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Abstract: This paper provides a new approach that improves collaborative filtering results in

recommendation systems. In particular, we aim to ensure the reliability of the data set collected which

is to collect the cognition about the item similarity from the users. Hence, in this work, we collect

the cognitive similarity of the user about similar movies. Besides, we introduce a three-layered

architecture that consists of the network between the items (item layer), the network between the

cognitive similarity of users (cognition layer) and the network between users occurring in their

cognitive similarity (user layer). For instance, the similarity in the cognitive network can be extracted

from a similarity measure on the item network. In order to evaluate our method, we conducted

experiments in the movie domain. In addition, for better performance evaluation, we use the

F-measure that is a combination of two criteria Precision and Recall. Compared with the Pearson

Correlation, our method more accurate and achieves improvement over the baseline 11.1% in the best

case. The result shows that our method achieved consistent improvement of 1.8% to 3.2% for various

neighborhood sizes in MAE calculation, and from 2.0% to 4.1% in RMSE calculation. This indicates

that our method improves recommendation performance.

Keywords: cognitive similarity; recommendation system; collaborative filtering

1. Introduction

The information overload problem on the Internet is popular today so that the recommendation

system is powerful methods to handle these problems. The recommendation system covers a wide

range of recommendation targets such as travels, movies, restaurants, fashion, news, and so on [1,2].

Clearly, one of the highly effective technologies applied to the recommendation system is Collaborative

Filtering (CF) [3–6]. Basically, the operation of the CF system is described as a following. First,

CF collects user feedback, and such responses reside within a certain domain and allow users to rate

items within that domain. Second, CF exploits the similarities between ranking behaviors of users.

Finally, it is possible to determine how to recommend an item. CF accumulates user-item ratings,

identifies users with common ratings to items and offers recommendations based on the inter-user

comparison. In other words, recommendations for a specific user are based on the behavior and

evaluation of other users. The motivation for CF comes from the idea that people often get the best

recommendations from someones (i.e., neighbors) who have similar preferences. The main problem of

collaborative filtering is how to incorporate and weigh the preference of neighbors.

The purpose of collaborative filtering algorithms is to suggest new items or predict the utility of a

given item for a particular user based on the feedback from the user and the other users who like and

leave ratings for the item. Let’s assume that, there is a list of n users U = {Ui|i ∈ [1, ..., n]} and a list of
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m items I = {Ij|j ∈ [1, ..., m]}. Each user ui has a list of item Iui
, in which the user has created their

feedback. The feedback can be given by the user as a rating score, usually a certain numerical scale,

or can be implicitly derived from historical records, by analyzing timing logs, mining web hyperlinks

and so on [6,7]. Because, Iui
⊆ I and it is possible for Uui

to be a null-set. Therefore, there exists a

distinguished user called the active user for whom the task of a collaborative filtering algorithm is to

find an item similarity that can be in the two forms, prediction and recommendation. Figure 1 shows

the schematic diagram of the collaborative filtering process. In addition, CF algorithms represent the

entire matrix n × m user-item data with each entry in the matrix n × m represents the preference score

(ratings) of the user un on the item im. Each rating get a numerical scale and when the user has not

rated yet, it will be 0.

Input (ratings table) Output interfaceCF - Algorithm

PREDICTION

RECOMMENDATION

𝒖𝟏 𝒖𝟐 … 𝒖𝒏𝒊𝟏𝒊𝟐
…𝒊𝒎

Top-N list of items for 

the active user.

Prediction on a given 

item for the active user.

Active user

Items

Figure 1. The Collaborative Filtering process.

Generally, collaborative filtering algorithms can be divided into two main categories:

memory-based and model-based algorithms [8]. Memory-based Collaborative Filtering algorithm uses

all or a sample of the user-item database to do the predictions. Each user is part of a group with similar

preferences. The prediction about preferences for the items for users can be created by identifying

the neighbors of a new user (or active user). On the other hand, Model-based Collaborative Filtering

algorithms allow the system to learn the given model so that the algorithms recognize complex patterns

based on training data. Then, based on learned models, the system makes the intelligent predictions

for collaborative filtering tasks for the test or real-world data.

Besides the outstanding advantages as mentioned, the user-based collaborative filtering still has a

lot of successes. However, their widespread use has revealed challenges, such as:

• Scalability: With large systems, such as Netflix (https://www.netflix.com) and Amazon (https:

//www.amazon.com/), the number of users and items increases a lot every day. The traditional

CF algorithm will face serious scalability issues, with computational resources exceeding actual

or acceptable levels. For example, if we have millions of users and millions of distinct items,

the complexity of the CF algorithm is already too large. Besides, the system needs to respond

immediately to online requests and make recommendations to all users regardless of their

purchase and rating history, thus requiring high scalability.

• Sparsity: In fact, many commercial recommendation systems are used to evaluate very large

sets of products. Therefore, the user-item matrix used for collaborative filtering will be very

sparse, and the performance or predictions of CF systems are challenged. In several situations,

specifically, the cold start problem occurs when having a new user/item in the system. It may

not find the similar user/item because there is not enough information (it is also called the new

user problem or new item problem [9,10] ). Besides, neighbor transitivity is another problem with

sparse databases. The users with similar preferences may not be identified if they have not rated

any of the same items. So, it will reduce the effectiveness of a recommendation system based on

comparing users in pairs to make predictions.

This paper has three primary research contributions: (i) propose a cognitive similarity

approach and collect the real cognitive similarity data based on a crowdsourcing system

(called OurMovieSimilarity) [11]. (ii) formulation of a pre-computed model (the three-layered

https://www.netflix.com
https://www.amazon.com/
https://www.amazon.com/
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architecture) of cognitive similarity to extract the cognitive similarity from users. (iii) proposed

the cognitive similarity-based collaborative filtering recommendation system. In particular, we create

a crowdsourcing system [11–14] to collect the cognitive data from the user. Then, we propose the

three-layered architecture [15] to extract the cognitive information from the user. Our architecture is

bottom-up and structure made of three superposed networks that are strongly linked:

• User network relating users on the basis of explicit from the cognitive network.

• Cognition network relating cognitive similarity between users based on selecting items similarity.

• Item network relating items based on the basis comparing features extracted from them.

The remainder of this paper is organized as follows. In the next section, we present some of the

research related to user-based collaborative filtering. In Section 3, we present a definition of cognitive

similarity and propose the three-layered architecture to extract the cognitive similarity. We present

the recommendation system based on cognitive similarity in Section 4. The details of our experiment,

data set, evaluation, and result will be provided in Section 5. In the final section, we provide concluding

remarks and directions for future works.

2. Related Work

GroupLens [3,6] has implemented the MovieLens (https://movielens.org) [16] as one of the

large systems that allow new users to sign up and rate their favorite movies. GroupLens researchers

have also released a data set that they collected over the years with more than 25 million movie

ratings. They provide a pseudonymous collaborative filtering solution for movies based on their

data set in order to improve and solve the disadvantages of collaborative filtering, especially to

improve user-based collaborative filtering in a recommender system. Other technologies have also

been applied such as Bayesian networks and clustering. A Bayesian Network (BN) [17–19] is a compact

representation of a multivariate statistical distribution function. BN encodes the probability density

function governing a set of random variables {Xi|I ∈ [1, ..., n]} by specifying a set of conditional

independence statements together with a set of conditional probability functions. In particular, a BN

consists of a qualitative part, a directed acyclic graph where the nodes mirror the random variables Xi

and a quantitative part, the set of conditional probability functions. In general, BN creates a model

based on a training-set with a decision tree at each node and edges representing user information.

The model can be built off-line over a matter of hours a day. The resulting model is very small, fast,

and essentially as accurate as the nearest neighbor method.

Recently, a lot of improvements for user-based CF have been proposed to mitigate the effects of

the data sparseness [20,21]. For example, a singular vector decomposition was used to condense the

original user-item matrix [22] for dimensional reduction, and latent semantic models [23] was used to

cluster the users and items. However, these approaches have a disadvantage that the decomposition

must be renewed every time another user or rating is added to the matrix. Another, more recent

contribution is based on an analysis of prediction errors to improve the accuracy of user-based CF.

This approach has the limitation that the cost for the calculation of errors [24] of all ratings during

training is quite an expensive. Alternative approaches, using recursive prediction strategies, have been

proposed to exploit not only the neighbors but also the neighbors of the neighbors [25]. Because the

similarity calculation of neighbors of all neighbors is required, such strategies incur high computational

costs and grow exponentially with the depth of the recursion. Besides, these strategies must be enrich

the information of the user-item matrix to improve the performance of user-based CF [8,26].

In addition, in [27,28], the two item-based similarity measures have been designed to overcome

the cold-start problem by incorporating genre data of items. They use popular datasets such as

MovieLens and MovieTweets in their experiments. According to their approach, an item be uniform to

other items because they have more than one common genre. Therefore, by considering the association

of common genres, they exploit one of the similarity measures that is determining the degree of direct

asymmetric correlation between items.

https://movielens.org
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The proposed method in this paper was inspired by [29] that proposes the Rated-Item Pools (called

RIP-based) approach to improve user-based CF. This approach aims to eliminate extra calculations that

increase computational complexity and thereby avoid the need to add external knowledge resources

resulting in potential cost. In order to formulate the approach, the author used a related method [3]

that applied Equation (1) to predicting the rating value Ru,i for an active user u and item i

Ru,i = Ru + ∑
v∈Nu,i

sim(u, v)

∑j∈Nu,i
sim(u, j)

∗ (Rv,i − Rv), (1)

where Nu,i represents a subset of the neighbors v of the active user u who explicitly rated item i.

In addition, the user similarity sim(u, v) is normalized by the sum among all similarities computed

between both the active user and the neighbors from Nu,i. The classic user-based CF approach

calculates sim(u, v) as a global similarity. To calculate sim(u, v), either the cosine similarity metric

(also referred to as vector spatial similarity) or, more frequently, the Pearson correlation coefficient are

generally used. The Pearson correlation coefficient is defined as following:

sim(u, v) =
∑i∈Cu,v

(Ru,i − Ru)(Rv,i − Rv)
√

∑i∈Cu,v
(Ru,i − Ru)2 ∑i∈Cu,v

(Rv,i − Rv)2
, (2)

where Ru,i represents the user u rating on the item i; Cu,v represents the intersection of the item

rated by the users u and v; Ru represents the average rating of user u on all the Cu,v co-rated items.

In Equation (2), similarity is not only used to contribute sim(u, v) to Equation (1), but also to find

the neighbors (Nu,i) of the active user u. Normally, we have two methods that can select the nearest

neighbors. However, the more popular is to choose the K users most similar to the active user [3]. In this

method, we estimated a similarity threshold, and then alternately, all chosen users have distances to

the active user which not exceeded a similarity threshold [4]. We decided this classical method which

described above as User-based Pearson Correlation Similarity (UBPS) and adopts it as the baseline for the

comparative analysis presented in this paper.

3. Cognitive Similarity

Our work explores the cognitive similarity between users, then we can define the most similar

user for the active user. For example, consider the relation between users such as Kyle, Jason, and Paul.

Typically, the process of a CF system first detects the preference of Jason based on his rating items.

In the second step, the system comparing the Jason’s ratings against Kyle and Paul to find the most

“similar” tastes. The final step is to recommend items that similar users have rated highly but not yet

been rated by Jason. However, how do we combine and weigh the preferences of user neighbors

to define the top-N recommendations for Jason? We recognized the behavior of users when using

a service is crucial to making accurate predictions [30]. Our work aims to understand the cognitive

similarity of the user. Therefore, according to our approach, we can define the most similar user of

Jason is Kyle so that the suitable recommendations to Jason almost depend on Kyle and a little from

Paul. As shown in Table 1, with the traditional CF method the user Jason has the same relation with

Kyle and Paul, while our proposed method showed that Jason and Kyle have the stronger relation

than Jason and Paul. In the remainder of this part, we describe the details of our approach to extract

the cognitive similarity between users
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Table 1. Comparison between tradition CF with the user-based approach and our proposed method in

considering the relation of users Jason, Kyle and Paul.

User-Based CF Approach Cognitive Similarity Approach

User Similarity Extracted Features User Similarity

Jason ≈0.689 0.41, 0.60, 0.48, 0.44, 0.46 <G, D, P, A, T>

Kyle ≈0.579 0.39, 0.58, 0.49, 0.41, 0.47 <G, D, P, A, T>

Paul ≈0.468 0.43, 0.64, 0.45, 0.49, 0.38 <G, A, D, T, P>

Suppose n is the number of items and k is the number of features extracted from each item.

Therefore, each item will be represented as a vector In = {Fi|i ∈ [1, ..., k]}. When users u selects a pair

of items similar, the cognitive similarity of user u will be represented as CSu = {SimFi
|i ∈ [1, ..., k]},

where SimFi
is a cosine similarity between features Fi of each items In. The cognitive similarity between

users will be enriched by each of their selection. Generally, we have a definition of cognitive similarity

as a following:

Definition 1. The cognitive similarity (CS) between user u and v is their priority of these F features extracted

from each item i in the selecting process a pair of an item similar and can be formulated as:

CSu,v =
∑

N
i,j uivjSimFi ,Fj

pu,v
√

∑
N
i,j uiujSimFi ,Fj

√

∑
N
i,j vivjSimFi ,Fj

, (3)

where SimFi ,Fj
is the similarity of features F which extracted from the pair of items i and j in the selection of user

u and user v. Otherwise, pi,j represents the similarity of the priority between user u and user v in order to select

pairs of item similarity.

3.1. Measuring Cognitive Similarity

The most important step in memory-based collaborative filtering algorithms is calculating the

similarity between items or users. The basic idea of calculating the similarity between two items

itemi and itemj is to first isolate the user who evaluated both of these items and then apply the same

calculation technique to determine the similarity Sim
(

itemi, itemj

)

. In this study, we using soft cosine

similarity is the metric for measure the similarity. The cosine similarity is defined to equal the cosine

of the angle between two non-zero vectors of an inner product space. Given the vector I and vector J,

the cosine similarity is represented as follows:

CosineSim(I, J) =
I · J

‖I‖‖J‖
=

∑
n
h=1 Ih Jh

√

∑
n
h=1 I2

h

√

∑
n
h=1 J2

h

, (4)

where Ih and Jh are components of vector I and vector J respectively. For example, given movie mi

which users have seen and all movies mj remained in the database, we measure similarity Sim
(

mi, mj

)

by using Vector Cosine-Based Similarity. Movie m represented as a vector 〈T, G, D, A, P〉, in which

T, G, D, A and P represent the feature of title; genre; director; actors; plot. In this regard, the formula

for scoring Sim
(

mi, mj

)

described as follows:

Sim
(

mi, mj

)

≡
〈

Tij, Gij, Dij, Aij, Pij

〉

, (5)

where Tij, Gij, Dij, Aij, and Pij represent the features which measure similarity between movie mi and

movie mj such as titles, genres, directors, actors and plots. In particular, consider the title feature,

by apply Equation (4), the similarity between the title of movie mi and movie mj describe as follows:
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Tij =
∑

n
h=1 Ti,hTj,h

√

∑
n
h=1 Ti,h2

√

∑
n
h=1 Tj,h2

, (6)

Respectively, we measured the remainder similarity between features such as genre (Gij),

director (Dij), actors (Aij), and plot (Pij). Finally, we repeat that calculation for all the remaining

movies in the system and obtain a set {Sim
(

mi, mj+h

)

|h ∈ [1, .., n]}. Besides, we add an element

that is the priority of users while they select a similar movie. Hence, the Equation (5) is re-written

as follows.

Sim
(

mi, mj

)

=
∑

n
k=1 ωk × Simk

(

mi, mj

)

∑
n
k=1 ωk

, (7)

where ωk denote the priority of user in selecting a pair of movies similar; k denote the number of

features extracted from movie m respectively is the title, genre, director, actor, and plot; Simk

(

mi, mj

)

is a similarity measuring between movie mi and movie mj as described in Equation (5). The priority of

users in selecting a pair of movies similarity dynamic re-calculated and updated by the OMS system

when users have a new activity (a new pair of movies similarity). Based on the history of the users

(their activities), we collected all the pair of movies similarity so that we can represent the user by using

the feature extracted from the all of the pair of movies similarity which user recognized. By using

Equation (3), we formulate an equation that measure the cognitive similarity between user Kyle and

Paul or Jason. It’s described as follows:

CSKyle,Paul =
∑

N
i,j Simi,jSim(ωKyle, ωPaul)

√

∑
N
i,j ωKylei

ωKylej
Simi,j

√

∑
N
i,j ωPauli ωPaulj

Simi,j

, (8)

where i, j is the features extracted from each item similarity according to the activities of Kyle and Paul;

Simi,j is the similarity of each feature and Sim(ωKyle, ωPaul) is the similarity of their priority in select

pairs of the similar movie. For example, in Figure 2, the priority of Kyle in selecting pairs of movies

similarity was illustrated in the right diagram and in the left diagram we can see that the priorities of

users Kyle and Paul are clearly related each other.

Title

Genre

Director

Actor

Plot

10
20

30
40

50
60

Kyle
Jason
Paul

Title

Genre

Director

Actor

Plot

10
20

30
40

50
60

Kyle

Figure 2. Representing the diagram of priority: In the right diagram, the priority of user Kyle illustrated

by a grey area in ordering five features extracted from the movies (title, genre, director, actor, and plot).

Combination with other users, in the left diagram, we can see the related of their priority.

3.2. Three-Layered Architecture for Cognitive Similarity

Our purpose is to extract the similarity between users based on their cognitive similarity in finding

the pair of similar items. Then we can use the cognitive similarity to find the k-nearest neighbor of
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active users. Hence, we introduce a three-layered architecture as shown in Figure 3, including (i) an

item network S, (ii) a cognition network C, and (iii) a user network U. The networks are considered

with several different relations between individuals. Hence, each network is characterized as a set of

relations and a set of objects (nodes). The characteristics of each layer and the relationships between

layers in the three-layered architecture are described below.

The Expendables 2 The Day After

Tomorrow 2004

The Expendables 3

Terminator:

Dark Fate

Independence Day

Resurgence 2016

Daybreakers

2010

Predestination

2014

Transcendence

Mr. Nobody

The Mechanic

The Machine

Logan

Death Race

The Bank Job

Item Layer

Cognition Layer

User Layer

B
o

tto
m

-u
p

Josh

Paul

Jason

Ann

Karla

Kyle

Bill

John

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖 | 𝑖 ∈ {𝑡, 𝑔, 𝑑, 𝑎, 𝑝}
𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑗 | 𝑗 ∈ {𝑡, 𝑑, 𝑔, 𝑝, 𝑎}𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑘 | 𝑘 ∈ {𝑔, 𝑡, 𝑑, 𝑎, 𝑝}

Figure 3. A three-layered architecture for cognitive similarity.

• Item Layer

In the item network S, nodes are representing items, and relations (i.e., edges) are the similarity

between items. A item network S is a directed graph 〈NS, E
similarity
S

〉, where NS is the set of item

and E
similarity
S

⊆ NS × NS is the set of relations between these items. From the item network in the

Figure 3, the dot edges represent the relationship between the nodes while these nodes represent

the items (the movies). In this study, the relation between items is measured by using cosine

vector similarity as mentioned above.

• Cognition Layer

The cognition network C is a network 〈NC, Ei
C
〉, in which NC is a set of cognitive similarity

from groups of user and Ei
C
⊆ NC × NC is the relationship between these groups. The objective

relationship from the S to the O is through the selecting pairs of items similarity by users which

can be expressed by a relation: Selections ⊆ NS × NC. We can easily interpret the hubs as

being the user’s groups that combine a large number of other users with cognitive similarity.

These would be an exciting starting point for any new users willing to annotate a similar set of

objects as his friend. For example, from the cognition network in Figure 3, the new user Bill has

cognitive similarity in groups {John, Karla, Bill} so that Bill will start related with the groups

{John, Paul, Kyle, Karla}. These will be enriched during the cognitive of Bill and dynamically

changed in this network. The relation of these groups is represented by the overlap from sets of

features that collect implicit from the activities of users. In particular, feature sets extracted from

movies are {t, g, d, a, p}, in which, t denotes title, g denotes genre, d denotes director, a denotes

actor, and p denotes plot. Likewise, cognitive similarity between users will be extended and

imported based on many histories of users’ activities (i.e., the item’s similarity). Clearly, there is a
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difference between cognition networks and item networks though: in item networks, based on

several connected items, cognition will be extracted from there. The connection in cognition

network extends to include the relation between cognitive similarity of the user and between user

groups. Thus, it would be useful to recognize those hubs that connect users on the same groups,

these are likely to be the expression of alignment between the two groups.

• User Layer

In the user layer U, nodes are users, and relations are the numerous kinds of relationships that

can be found in cognitive similarity. The user network U is a network 〈NU, Ei
U
〉, in which NU is a

set of entity of a user and Ei
U
⊆ NU × NU the relationship between these entities. The relation was

extracted based on the objective relationship from the C to the U that is through the extraction

of relation users’ group in a cognition similarity and can be expressed by a relation: Extracts ⊆

NC × NU. From Figure 3, in the user network, the edges represent the relationship between

users. By considering the relations between user Kyle, Jason, and Paul, the movie which they

have seen and recognized as similar movies, such as The Expendables 2 (A), The Expendables 3 (B),

Terminator: Dark Fate (C), Daybreakers 2010 (D), The Machine (E), and Mr. Nobody (F). User Jason

recognized pairs 〈A, B〉 and 〈E, F〉 are pairs of similar movies while the user Paul suppose all pairs

〈A, B〉, 〈C, D〉 and 〈E, F〉 are pairs of similar movies. By combining with the cognitive similarity

extracted from the cognition layer of each user, the nearest neighbors of Kyle is Paul in a fixed-size

neighborhood. Otherwise, in a threshold-based neighborhood, the neighbors of Kyle are Paul

and Jason.

4. Recommendation System Based on Cognitive Similarity

CF-based recommendation systems usually use similarity method for finding k-nearest neighbor

users to target a user. Then, the system utilize the past ratings of neighbor users to predict or

recommend new content to the active user who will like that content. The content recommendation can

be also made by using different methods based on the similarity of information from the past rating

(buying, browse, and so on) of the users. In this paper, we use cognitive similarity among users to find

k-nearest neighbor users. Obviously, by using a rating score, we can identify the user preferences, but a

key problem is how to combine and weight the preferences of user neighbors. We consider another

side, that is finding the cognitive similarity between users and combine with the user preferences. It is

worth mentioning that, users cognitive similarity must be constructed based on their cognition about

the items instead of rating score. All activities of the user can be collected and saved in the database.

The features extracted from items that a user uses to recognize similarity can be used to develop

the initial of user cognitive similarity. In this case, these features collected implicitly from the users

through their movie similar selection. The system then analyzes and updates each cognitive similarity

of users individually based on the collected features. The system continues to recommend pairs of

similar movies of the k-nearest neighbors to collect feedback from the active user. Finally, the feedback

from users on the results of recommendations can be used to adjust their cognitive similarity.

In order to develop the cognitive similarity, items similarity needs to be elaborated in the

preprocessing. After that, the cognitive similarity between users will be occurred based on the

similar items previously browsed and selected. The recommendation processes can be divided into

three steps as follows:

• The representation of the user information. The cognitive similarity by user is analyzed and modeled.

• The generation of neighbor users. The similarity of users can be extracted from the three-layer

architecture according to the data collected and the collaborative filtering algorithm presented in

Section 3.

• The generation of recommendations. Top-N items will be recommended to the users according to

the cognitive similarity of the neighbors.
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Following to the above steps, each user activity in the database can be used to calculate the user

list of neighbors which are recorded in the corresponding record in the user database. When users

log into the system, the recommendations can be presented based on the cognitive similarity of the

neighbors. Then, after each activity of the user can be used to enrich their cognitive similarity and

store to database. The process of recommendation is shown in Figure 4.

Calculating the items similarity

Measuring the cognitive similarity

Forming the nearest neighbour list

Forming a  

recommendation list

DATABASE GENERATION OF NEIGHBOR USERS GENERATION OF RECOMMENDATION

USERS’ FEEDBACK
(COGNITIVE SIMILARITY COLLECTING)

user

user
user

Item similarity

-

-

-

Item similarity

Figure 4. The process of recommendation system.

Most recommendation systems based on user feedback to provide high-quality recommendations.

Explicit feedback is sometimes considered as more reliable, implicit feedback requires less

intervention to users, captures short-term interest, and continuously updates user preference [21].

Modern approaches make the quality of recommendation based on implicit feedback comparable

to those based on explicit feedback. That is the reason, we consider the dynamic update cognitive

similarity based on understanding implicit feedback from the user. By allowing the user to update

their selection or suggest a new items’ similarity for collecting feedback from the user, we can make

the measuring of cognitive similarity more efficiency. In addition, recommendations are computed

by the cognitive similarity of neighbors. According to the cognitive similarity extracted, we know

that the neighbors of each user, so we can list all the items similarity as to summary the most popular

ones. For example, from the three-layered architecture described in Figure 3, consider these users

Paul, Kyle and Jason, we can recognize that the neighbors of Kyle are Jason and Paul in the threshold

neighborhood. Hence, the pair of similar items 〈A, B〉, and 〈C, D〉 which recognized similar by Jason

and Paul should be presented to the user Kyle. Then, when Kyle makes the selection (feedback from

Kyle), his cognitive similarity will increasingly, dynamic re-calculated, and updated to the database.

5. Experimental Results

5.1. Overview of the OMS System

We propose the OurMovieSimilarity (http://recsys.cau.ac.kr:8084/ourmoviesimilarity) (OMS) is

the crowdsourcing system which can be collecting the cognitive similarity of users. Our system was

built based on Java and MySQL database [31]. Because our system contains services are web-service

and background service, the security and handle multiple access are one of the most important.

Therefore we designed the system based on the Model-View-Controller (MVC) [32] model. Besides,

we implement Apache Tomcat for the web services side and MySQL database was used because it has

rock-solid reliability, scalability, and security.

OMS system is a web-based crowdsourcing platform, therefore we identify that the lowest latency

should be considered carefully. Besides, the main challenge in the web-based system that it has enough

instructions for the users during the entire system. In order to solve this problem, we using the concept

of progressive disclosure, which is “show users what they need when they need, and where they want”

in the whole all function of OMS.

In addition, in order to improve the user experience, we focus on the simplest interact and

fast response to design our system. In particular, we use one template for the system to maintain

consistency. Therefore, users can easier to recognize the interface function (e.g., buttons, functions)

http://recsys.cau.ac.kr:8084/ourmoviesimilarity


Appl. Sci. 2020, 10, 4183 10 of 14

when they interact with OMS. All of the features we mentioned above based on three gold rules of

user interface design [33].

Generally, interacting with the user is the most important in our purpose so that we made the

process of selecting a similar movie from a user as simple as possible, whereby the user, in turn,

selects the movies that they have seen and continues to choose which movie is the similar movie from

the suggestion of the OMS system. In case the user does not find any of the proposed movies, it is

possible to search for movies from IMDB and add to the OMS system.

5.2. Data Set

When the OMS was designed, we need the initial movie database to conduct the process of

collecting the cognitive similarity of users. Therefore, we implement the movie crawling function

in the OMS system, which is automatic collects movie information from sources provided online.

We identify an IMDB (https://www.imdb.com/) is an extensive highly scalable movie database.

In order to implement the crawling functions to collect movie information from IMDB, we used the

open API provided by OMDb (http://www.omdbapi.com/). Up to now, we collected over 14,000

popular movies from 1990 to 2019 with nine genres, 3439 directors, and 8057 actors.

The OMS system still continues collecting data online. At this time, we have about 150 active

users and more than five thousand activities of users. The number of data collected from users has the

format: (Ui, mj, mk, CS
Ui
mj ,mk

, γi) inside Ui is the id of the user; mj and mk are a pair of the movie similar;

CS
Ui
mj ,mk

is a vector represented the cognitive similarity of user Ui; and γi is the number of times user

change suggested movies in select a pair of movies similar.

5.3. Evaluation

To evaluate the recommender system, firstly, the pair of item similarity (in this evaluation, it will

be called item) of each user was divided into two sets. These datasets were selected randomly and

called the training-set (the first set) and the Test-set (the second set). The proposed algorithms were first

implemented on the training-set in order to filter N items to be recommended to the active user that

is called top-N. Then, the items in top-N were compared with the items in the Test-set. The common

items in the Test-set and top-N were called Hit-set. Finally, after obtaining the Test-set, training-set,

and Hit-set, we can calculate the accuracy percentage of the algorithm using evaluation criteria. Here,

we used two criteria evaluation that are Precision and Recall.

Measuring the Precision will returns the proportion of relevant recommendations according to

the total recommendations (denotes as N), where the relevant recommendations are the ratings equal

to or greater than a threshold. The Recall is the proportion of relevant recommendations regarding the

total relevant items (from the total number of items selected by the user). However, note that whereas

N is a constant, the number of relevant items is not. Hence, the Recall is a “relative” measure because

extract relevant recommendations from a few relevant items are more difficult than a large of relevant

items. Generally, for better performance, we use the F1 that is a combination of two above criteria and

can be formulated as follows:

F1 =
2 × Recall × Precision

Recall + Precision
= 2 ×

(SHit-set)
2

STest-set×STop-N-set

SHit-set
STest-set

+ SHit-set
STop-N-set

, (9)

where SHit-set is the size of the Hit-set; STest-set is the size of the Test-set; and STop-N-set is the size of

top-N set. F1 was computed for each user and the average F1 obtained from all users was considered

as the criterion for determining the algorithm accuracy. To compare the proposed methods with the

previous methods, we compared with the recommendation system that has been designed based

on association rules. The following diagram shows the results of these algorithms. In the following

evaluations, the various values of top-N were considered from 10 to 250. Experimental results show

https://www.imdb.com/
http://www.omdbapi.com/
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that the accuracy of collaborative filtering based on cognitive similarity (CF-Cognitive Similarity) is

higher than collaborative filtering based on Pearson correlation similarity (CF-Pearson Correlation

Similarity) approach. The proposed method achieves improvement over the baseline in the best case is

11.1%. Consider various values of top-N in a set {10, 50, 100, 150, 200, 250}, we have the comparison

between the proposed method and the baseline as shown in Table 2.

Table 2. F1 metric comparison between the CF-Pearson Correlation Similarity and the CF-Cognitive Similarity.

Number of Top-N Pearson Correlation Similarity Cognitive Similarity

10 80.1 83.1 (+3.0)
50 83.2 86.3 (+3.1)

100 72.3 83.4 (+11.1)
150 78.2 79.9 (+1.7)
200 80.1 88.0 (+7.9)
250 79.8 86.1 (+6.3)

In addition, to improve the evaluation, we continue to enable a comparative analysis by using

MAE and RMSE as the evaluation metric and the measurement is defined as follows:

MAE =
1

n

n

∑
i=1

|yi − y
p
i |, (10)

RMSE =

√

1

n

n

∑
i=1

(yi − y
p
i )

2, (11)

where n denotes the number of cognitive similarity values in the Test-set, yi denotes the actual cognitive

similarity values, and y
p
i denotes predicted cognitive similarity values. In general MAE can range from

0 to infinity, where infinity is the maximum error according to the cognitive similarity values scale of

the measured. The main reason following this approach is because the predicted cognitive similarity

values can create the ordering of items in which the predictive accuracy can be used to measure the

ability of a recommendation system to rank items according to user cognitive [34].

In order to create the Test-set, we divide the items of each user following the k number of

section/folds (k-fold cross-validation) where each fold is used as the Test-set at some point. According

to [35], we decided k is set as 5 because yield test error rate estimates that suffer neither from excessively

high bias nor very high variance. Specifically, the data set was split into five folds. The first fold used

as the Test-set and the remainder used as Tranning-set at the first interaction. In the next interaction,

the second fold will be a Test-set and the remainder is Tranining-set. This process will repeat until each

fold of the five folds has been used as the Test-set. As mentioned above, we used Pearson Correlation

Similarity which uses the similarity and recommendation models (1) and (2) as a baseline. Because the

baseline is reported to perform best if around 50 neighbors of the active user, we decided 5, 10, 20, 30,

and 50 as the neighborhood sizes in our experiments. The comparison between our proposed method

and the baseline shown in Tables 3 and 4 .

Table 3. Comparison between CF-Pearson Correlation Similarity and the CF-Cognitive Similarity with

varying neighborhood sizes (MAE metric).

Number of Neighbors Pearson Correlation Similarity Cognitive Similarity

5 0.861 0.829 (+3.2%)
10 0.783 0.758 (+2.5%)
20 0.764 0.740 (+2.4%)
30 0.722 0.702 (+2.0%)
50 0.658 0.640 (+1.8%)
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Table 4. Comparison between CF-Pearson Correlation Similarity and the CF-Cognitive Similarity with

varying neighborhood sizes (RMSE metric).

Number of Neighbors Pearson Correlation Similarity Cognitive Similarity

5 1.203 1.162 (+4.1%)
10 1.143 1.108 (+3.5%)
20 0.997 0.967 (+3.0%)
30 0.852 0.823 (+2.9%)
50 0.791 0.771 (+2.0%)

6. Conclusions

In this paper, we proposed the three-layered architecture which can extract the cognitive similarity

so that it can exactly identify the k-nearest neighbors. In order to apply the architecture, we aim to

create a web-service crowdsourcing platform (called OurMovieSimilarity) to collect the cognitive

feedback from the users. Our crowdsourcing system has deployed online and continues to collect

feedback from the user. Our data set includes over 150 users and more than 5000 feedback stored in

our database. In the evaluate how accurate the proposed method work in the recommendation system,

we designate the collaborative filtering Pearson correlation similarity as the baseline to comparing

with our methods. Clearly, the results demonstrate that the accuracy of cognitive similarity-based

collaborative filtering higher than the baseline. Specifically, compared with the Pearson Correlation, our

method more accurate and achieves improvement over the baseline 11.1% in the best case. The result

shows that our method achieved a consistent improvement of 1.8% to 3.2% for various neighborhood

sizes in MAE calculation, and from 2.0% to 4.1% in RMSE calculation.
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