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INTRODUCTION

Most of the radio spectrum relevant to wireless
communications is densely allocated by regula-
tors, making it unlikely that the bandwidth
requirements of emerging technologies can be
met. Actual measurements illustrate, however,
that the scarcity is not a result of heavy usage of
the spectrum; in contrast, it is merely due to the
inefficiency of the static frequency allocation
pursued by regulators. A typical spectrum uti-
lization of around five percent or even less is
reported [1].

Dynamic spectrum access (DSA) resolves this
paradox by opening assigned, but sparsely used,
frequency bands to secondary users, provided
that interference to the actual licensee is kept
insignificant. Different approaches to this prob-
lem were suggested ranging from opening cer-
tain bands entirely, in the fashion of the
unlicensed industrial, scientific and medical
(ISM) bands, to hierarchical schemes requiring
secondary users to meet interference constraints
[2]. In this article, we restrict ourselves to such
hierarchical schemes; that is, we design the cog-
nitive radio so that both systems are orthogonal.

Mutual interference can be avoided by

exploiting different degrees of freedom in the
design of the secondary system. In particular,
orthogonality can be achieved by sufficient spa-
tial separation [3], by orthogonal frequency divi-
sion multiplexing (OFDM) [4], or by interleaving
transmissions in the time domain [1, 5, 6]. The
majority of research, so far, has focused on DSA
in the spatial domain, meaning that if the prima-
ry user’s absence in a certain area can be detect-
ed reliably, and if we carefully confine our
transmissions to this area, interference is limited
by this sufficient spatial separation. Reusing TV
bands that are allocated, but not broadcast,
across the entire country are a prominent exam-
ple of this paradigm [1].

Dynamic spectrum access is, however, not
limited to the spatial domain. As in [5, 6], this
article aims at achieving orthogonality among
users in the time domain by transmitting during
the idle periods remaining between the primary
user’s packet transmissions. Clearly, the problem
under consideration is of practical appeal only if
the idle periods between packet transmissions
are long enough. Although the amount of white
space naturally depends on and varies according
to the traffic characteristics, our results illustrate
that in most cases sufficient white space will be
available.

As a motivating example, consider a confer-
ence call using the popular voice-over-IP (VoIP)
client Skype (with three participating parties).
The complex baseband signal for this example is
shown in Fig. 1. Although the channel is contin-
uously used for packet transmissions (Fig. 1a),
there are large gaps between consecutive packets
as illustrated in Fig. 1b. In fact, the channel was
idle for 89 percent of the time. The situation is
similar for other traffic scenarios [7, 8].

There are numerous applications that can
take advantage of such transmission opportuni-
ties. As an example, consider building automa-
tion where sensor networks are used to provide
a central controller with local measurements of
environment parameters. By the nature of this
application, such networks must coexist with
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high-bandwidth data networks (such as WLAN).
Given the fact that such sensors communicate
only sporadically and at a low rate, it appears
reasonable to assume that such systems could
efficiently reuse remaining white space.

The existence of sufficient white space raises
the question of how to exploit this resource in
practice. How complicated is a model that pro-
vides adequate prediction performance? More-
over, given a model, how do we apply it to derive
practical access schemes for the secondary sys-
tem? Finally, are such schemes amenable to a
real-time implementation, possibly on a battery-
powered device with processing limitations?

While some of these questions have been
addressed by researchers [1], many issues remain
to be investigated. Optimal access strategies
were derived in [5] based on partially observable
Markov decision processes, assuming that prima-
ry and secondary users share the same slotted
transmission structure. This assumption, howev-
er, is not justified in some practical scenarios. In
fact, WLAN transmissions do not have a slot
structure but require a continuous channel
model.

Finding a realistic yet tractable model to suit
such standards is challenging. A bottom-up
approach by directly incorporating the specifica-
tions of all devices involved is intractable due to
the plethora of factors that affect the medium
access (number of users, traffic characteristics,
higher layer effects, and channel conditions to
name only a few). Ultimately, we must strike a
balance between statistical accuracy on the one
hand, and complexity on the other. We will see
that a semi-Markov model is a promising candi-
date to trade off both extremes [7]. Lastly, we
mention the Laycock-Gott model [9] which has
been used to predict spectral occupancy in HF
bands. Due to different modeling objectives,
however, our work requires different statistical
techniques.

This article is organized as follows. The exper-
imental test bed used to gather empirical data of
the channel’s statistics is presented together with
possible sensing methods. The main contribution
is the establishment of a semi-Markov model; we
show how to arrive at estimates for the model

parameters and discuss both stationary and non-
stationary traffic scenarios. Finally, we give an
example of how to apply this model to derive
access strategies, focusing on Bluetooth/WLAN
coexistence as an example of practical impor-
tance.

Throughout the article we identify the prima-
ry user with an 802.11b-based WLAN. We
believe this not only is a choice of practical rele-
vance but also can be extended to related multi-
access communications systems.

SENSING METHODS: 
AN EXPERIMENTAL TESTBED

The reliable detection of primary users is the
main challenge in spatial DSA as interference is
limited only by sufficient spatial separation. Pos-
sible shadowing effects and the hidden-node
problem can make it difficult or impossible for a
single node to reach the required performance.
Cooperative sensing among secondary users
becomes indispensable in those cases [10].

For the temporal DSA schemes considered in
this article, the sensing burden is alleviated for
two reasons. First, we expect to be dealing with a
different propagation environment. Most likely
we will face an indoor propagation scenario
leading to a medium to high signal-to-noise ratio
(as is typical for WLAN applications). Second, in
temporal DSA, the attention shifts from purely
detecting the presence of a primary system to
predicting its behavior. We emphasize that it is
this prediction — and not the sensing alone —
that guarantees orthogonality between primary
and secondary users. This section briefly outlines
the testbed setup used to gather the empirical
data our model is based on. Subsequently, two
sensing strategies are outlined and their practical
relevance is addressed.

TESTBED DESCRIPTION

The data we used to propose and analyze our
model was gathered by a testbed consisting of a
wireless router and several workstations with
WLAN adapter cards (Fig. 2). In contrast to
measurement setups considered in other publica-

■ Figure 1. a) Complex baseband signal of an 802.11b-WLAN supporting a Skype conference call; b) enlarged view of two subsequent
packet transmissions.
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tions, we used a vector signal analyzer to capture
the raw complex baseband data. In this way, dif-
ferent sensing strategies can be evaluated on the
same data, giving valuable insight when it comes
to developing a real-time implementation. Fur-
thermore, by comparing the results of different
sensing strategies, the validity of the data could
be confirmed.

In addition to the antenna-based setup depict-
ed in Fig. 2, we also tested an isolated setup,
where all devices were connected via cables to a
resistive power divider. In this way interference
from adjacent WLAN hotspots (unrelated to our
measurement) could be avoided [7].

We employed different traffic generators to
guarantee repeatable measurement results,
namely, D-ITG to create synthetic, constant-pay-
load Universal Datagram Protocol (UDP) traffic
[7] and GenSyn to generate realistic HTTP traf-
fic [11].

SENSING STRATEGIES

The strategies for detecting busy and idle peri-
ods can be classified according to whether the
primary user’s transmission standard is known. If
not, a logical approach is energy-based detec-
tion. On the other hand, if we have information
about the primary system, this knowledge can be
exploited to achieve better performance. We
refer to such methods as feature-based detec-
tion.

Energy-based detection is formulated mathe-
matically as discerning the hypotheses of observ-
ing only noise and observing a signal in noise,
respectively. We assume that a decision is based
on a block of complex baseband samples. Given
a target value for the error probability, we must
choose the number of samples (the block length)
such that the specification is met even for the
worst case SNR. In practice, if we require an
error probability no greater than 10–5, and if we
consider blocks of 1 µs, a minimum SNR of 4.8
dB is required. This is a realistic value given
usual WLAN setups.

Feature-based techniques improve the detec-
tion performance by exploiting standard specifics.
In particular, for the 802.11b-based WLAN con-
sidered in this work, we can find the start of pack-
ets by locking onto the synchronization preamble
of the transmitted packets. Moreover, by decod-
ing the LENGTH field within the preamble, we
can find the exact packet duration [7].

Although feature-based detection has the
ability to increase detection performance, energy
detection typically lends itself to a simpler imple-
mentation. In practice, additional considerations
must be taken into account. For example, fea-
ture-based detection has the drawback of requir-
ing a continuous monitoring of the channel. For
this reason, energy-based detection should be
preferred if the channel is only sensed at certain
time instances (e.g., at the beginning of every
slot).

MODELING WHITE SPACE:
A STATISTICAL APPROACH

The previous section discussed two sensing
strategies for detecting the busy and idle periods
of the channel. Based on these data we now
develop a statistical model that allows us to pre-
dict the channel’s behavior. We emphasize that
since WLAN does not have a slot structure, a
description in continuous time is required.
Specifically, our model must incorporate two
separate components:
• The states of the channel and their transi-

tion behavior
• How long the system resides in each of the

states
The previous observation motivates the use

of a semi-Markov model, which can be viewed as
an extension of a continuous-time Markov chain
(CTMC). Although both models describe the
transition behavior in the same way, a semi-
Markov model allows for specifying the occupan-
cy periods for each state arbitrarily (they need
not be exponential as in a CTMC).

CHANNEL STATE CLASSIFICATION

In defining the state space, consider again the
complex baseband signal shown in Fig. 1b. The
figure motivates to extend the state space of the
model beyond the trivial busy and idle states. In
fact, the WLAN standard specifies that every
transmission of a data packet must be followed
by an acknowledgment (after a short gap called
short inter-frame space (SIFS)). Data packets
and acknowledgments serve different purposes
and consequently, it makes sense to separate
their statistical characterization; ultimately it is
very likely for an acknowledgment to follow a
data packet. We thus introduce the states
DATA, SIFS, and ACK to represent these possi-
ble channel conditions (Fig. 3).

First insights into the model can be gained by
estimating its transition probabilities. It turns out
that the sequence of states DATA→SIFS→ACK
is effectively deterministic, in the sense that the
probability of observing this sequence is close to
one. This does not come as a surprise since this
sequence of states precisely corresponds to a
successful packet transmission together with its
obligatory acknowledgment. The model thus can
be simplified by lumping these three states and
defining a new TRANSMIT state that corre-
sponds to such a successful transmission (Fig. 3).

This simplification also makes sense from a
practical viewpoint. Ultimately, our model serves
the purpose of predicting the idle periods (the
white space) of the channel. Although the short
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■ Figure 2. Testbed configuration.
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gap between data packets and their acknowledg-
ments corresponds to an idle channel, it is too
short to be used for secondary transmissions.

The previous paragraphs introduced the
TRANSMIT state consisting of the transmission
of a data packet together with its acknowledg-
ment. Successive transmissions are separated by
an idle channel. However, it is important to fur-
ther differentiate between two cases. First, after
a successful transmission, a station cannot con-
tinue transmitting but must follow a standard-
ized back-off procedure to give all stations equal
access to the medium. This back-off procedure is
implemented by a so-called contention period:
all stations draw random numbers within a cer-
tain range and defer access for this number of
slot durations. A station can go ahead and trans-
mit only after having waited for this time period,
provided that no other station accessed the
medium beforehand. Ideally, this means that the
station that draws the smallest number accesses
the medium first.

However, not all of the idle periods are due
to the contention window. The channel also can
be idle because none of the stations has any
packets to transmit. In fact, this is precisely the
situation we aim to exploit in DSA. We refer to
such a channel as being free.

OCCUPANCY DURATIONS

The simplified model shown in Fig. 3 guides us
to the second component of our model: the
occupancy duration or sojourn time in each
state. To specify this component, we must find (a
parametric) distribution that captures this statis-
tical behavior.

The sojourn time in the TRANSMIT state is
primarily affected by the traffic characteristics
and the scheduler employed in the adapter cards
and the wireless router. Transfer of large files
generally leads to rather long packets, while
streaming traffic such as VoIP leads to shorter
packets. From our measurement results for dif-
ferent traffic scenarios, we infer that, in general,
several discrete components are observed.

The statistical characterization of the IDLE
channel is more challenging since, as mentioned
before, the channel can be idle either due to the
contention window or a truly free channel. This
suggests a mixture distribution, incorporating the
effects from both states. Indeed, the contention
period shows an almost uniformly distributed
sojourn time (ranging from 0 to 0.7 ms), while a
free state exhibits heavy-tailed behavior that is
well approximated by a generalized Pareto distri-
bution.

The empirical distribution function for the
idle periods of the channel is shown in Fig. 4 for
the case of constant payload UDP traffic. The
effects of the mixture-distribution (uniformly dis-
tributed body, but heavy tail) are clearly visible.
Note the bend in the distribution at approxi-
mately 0.7 ms. We also can see that the influ-
ence of the contention window becomes more
pronounced as the channel gets busier (upper
curve). This is intuitive, since the contention
procedure is applied more often as traffic load
increases.

In addition to this mixture fit, we used phase-
type distributions to capture the data statistical-

ly. Such distributions have the advantage that
they can be viewed as the time-to-absorption of
a CTMC with multiple states, generally allowing
for some simplification in applying the model. A
hyper-Erlang distribution resulted in a lead to a
good fit. Furthermore, an efficient Expectation-
Maximization (EM) algorithm exists for estimat-
ing the parameters of this model [12]. The fit
appears again in Fig. 4.

We also fitted an exponential distribution to
the data. Although it does not approximate the
empirical data as well as the distributions dis-
cussed previously, it makes the model easier to
apply in practice. Statistically, such an approach
is not entirely justified, but it is worthwhile to
identify heuristic algorithms.

GOODNESS-OF-FIT ANALYSIS

The accuracy of the above fitting methods can
be evaluated by looking at the plots in Fig. 4.
Beyond this intuitive assessment, an analytical
analysis can be based on the Kolmogorov-
Smirnov (K-S) test, which is a well-established
technique in statistics [13].

■ Figure 3. The proposed semi-Markov model.
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■ Figure 4. Goodness-of-fit analysis for constant payload UDP traffic.
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The K-S test examines whether the empirical
data is drawn independently from a distribution
F(t), namely the one we want to postulate in our
model. Intuitively, if this were the case, we
would expect the empirical cumulative distribu-
tion function (E-CDF) Fe(t), based on the data
alone, to resemble F(t) closely. Indeed, the K-S
test is based on the maximum aberration
between Fe(t) and F(t); a small aberration sug-
gests that the samples come from the proposed
distribution.

Although this maximum aberration, also
referred to as K-S statistic, reflects the goodness-
of-fit quantitatively, it is not normalized by the
sample size N. Ultimately, if Fe(t) is constructed
from a large set of observations, we expect a bet-
ter fit than from a small sample. This is account-
ed for by the significance level α, which specifies
the maximum tolerable aberration in relation to
N [13]. Usually, a significance level of approxi-
mately α = 0.1 is deemed appropriate.

Stationary UDP Traffic Scenario — We first
consider the stationary UDP traffic scenario
mentioned previously. The sojourn time in the
TRANSMIT state is deterministic due to the
constant payload. The statistical distribution for
the IDLE state is shown in Fig. 4 for the rates λ
= 25 pkts/s and λ = 100 pkts/s, respectively. The
fact that the traffic is stationary enables us to
accurately evaluate the goodness-of-fit based on
long trace data.

We can see that both the mixture and the
hyper-Erlang distribution show an excellent fit
with the E-CDF. The K-S test confirms the accu-
racy of our model for both distributions. Although
Fig. 4 suggests a decent fit for the exponential
distribution also, this hypothesis is rejected by the
test. Nevertheless, an exponential distribution
might still be interesting in practice, because it
simplifies the derivation of access schemes.

Non-stationary HTTP Traffic — In the previ-
ous stationary traffic scenario, we could evaluate
the goodness-of-fit without accounting for time
variations. In practice, however, most traffic sce-
narios are non-stationary. Therefore, we consid-
er more realistic HTTP traffic generated by
GenSyn. This traffic generator accesses a list of

specified Web pages, but in a way that mimics
the behavior of a real user and thus accounts for
the non-stationary behavior of HTTP [11].

We again consider a hyper-Erlang distribu-
tion and approximate the non-stationary traffic
with blocks of length L. Within a block the traf-
fic parameters are assumed constant. In choos-
ing L, we must strike a balance between
approximating the time variations and being able
to estimate the model parameters accurately. A
good trade-off was obtained for L = 100.

This approach is illustrated in Fig. 5 for a
hyper-Erlang and an exponential fit, respectively.
The figure shows how the goodness-of-fit evolves
with the time variations of the traffic. Similar to
the stationary scenario, the hyper-Erlang distri-
bution shows a satisfactory goodness-of-fit over
the entire sample, while the exponential distribu-
tion is clearly rejected by the K-S test.

DERIVING ACCESS SCHEMES:
A PRACTICAL EXAMPLE

In the previous section we proposed a statistical
model for the primary user’s channel access and
verified the goodness-of-fit. Now, we give a con-
crete example on how to apply this model in
practice. Specifically, we show how to enhance
the coexistence of Bluetooth and WLAN in the
unlicensed ISM band, identifying the primary
user with WLAN and the secondary system with
Bluetooth.

BLUETOOTH/WLAN COEXISTENCE

The coexistence between Bluetooth and WLAN
in the unlicensed ISM band is of significant
practical concern, because mutual interference
can severely limit the performance of both sys-
tems [14]. The interference arises from the fact
that both standards operate in the ISM band
around 2.4 GHz, spanning about 80 MHz of
bandwidth. The 802.11-based WLAN systems
employed today utilize 11 to 13 channels
(depending on national standardization), each
having a bandwidth of 22 MHz. We stress that
most of these channels are overlapping and that
there is, in fact, only one configuration of three
orthogonal channels (Fig. 6). We focus on this
configuration in the following paragraphs.

Bluetooth employs frequency-hopping trans-
missions in 1 MHz wide channels across the
same frequency band. In basic operation, the
Bluetooth hopping pattern is pseudo-random
throughout the entire band and completely
oblivious of the WLAN transmissions. Conse-
quently, collisions between WLAN packets and
Bluetooth transmissions occur frequently,
degrading the performance of both systems.

Given the practical importance of this prob-
lem, several propositions on how to mitigate the
mutual interference were made. One way of
reducing interference is to adapt the hopping
sequence of the Bluetooth, such that channels
with large interference are avoided. Such meth-
ods are referred to as adaptive frequency hop-
ping [14] and consist of the following two main
components:
• The sensing and classification of channels

according to their interference.
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■ Figure 5. Non-stationary traffic. While the hyper-Erlang fit shows an appro-
priate goodness of fit, the exponential distribution again exceeds the threshold
defined by the K-S test.
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• The adaptation of the hopping sequence
such that “bad” channels are avoided when-
ever possible.
Adaptive frequency hopping was considered

previously, based on classifying the Bluetooth
channels according to their long-term behavior,
for example, by counting the number of bit
errors for each channel. Although such an
approach can mitigate interference from static
sources (e.g., microwave ovens), it is not well
suited to capture the time-varying behavior of
WLAN interference. In contrast, by incorporat-
ing the statistical model proposed in this article,
it is possible to predict the behavior of the
WLAN and thus to improve the performance
significantly.

Our analysis focuses on the representative
configuration shown in Fig. 6. There are three
orthogonal WLAN channels, each overlapping in
frequency with 22 Bluetooth channels. We refer
to the WLAN channels as bands to avoid confu-
sion with the Bluetooth channels. Figure 6 illus-
trates that the Bluetooth transmissions are
slotted while WLAN stations can start transmit-
ting at any time. Furthermore, we emphasize
that all Bluetooth channels within the same
WLAN band show the same access behavior due
to the larger bandwidth of the WLAN. Thus it is
sufficient to model statistically the behavior of
the three WLAN bands rather than each of the
80 Bluetooth channels. The computational bur-
den is thus significantly reduced.

ENHANCED HOPPING SCHEME

We propose the following adaptive frequency-
hopping operation for the Bluetooth transmitter.
At the beginning of each slot, the current chan-

nel is sensed. If the presence of a WLAN packet
is detected, no transmission takes place since
this inevitably would lead to a collision. On the
other hand, even if no WLAN packet is detect-
ed, a collision still can occur if the WLAN
becomes active during the subsequent slot (see
slot 6 in Fig. 6a). The probability of this event
can be kept small, however, by initiating a trans-
mission only with a certain probability γ ≤ 1,
even if the channel is sensed idle.

The probability of collision (and thus the
design of γ) depends on the WLAN traffic char-
acteristics. In particular, we employ our model
to find the probability that conditioned on the
channel having been idle for k slots, no WLAN
packet will be transmitted during the subsequent
slot. By obtaining this probability, we can design
γ such that collisions with the WLAN occur with
a probability smaller than some interference
constraint.

The approach described previously constrains
the collision probability for each band in Fig. 6.
At the same time, however, we desire to maxi-
mize the Bluetooth throughput. This maximiza-
tion is tightly linked with the optimal hopping
across the WLAN bands as each band provides a
parallel transmission opportunity. Hardware lim-
itations make it unrealistic that the Bluetooth
transmitter can observe the state of all bands at
the same time. The problem is thus partially
observed, making the optimal design of the sys-
tem a challenging problem that must be
addressed within a decision-theoretic framework
[5, 15]. Although finding the optimal solution to
this problem goes beyond the scope of this arti-
cle, we illustrate the possible performance gain
along the lines of a heuristic scheme.

■ Figure 6. a) Adaptive frequency hopping; b) performance evaluation. The Bluetooth transmitter preferably hops to bands currently not
occupied by the WLAN.
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Consider a scheme that deterministically
switches to the next band whenever the current
channel becomes busy. The performance of such
a scheme for the UDP traffic scenario considered
previously is shown in Fig. 6b. Its performance is
compared to a scheme that can observe all of the
WLAN bands at the same time. Although this
assumption is not necessarily practical, it presents
an upper bound on the performance of any par-
tially observed scheme. The figure shows that
finding the optimal switching between bands is a
worthwhile problem. Ultimately, a possible per-
formance improvement of up to a factor of two
can be expected. We also obtained the collision
probability and the throughput of a regular (com-
pletely oblivious) Bluetooth transmitter. It
achieved a (relative) throughput of 70 percent
while showing a collision probability of 35 per-
cent. By looking at the performance evaluation in
Fig. 6b, we can see that the regular Bluetooth
operation clearly is outperformed.

CONCLUSION

We addressed the problem of dynamically access-
ing spectrum in the time domain by taking advan-
tage of white space that remains between bursty
packet transmissions of a WLAN. The proposed
model statistically captures the medium access of
the WLAN but remains tractable enough to be
used for deriving practical access schemes for the
secondary user. As an example, we have illustrat-
ed how our model could be used to enhance the
coexistence between WLAN and Bluetooth in
the unlicensed ISM band. We emphasize that our
model is based on empirical data gathered from
snapshots of the raw complex baseband signal of
the WLAN. This enables us to test sensing algo-
rithms on the same data and hence to gain insight
into challenges that arise when it comes to a real-
time implementation.
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We emphasize that

our model is based

on empirical data

gathered from 

snapshots of the raw

complex baseband

signal of the WLAN.

This enables us to

test sensing 

algorithms on the

same data and

hence to gain insight

into challenges 

that arise.


