditions,

and then apply selection, crossover, and mutation opera-

tions to ameliorate quality of solution. The adjustment

of these parameters is an important issue for GA.

� Individual coding

Let there be N secondary users and K channels in the

system. A cell can use any available channel if such a

choice satisfies the interference graph and the channel

availability constraints.

In the proposed models, each gene represents a chan-

nel state and the channels of a node form a chromo-

some. The set of all nodes composes an individual

representing an assignment policy. Hence, each individ-

ual is denoted by a vector of dimension V =N × K, as

shown in Fig. 3. Furthermore, a population can be repre-

sented by an array of strings (individuals).

The rows of the array represent strings (of bits) in a

population, and the columns represent the (the status

bit of the condition of availability) available channel

numbers which will be assigned. There are P strings for

a population and each string has Q (possible states)

channels which are the total number of available chan-

nels in the system Q < K.

A string Sr is composed of N substrings which is

the number of nodes in the network. Each substring

Sri (for node i) is composed of mi genes (channel: bits

of the condition of availability). Each gene is repre-

sented as a binary bit.

Fig. 2 Pseudo code for the GA algorithm. [4]
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An A ×Q two-dimensional array is constructed to im-

plement a number of strings (a population) as shown in

Fig. 2 step 6.

� Initial population

According to [14], the initial population for each string

is as follows:

(1)For each node i* with the largest number of

constraints, the channel for the ith node is the

minimal channel interval in the available channel

domain.

(2)For all nodes with a maximum degree of saturation,

choose the node i* with the greatest degree of

saturation, assign i* with the minimum channel, and

update the degrees of saturation of the neighbors of i*.

Notice that the degree of separation D(i*) of node i* is

the sum of the incident constraints values for each node.

They are compiled once and for all. The degree of satur-

ation dj(i*) in step j is used as a criterion for selecting

the node that we will assign in this step. This degree is

determined from the non-allowed intervals for nodes

that are not yet affected (this process provides to use the

minimum number of channels and reusing, to its max-

imum, the same channels, while avoiding deadlock)

(3) Repeat step 2 until all nodes have the assigned

channels.

� Reproduction

According to the target of channel allocation, the

interference constraint will be presented in reutilization

matrix C = {Ci,j,k|Ci,j,k∈ {0, 1}}N×N×K, where Ci,j,k = 1, if

users i and j would cause interference if they used the

spectrum band k simultaneously. Note that constraints

are spectrum band specific. Note also that two users

who are constrained by one spectrum band cannot use

this band simultaneously.

Considering the spectrum allocation matrix S = {Sik}N ×

K which denotes the effectiveness of spectrum allocation,

where Sik = 1 denotes that spectrum band k is assigned

to user n. S satisfies all the constraints defined by C, i.e.,

Si,kSj,k = 0, if Ci,j,k = 1, ∀i, j <N, k < K.

If we consider B = {bi,k}N ×K describe the reward that a

user i* gets by successfully acquiring available spectrum

band k*, i.e., bi,k represents the maximum bandwidth/

throughput that can be acquired (assuming no interfer-

ence from other neighbors), and from the matrix R = {li,k ·

bi,k}N ×K representing the throughput or the bandwidth of

each channel which is available for each user to use. The

resource allocation performance can be expressed as the

following fitness value and the total bandwidth of the

system:

X

N−1

i¼0

X

M−1

k¼0

Sikbik ð3:5Þ

The fitness value of each individual is calculated ac-

cording to the fitness function (objective function). After

evaluation of the fitness function, a certain pair of in-

dividuals (strings) should be selected for the parents. We

can use a simple biased roulette wheel to select

individuals.

Each string in the population has a roulette wheel slot

size in proportion to the radio of its fitness over the total

sum of fitness in the population. A random number be-

tween 0 and 1 is generated for each selection. A string is

selected for reproduction if the random number is

within the range of its roulette wheel slot. The copy of

the selected string is gathered into a mating pool, in

Fig. 3 Structure of the population string
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which they are mated for further genetic operations.

Strings with higher fitness have higher probabilities of

selection so that those with higher fitness produce more

offspring’s than those with lower fitness in the next gen-

eration [14].

� Crossover

The reproduced strings in the mating pool are mated

under crossover operation at random. Crossover oper-

ation is performed with a pair of substrings in the mated

strings for each model [14].

The crossover technique adopted in our approach is

the conflict-based crossover; this method distinguishes

between genes that do not create a conflict from genes

creating conflicts. Two children are generated based on

the parent’s genes: for each created child, values not cre-

ating conflict are duplicated on the children. If conflicts

are generated by a value, it must be modified. Then, a

deterministic change could be used: If a value is in con-

flict for a parent, and is not for the other parent, the

non-conflict value is duplicated for the two children.

However, if a value is in conflict with both parents, then

each child will copy the value of the gene of its parent,

even if it causes conflict. Figure 4 shows an example of

possible crossover.

� Mutation

The mutation operator used in our approach is named

Conflict-Based Mutation (CBM); it applies individually

for the conflict chosen channel. The CBM consists of

three main steps:

– Select randomly one user from the conflict users.

– Choose the best value of available channel bands

that provide more choices for the neighborhoods

users.

From a purely intuitive point of view, this operator

should give better results than random mutation, which

consists in randomly selecting a channel of the solution

and modify it on taking a new value of the channel at

random [22].

4.3 Operation parameters

The implementation of our GA requires the adjustment

of some parameters like the population size, the number

of generations, and the mutation rate. The stopping cri-

terion can be defined as the maximum number of itera-

tions or detection of an optimum solution.

In our simulation, the population size is set to be 100.

Hence, the initial population procedures are repeated

100 times.

5 Performance evaluation and comparison
For verification of operation, the proposed genetic algo-

rithm was modeled using some aspects or parameters/

genes and several simulations were run and results

verified.

Computer simulations are used to analyze the percent-

age of removed interference by the algorithm when the

Fig. 4 Example of conflict-based crossover [14]
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number of nodes and the available channels increase.

The approach was designed to assign one channel for

each opportunistic user under the primary users by

using a uniform cost function to select the best available

channel (and for its neighbors alike).

For each scenario, we consider a total number of PUs

equal to 10 and then different interference topology

graph instances are randomly generated, with the num-

ber of nodes varying from 10 to 50, with the interference

ranges defined in a reutilization matrix C, where each

channel is occupied by a primary user in a certain range,

and each node within a PU’s range cannot use the chan-

nel occupied by this PU. Each node in the network has

its own available channel set, according to the positions

of the PUs. Two nodes can use the same channel if they

are not in range.

The impact of the dynamic occupation of channel by

the PUs was modeled considering an average inactive

time at least ten times larger than the time needed for

the algorithm to reach the stopping criterion.

The channel assignment problem of this network is

solved by the proposed algorithm, and analyzed, for

three different scenarios:

(1)varying the number of available channels K;

(2)varying the number of network nodes N; and

(3)varying the stopping criterion H (number of

generations).

According to the observations made experimentally,

we can remark that, as shown in Fig. 5, the performance

in terms of removed interference (i.e., satisfied con-

straints during the search) decreases when the number

of nodes increases with an acceptable degradation not

exceeding 6 %, and each node has less chance to find

and use a forbidden channel.

In addition, the algorithm obtains good results and

keeps good performance in terms of the percentage of

expected goals calculated as the number of assigned

nodes; the algorithm can reduce the network interfer-

ence up to 90–98 %.

According to Table 1 and Fig. 6, one can deduce that

the processing requirement has increased with channel

increase, and then the optimal fitness decreases. An in-

crease in the number of channels causes an increase in

the Time per Generations (TpG) and in the optimal gen-

eration. Note that all of the tests were performed on a

core 2 duo CPU 2.00 GHz with 1 GB RAM memory.

Therefore, during all simulated cases, for both states

before and after channel allocation, and when the stop-

ping criterion is reached, channel availability corre-

sponds to keeping stable the number of available

channels varying from 1 to 8.

The memory process in the algorithm improves the

determination of the best solution. On one hand, the

reproduction process ensures that the best string in the

actual population (with the highest fitness) is maintained

(and copied) and put in a mating pool for the next gen-

eration. On the other hand, the algorithm uses its feed-

back information to adapt its response.

The algorithm will be able to adapt its response to the

cognitive radio’s need to adapt to a changing environ-

ment and avoid the negative effect of other arrival

nodes.

Therefore, we can conclude that the GA has good per-

formance on the users’ service and channel gain,

achieves channel allocation robustness, and maintains

minimum network interference.

Furthermore, the GA can be easily extended to chan-

nels of different capacities by considering different ver-

sions of the dynamic channel assignment, as the

dynamic assignment of coordination controls channels

in cognitive radio networks (CRNs).

To examine the efficiency of the proposed algorithm

in larger-scale problems, we show the evaluation results

for the simulation service area considered in [23]. Nodes

are randomly distributed in a 200 × 200 unit square, and

a certain number of PUs is generated, when each pri-

mary user occupies one channel. Each node in the

Fig. 5 Impact on removed interference considering the number of

nodes N

Table 1 Resulting fitness measures and GA performance per

number of channels

Number of
channels

Optimal
generation

Optimal
fitness (%)

Time per
generations (ms)

2 89 98,4 1,0

4 689 94,4 3,4

8 745 90,6 6,7
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network has its own available channel set according to

the positions of PUs.

The parameters used to compare the performance of

various algorithms are (1) number of nodes in the net-

work, (2) the total number of channels, and (3) interfer-

ence range of primary users.

The settings of parameters are shown in Table 2 [23].

In order to evaluate such algorithm and compare its

performance with existing ones, we assess the perform-

ance of the GA against three schemes in terms of the de-

livery rate:

– a node-link-based [23] algorithm with a fast conver-

gent localized protocol that assigns conflict-free

channels to maximize connectivity in multi-chip

Cognitive Radio Networks consisting of a cognitive

source–destination node pair and multiple cooperat-

ing cognitive relays.

– an optimal algorithm which maximizes the assigned

link rate, without consideration of the number of

rounds [23]

– the distributed greedy algorithm in [24].

The delivery rate evolution is analyzed by varying

three parameters:

In Fig. 7a, the total number of nodes varies from 10

and 40 while keeping the total number of channels as 10

and the interference range of primary users is randomly

selected in [60, 70]; one can observe that the GA algo-

rithm can find better or equivalent results compared

with existing optimization methods. In Fig. 7b, the num-

ber of channels varies from 4 to 30 while keeping the

number of nodes at 15 and interference range of PUs in

[60, 70].

The results show that the GA finds better solutions

compared with the optimal algorithm and the node-link-

Fig. 6 Fitness measure per generation

Table 2 Simulation settings

Total number of nodes [10, 40]

Communication range of each node (in meters) [50, 70]

Total number of channels [4, 30]

Total number of PUs 10

Interference range of PUs (in meters) [40, 140]

Fig. 7 Comparison of assigned link rate among the GA, node-link-

based, greedy, and optimal algorithm
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based algorithm and achieves self-configuring radio cog-

nitive networks without the need of additional signaling

loads and changes. It shows a rapid convergence to an

optimal solution and guarantees that there are idle chan-

nels, for last affectation of a new cognitive node appears

on the current channel assignment.

In Fig. 7c, the number of nodes is kept at 15 and num-

ber of channels at 10, and the interference range of pri-

mary users varies. The results show that our proposed

approach has improved the forecasting accuracy, and it

is almost 30 % better than the other schemes.

As shown in Fig. 7, we can conclude that for each

scheme, and compared to the optimal algorithm, the

proposed GA can reduce efficiently the network interfer-

ence up to 84–98 % with an important increase of the

number of available channels and keeping it relatively

constant. Particularly, since the goal is to construct a

robust topology with minimizing interference, our algo-

rithm obtain the optimality in a reasonably short execu-

tion time for these instances; it can obtain high-quality

solutions and much better than those of a node-link-

based and optimal algorithm.

6 Conclusions
Channel allocation problem is the main issue in cogni-

tive radio network, and the deployable real-time dy-

namic spectrum policies are one of its powerful means

to improve the global spectral efficiency to develop new

wireless communications services.

In this paper, we adopt a suitable mathematical formu-

lation for opportunistic channel allocation. While taking

into account spectrum dynamicity, we propose a genetic

algorithm for channel assignment problem in cognitive

radio and we give the steps of its implementation. The

GA is based on the new enhanced crossover and muta-

tion operators. It has a uniform distribution compared

to the classical genetic algorithm, since it is oriented to

explore promising solutions in the search space.

Experimental results show the validity of this ap-

proach. It cannot only find good solutions to the radio

channel allocation problem but also obtain the optimal

solution in a reasonably short execution time, with high-

quality solutions and better than those of the best

current approaches used in node-link-based and optimal

algorithm. It promotes the real-time allocation of cogni-

tive radio spectrum.

The algorithm ensures improved performance in terms

of satisfying the demands of cognitive radio’s need, and

the adaptability to a changing environment; in the simu-

lation, we assume that the channel availability is dy-

namic during the time. So, the algorithm can recompute

allocations as the topology changes and adapt the envir-

onment change.

Furthermore, the simulation researches of this paper

are principally executed on the theoretical benchmarks

and oriented toward qualitative analysis; therefore, it is

necessary to do some experiments on real benchmarks

with quantitative analysis in the next studies to verify its

superiority in the actual cognitive radio system.

Another possible future work will focus on channel al-

location algorithm based on genetic algorithm to achieve

a better performance and a better spectrum utilization

and taking profit from the advantages of other heuristics

through hybrid genetic algorithms.

Our future research direction will be the implementa-

tion of this algorithm for optimizing the 802.22 norm.
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