
Cognitive Robotics: On the Semantic Knife-edge

Mark Witkowski, Murray Shanahan, Paulo Santos and David Randell

Intelligent and interactive Systems Research Group

Department of Electrical and Electronic Engineering

Imperial College of Science, Technology and Medicine

Exhibition Road,

London SW7 2BT

{m.witkowski, m.shanahan, p.santos, d.randell}@ic.ac.uk

5/4/2001

Abstract

This paper describes some aspects of recent and ongoing work in the area of Cognitive Robotics in the Department

of Electrical and Electronic Engineering at Imperial College. Our approach to Cognitive Robotics has been to apply

abductive reasoning procedures using the Event Calculus, an extension to First Order Predicate Calculus (FOPC), to

provide a unified view of several related mobile robotics tasks: sensor data assimilation, map-building and planning.

Cognitive robotics depends on an explicit declarative representation. While this greatly facilitates reasoning about

domain knowledge, it comes with an extra computational overhead. This is the basis of the semantic knife-edge,

maintaining a delicate balance between expressivity and efficient implementation.

1 Introduction

“Cognitive Robotics” refers to an area of study that applies formal logical representations to physical robots, with

the long-term goal to endow them with higher-level cognitive skills. Cognitive Robotics [4, 10, 11, 17, 21] proceeds

from the conviction that advances in developing a clear semantics for robots and their environments, within the

principled framework of logical description, will lead to further advances in our overall understanding of

intelligence in robots and artificial agents [8]. Despite a promising early start with projects such as SRI’s SHAKEY

[13, 20], the rigours of applying formal logic to real robots remain problematic. In part, these problems arise from

the “semantic knife-edge” [14], the observation that logic representations are apparently inevitably balanced

between a lack of expressivity, which renders them useless for the tasks they are to be employed for, and too much

detail, which renders them intractable to automated proof generation methods.

The use of explicit logical formalisms in the context of the Event Calculus, allows dynamic, non-trivial real world

domains to be rigorously described and reasoned about. The declarative nature of the representational formalism and

approach used facilitates the description of structure within the formalism, which can be exploited by specialist

reasoning techniques. It also lays bare the primitive features of the language used and highlights how this maps

directly to observable events and properties of objects in the modelled domain. Consequently, we show how it is

possible to start with a high-level description of the world and eventually map this directly to sense data; or rather

abduce from sensory information, hypotheses about the world that can be tested and validated. In this way complex

and meaningful behaviour observed in autonomous robots not only becomes possible, the use of logic as the main

representational language allows both a uniform framework to identify and exploit meta-level structure, but also

provides the means to rigorously specify and establish program correctness, and lays the foundations for robots and

autonomous artificial agents that can reason about their own behaviour in a physical world.

The first part of this paper introduces aspects of the Event Calculus [19, 21], then describes how sensor events and

the effects of actions are represented in the Event Calculus for a mobile robot. It then describes how abductive

reasoning is applied to important mobile robot tasks, sensor data assimilation, map-building, planning and

localisation. We next provide a description of how an Event Calculus based robot controller is interfaced to a

Proc. TIMR 01 – Towards Intelligent Mobile Robots, Manchester 2001.

Technical Report Series, Department of Computer Science, Manchester University, ISSN 1361 – 6161

Report number UMCS-010401. http://www.cs.man.ac.uk/cstechrep/titles01.html

Khepera [9], a real, if miniature, mobile robot. In the second part we widen the discussion by introducing a new

visual Region Occlusion Calculus (ROC), and indicate how it may be used to formally describe a greater range of

more complex sensory events and in turn generate a spatial segmentation of a robot’s environment, in which the

robot may navigate and reason about its surroundings.

2 The Event Calculus

When applying a logic formalism to robotics, it becomes clear that the scheme used must be able to represent the

effects of actions and the consequential changes that occur to the robot and the environment. Equally, it must be able

to represent the effects of exogenous events on the robot, as detected via its sensors. To achieve this, the underlying

ontology (the primitive or given features of a language) of the Event Calculus is based on fluents, a description of

entities that can change state with time; events (or actions), that can cause the state of a fluent to change; and time
points, the instants of time at which changes occur. Fluents can represent the state of a sensor, the position of a

robot, or the state a feature in the environment (for instance, whether a door is open or not). Action events may be

initiated by the robot (possibly as the result of planning), or represent other exogenous events within the

environment, causing fluents to change independently of the robot. Time points are ordered. In a more formal

treatment of the Event Calculus this ordering would be made explicit, here it will be assumed.

The Event Calculus also defines seven basic predicates, which fully represent the ways in which fluents and actions

interact, and the time ordering between them:

• Initially(f), indicating that the fluent f holds a value of true (Initially1) or false (Initially0) at time 0.

• HoldsAt(f,t), indicates that the fluent f holds true at an instant, t.
• Happens(a,t1,t2), indicates that the action or event I occurs during the time range bounded by t1 and t2. In

practice this will be qualified by preconditions, placing restriction on when a robot might perform an

action, or when an exogenous event is possible.

• Initiates(a,f,t), indicates that fluent f will hold after an occurrence of action a at time t.
• Terminates(a,f,t), indicates that f will no longer hold true after an occurrence of a at time t.
• Clipped(t1,f,t2), indicates that the state of fluent f has altered during the range of times t1 to t2.

• Before(t1,t2), makes explicit the ordering relationship between a pair of time points.

The Event Calculus has previously been proposed as a solution to the frame-problem, [19]; as it overcomes the need

to explicitly maintain knowledge about what does not change as a consequence of performing actions or due to the

occurrence of exogenous events. This is clearly a major concern when applied to robotics, but is by no means

restricted to robotics tasks, and the Event Calculus axioms may be used as a “wrapper” to augment other logic

representations where time, change and the effects of actions must be considered. In principle, it is possible to record

a complete history of events and changes to fluents (encoded as “Initially” and “Happens” formulae), though in a

robot environment this may be neither possible, nor desirable, if the reasoning process is not to become

overwhelmed with extraneous “memories”.

3 Robot Control - Building on the Event Calculus

A cognitive robot controller using the Event Calculus properly consists of the set of Event Calculus axioms (styled

as “EC”), which define the underlying rules for reasoning about time and change and a domain theory, robot

programs in the event calculus (styled “Σ”) that describe various interactions between the actual robot and its

environment. An event calculus robot program will, in turn, consist of:

1) The effects of the robot’s low-level actions on the environment.

2) A description of impact of the environment on the robot’s sensors.

3) The effects of high-level actions (for hierarchical planning).

4) High-level actions in terms of component lower-level actions.

5) The historical “narrative” of past events (styled as “∆”).

6) A map of the environment encoded as Event Calculus axioms.

7) Which predicates are abducible.

Robot control is embedded in a “sense-plan-act” cycle, which continues ad-infinitum. Short bursts of planning

activity are inter-leaved with actions and sensor gathering. Planning is a computationally demanding task, often

more so when conducted in a formal reasoning environment than when conducted by ad-hoc planning algorithms.

To alleviate this problem, plans are created hierarchically, initially from high-level action descriptions. Once a high-

level plan is available (for instance, at the room level), only the first step is expanded (and the first step of that, etc.)

until a starting sequence composed of only low-level actions is formed. This is progression order planning [21].

4 Abduction

Abduction is a form of reasoning which attempts to provide explanations, by established proof procedures, for given

events. Abduction is therefore particularly relevant to the application of reasoning in logic to robotics, where we

expect a stream of events to be generated by the normal process of the robot sensing conditions arising (either

through its own actions, or through the occurrence of extrinsic events) within the robot’s environment. For example,

a robot may encounter an obstacle in its path. Several possible explanations might be considered. If that obstacle is

already recorded within the robot’s description of the world, the obstacle’s presence is trivially explained, and the

robot may perform some action to avoid the obstruction. However, if the robot were currently in an unexplored part

of its environment, the explanation would clearly involve adding knowledge about the obstacle to the robot’s model.

If not, several alternate explanations could be formulated from the robot’s description of the world and it’s

properties. It might be that an external agent had deposited the obstacle while it was not being observed. If the

obstacle is modelled as “immovable”, this explanation may have to be discarded. Finally, in this example, the robot

may be forced to the conclusion that it has become disoriented in its environment.

Reasoning by abduction is related to, but differs from deductive reasoning. The process of abduction is directed

toward an explanadum (a fact or observation to be explained), given a background theory (in this case the Event

Calculus axioms, the robot program and other components introduced in the previous section). As with other forms

of reasoning, only explanations supported by the model may be generated. As already noted, abductive reasoning

may give rise to several alternative explanations, which are (by definition) equally supported, although not

necessarily equally desirable. Boutilier and Becher [1] introduce a preference ordering in the context of belief

revision to resolve this problem. We note that the generation of more than one explanation will have different effects

according to the task being addressed, sometimes indicative, sometimes benign and sometimes detrimental.

Abductive reasoning has been used to good effect in model-based diagnosis, where possible explanations of mal-

function must be formed [3, 5].

5 Using Abduction for Sensor Data Assimilation, Map-building, Planning and Localisation

This section considers how the abductive reasoning scheme might be applied to a range of different tasks. In each

case the robot controller is presented with some event (styled “Γ”), either actual, as in the case of an incoming

sensor event (ΓS), or desired, such as the goal in a plan (ΓG), which must be explained or otherwise interpreted by

creating a residue of “Happens” formulae (styled “Ψ”) by automated reasoning. In map-building a novel sensor

event (representing an environmental feature) must be assimilated into the robot’s map and model of its world. In

planning the robot must also generate sequences of actions, recorded as “Happens” formulae, to achieve its goals.

Because these abductive processes are all similar we note that the bulk of the event calculus description remains

identical across all the activities. According to the task, the detailed processes invoked will differ, and in particular,

the set of items declared abducible changes (for example, to generate plan items during planning but map

descriptions during map building, etc.)

5.1 Sensor Data Assimilation

In sensor assimilation, the explanation of a sensor event (ΨS) is encapsulated by the abductive entailment:

 EC & Σ & ∆ & ΨS ΓS

That is, generate some new explanation, ΨS, that, when taken with the Event Calculus axioms (EC), the existing

robot control program and map, (Σ), and the narrative of past events, which entails () the new sensor input ΓS.

Normally, of course, a sensor event will be consistent with the current map, and so be trivially explained. Changes to

the environment, such as a door being closed, may equally be explained in this manner according to the definition Σ.

Sensing is very restricted in the robot used, relying only on short-range (2cm) proximity detectors and wheel

odometry. The robot operates in its (miniature) model of an office environment, figure 1, by following the walls and

edging around corners, so as to maintain a continuous sensory stream. When a door is in place (“closed”), it appears

to form part of a long “wall”, and the next fluent encountered will be that of the next corner around the room. The

abduced residue must be consistent with the current plan, if it is not, the current plan must be abandoned and a new

initiated. Where the residue is neither consistent with the existing map nor be explained in terms of a new map

feature, the robot can conclude it has become disoriented in the environment and initiate a localisation process.

5.2 Map Building

 EC & Σ & ∆ & ΨM ΓS

Map-building is a variant of this abductive scheme. If some sensor event ΓS occurs that cannot be explained by the

map, but could be if the map were extended by the residue ΨM, then new knowledge has been acquired and the map

can be augmented. New features in the map are automatically named (using a successor function) and added to the

map description formulae. Clearly the abductive process must give rise to a single interpretation before the map can

be extended. The accuracy of the Khepera’s odometry sense is inadequate to localise a room feature to a unique

place. We are therefore obliged to add integrity constraints [21], making explicit, for instance, that a corner cannot

be located in two rooms to guide the abductive reasoning. We normally consider map-building in this way to be a

specific process, rather than an opportunistic activity, with a complete room explored by progressing around it in a

clockwise (or anti-clockwise) direction. Mapping a complete environment consists of exploring a room, and then

planning a path to a doorway that leads to an unexplored room.

/* Room 4 */

next_corner(r4,c35,c36).

next_corner(r4,c36,c37).

next_corner(r4,c37,c38).

next_corner(r4,c38,c39).

next_corner(r4,c39,c40).

next_corner(r4,c40,c41).

next_corner(r4,c41,c42).

next_corner(r4,c42,c43).

next_corner(r4,c43,c44).

next_corner(r4,c44,c35).

door(d3,c35,c44).

door(d8,c37,c38).

door(d9,c41,c42).

inner(c36).

inner(c39).

inner(c40).

inner(c43).

connects(d3,r4,r1).

connects(d8,r4,r7).

connects(d9,r4,r8).

r4

Figure 1: Actual office environment model, room 4 axioms (left) and visualisation of map axioms (right)

5.3 Planning

EC & Σ & ∆0 & ΨP ΓG

In planning, some desired event ΓG is postulated (such as “HoldsAt(At(C19),t)”), given a current place in the

narrative of events (∆0) and a residue constructed (ΨP) then describes a sequence of action events that lead to the

desired goal condition (for instance, “Happens(GoLeft,T100), Happens(Forward,T101), Happens(GoRight,T102),

Happens(Forward,T103), Happens(GoLeft,T104), Happens(GoRight,T105)”). In this case there may be several,

equally valid, residues, equating to multiple possible paths through the environment. Several strategies can be

devised to select between them, apart, of course, from taking the first plan formulated. Minimising the number of

steps is a reasonable measure, and minimising distance travelled. In this instance though, timing information is more

significant, as the elapsed time to traverse corners is generally greater than that to follow walls. Such information is

available at the lower, robot control level, but may not be made available to the logic level.

5.4 Localisation

 EC & Σ & ∆R & ΨL ΓS

In localisation we attempt to build a residue (ΨL) comprising exactly one abductive explanation of the current sensor

fluent (ΓS) and the recent history (∆R, that since the loss of localisation was detected), which is uniquely consistent

with the existing map, and so defines a current, specific location within the map. While there are multiple abductive

explanations, the robot could still be at one of a number of locations and further actions are required to disambiguate

these. Should the residue ever become empty, the map is no longer valid, and must be reconstructed.

6 Environment to Events: Robot Actions and Fluents

This section describes the effects of the action events and generation of sensor event fluents that characterise model

office environments of the form shown in figure 1 when used with miniature (6cm high) Khepera mobile robots

from K-Team [9]. The environment is defined in terms of “walls”, “corners”, “doors” and “rooms”. As only two of

the Khepera’s sensor modalities are used, six of the eight infra-red proximity sensors (with an effective range of

about 2cm, and located as indicated in the robot outline in figure 2), and wheel odometry, a number of restrictions

are placed on the design of this environment. It must be rectilinear. All rooms must be connected only by doors and

doorways must follow strict dimensional criteria if the robot is to be able to detect both doorposts with its sensors.

Sensor events seen by the Event Calculus program detect discontinuities (the corners, door-posts and doorways)

between these features. At the robot level, these sensor conditions are completely anonymous (that is, they provide

no identifying information about the features they detect) and must be combined and built-up to provide a coherent

description and map of the environment. In the model office environment, we use seven distinct and mutually

exclusive conditions to sense all the significant transition events (fluents) used by the Event Calculus programs

(Left, Right, LeftAndFront, RightAndFront, LeftGap, RightGap and InDoorway). These are complemented by five

action commands (Forward, GoLeft, GoRight, Turn and Back).

Fluents arise from actions, and terminate them. The sensor fluents Left and Right indicate that the robot is beside a

wall and may follow it Forward until the next feature. The fluents LeftAndFront and RightAndFront indicate that the

robot has moved forward and encountered another wall at a concave corner. The robot may then perform a GoRight

or GoLeft action to align itself with that connecting wall (a Back action allows it to return along the wall it is on).

The fluents LeftGap and RightGap indicate that the robot has overshot the wall it is following. This occurs in two

distinct cases, that of a convex corner (e.g. C21 or C32 of figure 1) or when a doorpost is encountered (e.g. C1, C26

or C38). The robot cannot directly distinguish these two cases, and so must perform a GoLeft (or GoRight) to follow

round the corner. Sensing a Left or Right indicates a concave corner, InDoorway that it was a doorpost. When in a

door, the robot may proceed with actions GoLeft or GoRight to enter the next room, or perform a Turn followed by

a GoLeft or GoRight to continue in the same room. Figure 2 charts the values of the sensors, and the cumulative

rotations of the wheels (diamond and square markers) for a sequence of three actions, Forward, GoLeft then

GoRight giving rise to three fluents, LeftGap, InDoorway and Right, as it negotiates a doorway in the environment.

Fluent events are detected by a combination of changing sensor value and distance moved.

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

Event number

S
e

n
s

e
 v

a
lu

e lef t

r ight

l_90

l_45

l_10

r_10

r_45

r_90

Fluent:

LeftGap

Fluent:

InDoorway

Fluent:

Right

Action: Forward

l_90
l_45

l_10

r_10

r_45
r_90

right

left

Action: GoLeft Action: GoRight

Figure 2: Actions and Fluents at the Robot Level

These action commands and sensor fluents have been embedded into an “extended BIOS” for the Khepera, which

may be downloaded into the robot’s RAM (or blown into a replacement ROM), and become available to any high-

level control program via the Khepera’s RS232 communications link.

7 Generating Fluents from Visual Occlusion

As with the Khepera robots using its primitive sensors to provide the raw data from which features in the model are

constructed, so also with a robot using machine vision. In the Khepera case, discontinuities and invariants in the

Khepera’s physical environment are used to infer the existence of features such as walls, corners and doorposts.

These give rise to fluents, which may then used within the Event Calculus to map build and navigate through its

environment. In the second this part of the paper we now consider the extraction of fluents from machine vision

data. In particular information garnered from occlusion events and motion parallax. Occlusion events map directly to

fluents, and actions of the robot may bring about a change in the relative positions and alignments between objects

with respect to the robot’s current viewpoint. In this way, sensory data tied to movement of the robot again leads to

explanations of what it senses, and in turn provides a way to disambiguate what it sees, or if not, the basis to re-plan

a set of actions in order to achieve this.

To fully characterise the various relationships between arbitrary-shaped objects in a visual field we have developed

the Region Occlusion Calculus (ROC). The Region Occlusion Calculus is a first-order logical theory that describes

the spatial relationships between bodies as seen from a robot’s viewpoint. The theory encapsulates two things: (a)

spatial occlusion (or interposition) between objects, and (b) the means to reason about how these occlusion events

will change with respect to changes in the robot’s viewpoint, for instance in the motion parallax effect, whereby a

change in viewpoint causes relative displacements of objects at different distances in the visual field. Both cues are

exploited to build up an awareness of three-dimensional form and distance from a two-dimensional image.

Occlusion events help to determine where an object’s boundary lies, or to infer why an object cannot be seen, and

what needs to be done in order to render it visible. For example, consider two objects A and B in a robot’s visual

field (Figure 3). Suppose a robot moves to its left, while keeping these objects in sight. If object A passes across B,

or when moving toward A, B becomes completely obscured the robot can infer that A is in front of B. Similarly, if,

when moving to the right, no relative change arises, the robot may infer that A and B are far away, or close by and

possibly moving in the same direction as itself. Conversely, if A, when visible, always appears to be subtended by

B, the robot may infer that A and B are physically connected. In each case, occlusion events and motion parallax are

being used to derive an objective model of the world from a naturally restricted viewpoint.

Figure 3: Spatial occlusion at work. Occlusion events arise with a change in viewpoint.

The Region Occlusion Calculus extends the earlier Lines of Sight calculus of Galton [7], and builds on the Region
Connection Calculus of Randell, Cohn and Cui [16]. Distinguishing features of the new calculus are that it can

represent concave objects, and so is therefore able to represent objects that can mutually occlude each other, and it

encapsulates a notion of depth and comparative distance between objects. Both are essential in a logical theory if it

is to find practical application in robotics. Region Occlusion Calculus reduces the description of possible alignments

between objects to 20 relations. These 20 relations are jointly exhaustive and pairwise disjoint (JEPD), which is to

say they completely account for all possible cases, and no two relation subsumes or is a more general case of

another. All are reducible to a primitive relation of connection (x connects with y) and total occlusion (x totally

occludes y from viewpont v), and a function that maps three-dimensional bodies and a viewpoint to their

corresponding images in the visual field (the image of x from viewpoint v). The theory is further augmented with

relations that express comparative distances between bodies (x is nearer to y than z), and their left/right orientations

with respect to a restricted viewport (x is to the left/right of y from viewpoint v).

As each spatial relation describes a possible alignment in the world between two bodies in the visual space, plus the

fact we have a JEPD set of these, it is possible to model all continuous transitions via sequences of discrete spatial

relations. In the implemented logic these changes map to changes in the apparent connectivity of images in the

visual space as either positions of the bodies or the viewpoint changes. These can be formulated into a transition

graph (c.f. Freksa’s [6] conceptual neighbourhoods), which captures these direct transitions, with paths through the

graph interpreted as possible sequences of instantaneous changes between occlusion events over time. Transitions

can also be expressed as a set of envisioning axioms [15] to form the basis of a qualitative simulation program [2],

or can be re-worked directly within the Event Calculus that explicitly models change over time.

NonOccludesDC
(DC: DisConnected)

NonOccludesEC
(EC: External Connect)

PartiallyOccludesPO
(PO: Partial Overlap)

PartiallyOccludesTPP
(TPP: Tangential Proper Part)

PartiallyOccludesNTPP
(NTPP: Non Tangential Proper Part)

Figure 4: Some of the Occlusion Relationships

Figure 4 shows five of the 20 occlusion relationships: NonOccludesDC(x,y,v), NonOccludesEC(x,y,v),

PartiallyOccludesPO(x,y,v), PartiallyOccludesTPP(x,y,v), PartiallyOccludesNTPP(x,y,v). In each case, from the

robot’s viewpoint v, NonOccludesDC(x,y,v) describes the case where from viewpoint v, two bodies x and y appear

separated. NonOccludesEC(x,y,v) the case where external boundary of x exactly aligns the external boundary of y.

PartiallyOccludesPO(x,y,v) the case where x partially overlaps y; PartiallyOccludesTPP(x,y,v) the case where x is

appears inside y, and their boundaries align; and PartiallyOccludesNTPP(x,y,v) where x appears completely inside y.

Note that NonOccludesEC(x,y,v) and PartiallyOccludesTPP(x,y,v) capture alignments between objects x and y, so

PartiallyOccludesTPP(x,y,v) is the case whenever x is both inside and edge aligned, there will be many such

instances, and so for the others. Similarly PartiallyOccludesPO(x,y,v) describes all the instances where the occluding

object x partially overlaps the occluded object y’s boundary.

Within the Event Calculus, these predicates now re-appear as functions indexed to time points, or to intervals where

the fluent holds, e.g. HoldsAt(NonOccludesDC(x,y,v),t). To these fluents we add actions taken by the robot and map

actions to changes in the apparent connectivity between pairs of objects as the robot’s viewpoint, or the positions of

the bodies with respect to its viewpoint changes. We now describe how we might map these high level descriptions

to data extracted from the visual field.

8 From Visual Occlusion to Mapping Space

The goal of this element of our on-going research is the development of a map building and robot navigation system

based on a rigorous first order formalism for representing and reasoning about objects and about the free space

between them. In general terms, the framework is constituted at three levels: first, at the sensor data level, the data

from a stereo vision system is transformed in a depth profile of the image which are then described by logic

formulae. A sequence of such profiles constitutes a transition of scenes involving changes in the states of objects;

our logic reasoning system encodes these profile transitions and entails the relations between the objects. These

relations constitute the second level of reasoning: that of image interpretation. On using a subset of the relations

defined in the previous level (more specifically, the relations concerned with object occlusion) a tessellation of the

environment is constructed, this is the third level: the map level. A rigorous description of the reasoning system is

outside scope of the present paper. The aim of this section is to discuss some of the main principles involved in

developing this framework.

8.1 Level 1: Sensor data

Consider a robot that receives information from the environment through a stereo vision system; thus, from the

viewpoint of the robot, the objects of the external world are 2D regions in a camera image representing the depths of

the objects. In order to transform the sensor data from the vision system into a high-level description of the relations

between the objects, we consider a simplification of the initial data. Instead of analysing the whole stereogram of a

scene we analyse initially a horizontal cut of it, creating then a one dimensional depth profile of the scene (figure

5b). The whole image can be analysed considering a grid of depth profiles with a granularity depending on the

complexity of the required scene description.

A depth profile (figure 5b) is a 2D chart representing, in the vertical axis (l), the relative depths of the objects in a

robot's viewpoint and, in the horizontal axis (Θ), the relative size of the objects measured in terms of angular

coordinates w.r.t. the field of view of the robot (θn). The l axis is constrained by the furthest point that can be noted

by the robot's sensors, this limiting distance is represented by the letter L in the profile in figure 5b. Therefore the

vertical peaks in a profile represent objects and relation between objects in the environment, thus we also use the

term object profile referring to a peak in a depth profile. It is worth noting that the values of l and Θ are qualitative

rather than quantitative, and they can be encoded in terms of fuzzy notions such as less near, near and very near for

the depth variable l, and similar notions for the variable Θ.

θ1

lb

la

L
BA

θ2 θ3 θ4

l

Θv

A

B

L

v

Figure 5: a) Two objects A, B inside of a robot's (νν) field of view; b) depth profile relative to the field of view

Another important feature of the depth profiles is the shape of the peaks. For the moment we are only interested in

two categories of shapes of object profiles: single and composed. Single peaks are those depicted in figure 5b, while

a composed peak has the shape of a step (figure 6.P3 below). The importance of this classification is briefly

explained as follows.

8.2 Level 2: Image interpretation - occlusion

Θ1 Θ2 Θ3 Θ4

lb

la

L
BA

∆1 ∆2 Θ3 Θ4

lb

la

L
BA

Φ1 Φ2

lb

la

L
AB

Θ3 Θ4

lb

L
B

Figure 6: A depth profile sequence P1, P2, P3 and P4.

Many conclusions about an object’s relationships can be asserted from the analysis of sequences of depth profiles.

One of them has an immediate interest to the present work, the interpretation of occlusion transitions. Figure 6 is an

example of a depth profile sequence involving this kind of transition. The first step towards the logic reasoning

system is the description of the main features of the profile transitions in such a way that higher level interpretations

are logically entailed by this description. Intuitively, the transition from P1 to P2 (P1->P2), in figure 6, suggests that

either the object A approached the object B or the observer made a semi-circle centred in B in the direction of

decreasing the distance between the peaks A and B. The logic reasoning system should be capable of entailing these

possibilities.

From the logic description of transition P2 -> P3 (which should contain the information that the single peaks A and

B, in profile P2, became a composed peak AB in profile P3), the reasoning system should be able to entail that

object B partially occludes A. Similarly, from the transition sequence P2->P3->P4 mutually occlusion between A

and B should be entailed from the information that the peaks A and B changed from two single peaks (in P2) to one

composed (in P3) and eventually to one single peak (in P4). Note that, as a simplification, we use the same notation

for the peaks A and B and for the possible objects they might denote. Rigorously, this association should be an

abductive inference since a single peak (from a particular viewpoint) can split in two (possibly composed) peaks

from another viewpoint.

8.3 Level 3: The Map

A simple solution to the problem of map building begins by making the robot turn 360° around each of the objects

in the environment. While turning around an object, the initial task of the map building system is to observe the

occlusion relations between this object and any other object in the robot’s field of view. The aim of observing this

relation is to note the point where it terminates holding; in other words, the initial task of the map building system is

to note (analysing the profile sequences) the transition when (given two objects A and B and adjacent viewpoints v

and v’), for instance, PartiallyOccludesPO(A,B,v) becomes NonOccludesEC(A,B,v’). The next task of the map

building system is, then, to store the pair of points [v, p], where p is any point in object A that is the nearest to B
(figure7a). Such pairs of points define a straight line, which, for the purpose of this work, we name a line of sight.
The purpose of noting these lines is to use them to construct a tessellation (figure 7c) of space defined by the

intersections of the lines of sight between the objects in the environment. This tessellation is a map of the

environment within which the robot can locate itself and plan paths through the world. This process is similar to the

construction of orientation regions (Levitt and Lawton, [12]). A suitable data structure must be created in order to

store the lines of sight and the tessellation of the environment, maintaining the order among the lines and the

regions, so that path planning can be reduced to efficient search. This data structure might be similar to a quad-tree,

modified in order to consider the ordering of regions and lines; Schlieder [18] presents a possible way to define such

an ordering.

(c)

A

B

C

10

1
2

3

4

5

7

9

8

6
11

(b)

A

B

C

(a)

A

B

Cv

Figure 7: Construction of orientation regions from lines of sight (aerial view).

Another point of concern in this framework is the time efficiency of the map building process briefly described

above. In order analyse the main factors influencing time efficiency of this map building process, consider that the

environment is composed of N objects. The worst case occurs, thus, when each one of the N objects defines lines of

sight to each other from some viewpoint. In this case, for every two objects there are two different lines of sight to

be defined. Thus, the time efficiency of this task is 2(n2).
However, the most influencing issue in efficiency is the task of constructing orientation regions. Clearly, this

process depends on the number of intersection points of lines of sight, which depends on the geometrical distribution

of the objects in the environment. If all of the intersections between lines of sight are calculated, the algorithm

would produce a large number of polygons, most of them would be far too small for the purpose of robot navigation

(as is the case of region 6 in figure 7c). A solution to this problem would be to discard some of the lines of sight

using a preference criterion (or a conjunction of criteria) while storing these lines; an example of such criteria is

choosing lines that connect only objects that measure twice the size of the robot (limiting in this way storing lines of

sight between objects that can have their positions altered by the robot’s motion).

9 Conclusions

We have noted that the use of logic to control robots appears to be balanced on a “semantic knife-edge”, between a

representation that is too sparse to allow adequate reasoning about the domain in hand, and one too rich to be

tractable to current automated proof techniques. We have presented an approach to four closely interrelated mobile

robot tasks, namely sensor assimilation, planning (and navigation), map-building and localisation, within a single

logical framework based on the Event Calculus. By careful choice of the primitive events synthesised at the robot

level and made available to the reasoning part, we then argued that it is possible to construct and reason with

complex descriptions and maps built from many, but very low-level, sensor readings. Event Calculus programs are

typically concise for each of these tasks when compared to equivalent code written procedurally, but automated

reasoning is computationally intensive and performance suffers greatly as a consequence compared to conventional

approaches to map building and navigation, [22] for example. Our on-going research not only investigates better

ways of representing robot knowledge, but also better ways of exploiting it through reasoning. We suspect, however,

that the semantic knife-edge problem will never be fully resolved, for each time we make an advance in the speed or

effectiveness of automated reasoning it will inevitably be countered by an increase in the ambition to generate more

detailed descriptions of the world and extend the bridge between grounded, sensor and motor based, reasoning with

ever greater degrees of cognitive skill.

Acknowledgements

This work has been supported by EPSRC project GR/N13104, “Cognitive Robotics II”.

References

[1] Boutilier, C. and Becher, V. (1995) “Abduction as Belief Revision”, Artificial Intelligence, Vol. 77, pages 43-94

[2] Cui, Z, Cohn, A.G and Randell D.A. (1992) “Qualitative simulation based on a logical formalism of space and

time”, Proceedings AAAI-92, AAAI Press, Menlo Park, California, pages 679-684

[3] Davis, R. (1984) “Diagnostic Reasoning Based on Structure and Behavior”, Artificial Intelligence, Vol. 24,

pages 347-410

[4] De Giacomo, G. (ed.), (1998) Cognitive Robotics: Papers from the 1998 AAAI Fall Symposium, Orlando,

Florida, AAAI Technical Report FS-98-02

[5] de Kleer, J. and Williams, B. C. (1987) “Diagnosing Multiple Faults”, Artificial Intelligence, Vol. 32, pp. 97-130

[6] Freksa, C. (1992) “Temporal reasoning based on semi-intervals”, Artificial Intelligence, Vol. 54, pages 199-227

[7] Galton, A.P. (1994) “Lines of Sight”, AISB Workshop on Spatial and Spatio-Temporal Reasoning.

[8] Huhns, M.N. and Singh, M.P. (1997) “Agents and Multiagent Systems: Themes, Approaches and Challenges”,

Readings in Agents, Morgan Kaufmann Publishers, pages 1-23.

[9] K-Team (1995) “Khepera User Manual”, K-Team SA, Ch. du Vasset, CP111, 1028 Préverenges, Switzerland,

Version 4.06, November 1995

[10] Lespérance, Y., Levesque, H.J. Lin, F., Marcu, D. Reiter, R. and Scherl, R.B. (1994) “A Logical Approach to

High-Level Robot Programming: A Progress Report”, in B. Kuipers (ed.), Control of the Physical World by
Intelligent Systems: Papers from the 1994 AAAI Fall Symposium, New Orleans, pages 79-85

[11] Levesque, H., Reiter, R., Lespérance, Y., Lin, F. and Scherl, R.B. (1997) “GOLOG: A Logic Programming

Language for Dynamic Domains”, The Journal of Logic Programming, Vol. 31, pages 59–83

[12] Levitt, T. S. and Lawton, D. T. (1990) “Qualitative Navigation for Mobile Robots”, Artificial Intelligence, Vol.

44, pages 305-360

[13] Nilsson, N. J. (1984) “Shakey the Robot”, SRI Technical Note no. 323, SRI, Menlo Park, CA.

[14] Pratt, I. (1999) “Qualitative Spatial Representation Languages with Convexity”, J. of Spatial Cognition and
Computation, Vol. 1, pages 181-204

[15] Randell, D. A. (1991) “Analysing the Familiar: Reasoning About Space and Time in the Everyday World”,

PhD thesis, University of Warwick, Coventry, UK, 1991

[16] Randell, D. A., Cui, Z. and Cohn, A. G. (1992) “A Spatial Logic Based on Regions and Connection”, in proc.

3rd Int. Conf. on Knowledge Representation and Reasoning, pages 165-176

[17] Reiter, R. (1998) “Sequential, temporal GOLOG”, Proceedings 1998 Knowledge Representation Conference
(KR 98), pages 547–556

[18] Schlieder, C. (1995) “Reasoning About Ordering”, in: COSIT’95, Springer LNCS, Vol. 988, pages 341-349

[19] Shanahan, M. P. (1997) “Solving the Frame problem: A Mathematical Investigation of the Common Sense Law

of Inertia”, MIT Press.

[20] Shanahan, M.P. (2001) “Reinventing Shakey”, in J. Minker (ed.) Logic-Based Artificial Intelligence, Kluwer

Academic

[21] Shanahan, M. P. and Witkowski, C. M. (2000) “High-level Robot Control Through Logic”, in proc. Agent
Theories, Architectures and Languages (ATAL-2000), Boston, pages 100-113

[22] Thrun, S. (1998) “Learning Maps for Indoor Mobile Robot Navigation”, Artificial Intelligence, Vol. 99, pages.

85-111

