
 Open access Journal Article DOI:10.1016/S0950-5849(99)00083-X

Cognitive support, UML adherence, and XMI interchange in Argo/UML
— Source link

Jason E. Robbins, David Redmiles

Institutions: University of California, Irvine

Published on: 25 Jan 2000 - Information & Software Technology (Elsevier)

Topics: Applications of UML, UML tool, Unified Modeling Language, Software design and Design tool

Related papers:

 Software architecture critics in the Argo design environment

 Instant consistency checking for the UML

 Usability Analysis of Visual Programming Environments: A 'Cognitive Dimensions' Framework

 Formalization and verification of event-driven process chains

 A group critic system for object-oriented analysis and design

Share this paper:

View more about this paper here: https://typeset.io/papers/cognitive-support-uml-adherence-and-xmi-interchange-in-argo-
ucqti19jew

https://typeset.io/
https://www.doi.org/10.1016/S0950-5849(99)00083-X
https://typeset.io/papers/cognitive-support-uml-adherence-and-xmi-interchange-in-argo-ucqti19jew
https://typeset.io/authors/jason-e-robbins-57m0u07kvd
https://typeset.io/authors/david-redmiles-4vnfg9lqoq
https://typeset.io/institutions/university-of-california-irvine-3ptiah2u
https://typeset.io/journals/information-software-technology-24m4f1hn
https://typeset.io/topics/applications-of-uml-3mbnqd2b
https://typeset.io/topics/uml-tool-ts82ebsn
https://typeset.io/topics/unified-modeling-language-41ja0t4j
https://typeset.io/topics/software-design-308mtip7
https://typeset.io/topics/design-tool-d1dt8wc0
https://typeset.io/papers/software-architecture-critics-in-the-argo-design-environment-bv5wq126om
https://typeset.io/papers/instant-consistency-checking-for-the-uml-4ghyqdzc2a
https://typeset.io/papers/usability-analysis-of-visual-programming-environments-a-oxu7g9n1c5
https://typeset.io/papers/formalization-and-verification-of-event-driven-process-aoqhq3ldnl
https://typeset.io/papers/a-group-critic-system-for-object-oriented-analysis-and-32p0w4xx75
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/cognitive-support-uml-adherence-and-xmi-interchange-in-argo-ucqti19jew
https://twitter.com/intent/tweet?text=Cognitive%20support,%20UML%20adherence,%20and%20XMI%20interchange%20in%20Argo/UML&url=https://typeset.io/papers/cognitive-support-uml-adherence-and-xmi-interchange-in-argo-ucqti19jew
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/cognitive-support-uml-adherence-and-xmi-interchange-in-argo-ucqti19jew
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/cognitive-support-uml-adherence-and-xmi-interchange-in-argo-ucqti19jew
https://typeset.io/papers/cognitive-support-uml-adherence-and-xmi-interchange-in-argo-ucqti19jew

Cognitive Support, UML Adherence, and
XMI Interchange in Argo/UML

Jason E. Robbins and David F. Redmiles

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92697-3425 USA
Tel: 1 (949) 824-7308 Fax: 1 (949) 824-1715

{jrobbins,redmiles}@ics.uci.edu

Abstract
Software design is a cognitively challenging task. Most software design tools provide support for editing, viewing,
storing, and transforming designs, but lack support for the essential and difficult cognitive tasks facing designers. These
cognitive tasks include decision-making, decision ordering, and task-specific design understanding.

This paper describes Argo/UML, an object-oriented design tool using the Unified Modeling Language design notation.
Argo/UML supports several identified cognitive needs of software designers. This support is provided in the form of
design tool features. We describe each feature in the context of Argo/UML and provide enough detail to enable other
tool builders to provide similar support in their own tools. We also discuss our implementation of the UML and XMI
standards, and our development approach.

Keywords: UML, XMI, Cognitive support, Open-source software.

1. Introduction

Software designers have used diagrammatic
representations of their designs since the earliest days of
software development. Over time the nature of these
design diagrams has changed and so have the tools used
to produce them. Much like early word processors
replaced typewriters, early CASE (Computer Aided
Software Engineering) tools served as electronic
replacements for paper, pencil, and stencil. Many of these
early CASE tools became “shelfware” because they did
not provide significant value to software designers. Later
CASE tools added sophisticated code generation, reverse
engineering, and version control features. These features
add value via increased automation of some design tasks,
for example, converting a design into a source code
skeleton. However, current CASE tools fail to address the
essential cognitive challenges facing software designers.

Software design is not simply an automatable process
of transforming one specification into another; it also
involves complex decision making tasks that require the
attention of skilled designers. Design tools that support
designers in decision-making are a promising way to
increase designer productivity and the quality of the
resulting designs.

Helping designers make good design decisions is
important because these design decisions will strongly
influence the amount of implementation and maintenance
effort needed later. Support for designers is also
important because many software designers are
overworked and pressured to attempt design tasks for

which they lack proper training and experience. This is
due, in part, to the current shortage of trained information
technology workers.

In this paper we present a set of novel design tool
features intended to support design tasks. Each of these
features is motivated by our experience in designing
software systems and by published theories of the
cognitive challenges of design. Using cognitive theories
to guide the development of design tool features has
resulted in several promising new features that we would
not otherwise have been likely to invent. Section 2 briefly
covers the theories and previous work that lead to these
features. Section 3 presents several specific cognitive
features.

Each feature is described in the context of
Argo/UML, a tool for object-oriented design that uses the
Unified Modeling Language. Argo/UML is a research
system with an emphasis on novel features, however, it
includes enough standard CASE tool functionality to be
generally useful. It supports UML class diagrams, state
diagrams, use case diagrams, activity diagrams, and
collaboration diagrams. It can generate Java™ source
code from class diagrams. Argo/UML is implemented in
Java and consists of about 100,000 lines of code in 800
classes. Preliminary versions of Argo/UML have been

Effort sponsored by the Defense Advanced Research Projects Agency, and Air Force
Research Laboratory, Air Force Materiel Command, USAF, under agreement number
F30602-97-2-0021 and F30602-94-C-0218, and by the National Science Foundation
under Contract Number CCR-9624846. The U.S. Government is authorized to repro-
duce and distribute reprints for governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the Defense Advanced Research
Projects Agency, Air Force Research Laboratory or the U.S. Government.

distributed via our web site (www.ics.uci.edu/
pub/arch/uml) since July 1998, and have been evaluated
or used in dozens of companies and universities.
Argo/UML is the fourth in a series of tools that we have
developed or enhanced with cognitive support features.
Although Argo/UML is the focus of this paper, the
cognitive support features we describe are also applicable
to other design tools. We will return to this point in the
conclusion of this paper. Section 4 presents the
implementation of Argo/UML.

The development of Argo/UML is the result of
approximately two person-years of effort. This level of
productivity was achieved, in part, by taking advantage of
appropriate standards, namely, the Unified Modeling
Language (UML), the XML Model Interchange format
(XMI), and the Java component model (JavaBeans).
Also, development of Argo/UML has followed the open-
source strategy of encouraging early users to become co-
developers. Section 5 discusses our development
approach in more detail.

2. Background and related work

UML [22] is a standard object-oriented design
notation that combines work done previously on the
Booch notation, OMT (Object Modeling Technique), and
OOSE (Object-Oriented Software Engineering).
Standardization produces an economy of scale that leads
to more and better tools, better interoperability between
tools, more developers who are skilled in using the
standard notation, and lower overall training costs. XMI
is a standard file format for UML designs [25].

Design critics are active agents that reside in a design
tool and continuously check the design for potential
errors, stylistic violations, and incomplete sections.
Design critics have been used in design tools for many
domains, including building architecture [4, 5, 6], user
interfaces [3, 13, 14], and medical diagnostics [8, 12].
Design critics provide knowledge support to designers
who lack specific pieces of knowledge about the problem
or solution domains, e.g., beginning designers or expert
designers who are expanding their design vocabulary.
Design critics also help catch slips and mistakes that
occur when designers are distracted or working under
pressure. Much of the work on critics has been motivated
by Schoen’s theory of reflection-in-action, which
basically says that designers intermix synthesis and
analysis in their design process [19].

Classic waterfall development models assume that
work progresses in a systematic fashion. In reality,
software design is a creative process and designers often
jump from idea to idea. Task switching by designers is
not random, it can be explained by theories of
opportunistic design [23]. For example, designers tend to
switch tasks when they don’t have the knowledge needed
to continue on their current task or when knowledge for
another task suddenly comes to mind.

Many CASE tools provide multiple views on the
design; in fact, UML itself defines seven diagram types.

We have tried to complement these standard design views
with task-specific views. Research on problem
understanding indicates that providing the right view can
help designers bridge cognitive gaps between their mental
models of the problem and solution [11, 16].

3. Overview of cognitive features

Figure 1 shows the Argo/UML user interface.
Designers work with Argo/UML much as they would
work with other CASE tools; in fact, we have tried to use
standard user interface styles as much as possible to make
Argo/UML more approachable. Design diagrams are
edited in the large, upper-right pane. This large pane can
also be used for table views of the design. Properties of
the selected design element can be edited in the various
property tabs located in the lower-right pane. The upper-
left pane gives a tree-structured overview of the design,
while the lower-left pane contains the designer’s “to do”
list.

The following subsections describe cognitive support
features inspired by theories of cognition in design.

3.1. Critics and criticism control mechanisms

As mentioned above, design critics are agents that
check the design for potential problems. In Argo/UML
critiquing is done in a thread of control that is separate
from the main application and user interface. Critiquing is
done continuously and designers need not request that
critics be applied or even know that any particular critic
exists. Designers do not see critics; only the design
feedback produced by critics is seen.

Critics can deliver knowledge to designers about the
implications of, or alternatives to, a design decision. In
the vast majority of cases, critics simply advise the
designer of potential problems or areas needing
improvement in the design; only the most severe errors
are prevented outright, thus allowing the designer to work
through invalid intermediate states of the design.

Each critic performs its analysis independently of
others, checking one predicate, and delivering one piece
of design feedback. Some critics in Argo/UML are
derived directly from constraints in the UML semantics
specification [22]; for example, one critic checks that an
association has at most one composite end. Others come
from published guidelines on object-oriented design and
design patterns [7, 17]. Corporate design guidebooks and
best practices are a promising, organization-specific
source of knowledge that could be actively delivered by
critics. Lastly, some critics deal with limitations of the
tool; for example, one critic warns that our Java code
generator cannot handle multiple inheritance.

Formalizing the analyses and rules of thumb used by
practicing software designers could produce hundreds of
critics. Critics must be controlled so as to make efficient
use of machine resources, but our primary focus is on
effective interaction with the designer. Specifically,
designers should be able to easily view relevant and
timely feedback items without having to sort through

irrelevant items. Furthermore, the elapsed time between a
design manipulation that introduces an error and the
presentation of feedback identifying the error should be
as short as possible, ideally within one second so as to
maintain a feeling of interactivity.

Criticism control mechanisms are predicates used to
limit execution of critics to when they are relevant and
timely to decisions being considered by the designer.
Attributes on each critic identify what type of goals and
design decisions it supports. Criticism control
mechanisms check those attributes against the user model
to select critics for activation. Computing relevance and
timeliness separately from critic predicates allows critics
to focus entirely on identifying problematic conditions in
the design product while leaving cognitive design process
issues to the criticism control mechanisms.

3.2. “To do” list

Once critics generate design feedback, it must be
presented to the designer in a usable form without
causing distraction. Our “to do” list user interface
presents feedback to the designer (Figure 2). The “to do”
items on the list are grouped by category, for example, by
priority, by design decision type, or by offending design
element. When the designer selects a “to do” item from

the lower-left pane, the associated (or “offending”)
design elements are highlighted in all diagrams and
details about the identified problem and possible
resolutions are displayed in the “ToDoItem” tab.

Figure 1. The Argo/UML user main window.

Figure 2. The designer’s “to do” list.

Toolbar buttons in the “ToDoItem” tab allow the
designer to add a new item as a personal reminder, follow
links to background domain knowledge relevant to the
issue at hand, snooze the critic (disable it for a limited
time), send email to the person who authored the critic, or
dismiss the item. Links to background information and
email contact with critic authors provide a design context
that helps the designer resolve the issue at hand.
Providing contact information for relevant stakeholders
helps to situate the problem and possible solutions in the
context of the development organization.

User testing with an early version of Argo/UML
demonstrated that designers are likely to focus on the
diagram pane to the exclusion of the “to do” list pane.
Designers were observed to build on incorrect design
decisions despite the fact that criticism of those decisions
was listed in another pane in the same window. We added
clarifiers to Argo/UML to make criticism more evident to
designers engaged in design construction. Clarifiers are
icons or other visual indications of errors that are
displayed directly on the design diagram [20]. For errors
that occur at a specific part of a design element we use
wavy, red underlines (a familiar indication of spelling
errors). Errors that relate to an entire design element are
shown with yellow sticky-note icons. We avoid clutter by
only displaying clarifiers on the currently selected design
element. Designers will encounter clarifiers in the normal
course of manipulating the design with the mouse and
keyboard. If the designer positions the mouse pointer
over a clarifier, a feedback item headline is displayed as a
tool-tip.

3.3. Non-modal wizards

Critics that simply identify problems leave the full
responsibility for fixing those problems with the designer.
Often when a critic identifies a specific problem, there is
a specific, automatable solution to that problem. For
example, one critic identifies class names that begin with
lowercase letters as unconventional; a push-button
solution to this problem is to capitalize the first letter of
the class name. However, not all solutions can be done in
a single step: some will require the designer to make
decisions about how the problem should be resolved. For
example, one Argo/UML critic identifies multiple
inheritance as incompatible with Java code generation;

the corrective steps involve choosing one superclass to
convert into an interface and moving attributes down into
subclasses.

Argo/UML uses non-modal wizards to aid designers
in carrying out suggested design improvements.
Argo/UML’s wizards are similar to wizards found in
other tools: they guide the designer through steps and
decisions in a predefined task. A wizard typically
performs design manipulations on the designer’s behalf,
however, some suggested fixes consist solely of step-by-
step instructions to the designer. The designer uses
“Next” and “Back” buttons to move among steps, and
branches are taken based on the state of the design and
the values entered into the wizard. As the designer
progresses through the steps, a blue progress bar is drawn
on the sticky-note icon for the affected feedback item in
the “do to” list.

Unlike wizards found in other tools, our wizards are
non-modal and apply changes immediately. The designer
is free to leave a wizard at any time to directly manipulate
the design or use another wizard. The designer may
return to a partially completed wizard at any time. The
ability to directly manipulate the design is needed for
wizards that simply direct the designer through a series of
steps that are not automated. The non-modal nature of our
wizards also allows designers to opportunistically order
decisions: if an idea occurs to them while working
through a wizard, they are free to pursue the new idea
without being locked into the wizard or fearing that they
might forget to finish their current task.

3.4. Checklists

Design review meetings are one of the most cost-
effective ways to remove defects. Many organizations
have standardized their best practice by using design
review checklists. Argo/UML provides electronic design
checklists as a simple and flexible form of knowledge
support (Figure 3). Argo/UML improves on paper
checklists by presenting only those items relevant to the
design element at hand and by phrasing general
guidelines in concrete terms. For example, a paper
checklist might have an item “Could this attribute be
moved from this class to a superclass?” whereas an
Argo/UML checklist item can be more concrete, e.g.
“Could gradePointAvrg be moved from Undergraduate to

Figure 3. Checklist items for a UML attribute.

Student?”
Checklists, like critics, help designers identify design

problems early and privately. Checklist items serve
mainly to remind designers of common problems and
issues, leaving the designer to do more of the
determination of whether the potential problem is actually
present. Critics, on the other hand, perform more of that
determination automatically. Some checklist items that
are found useful can be reimplemented as critics. We
provide both critics and checklists to support a range of
issues from informal to formal and to allow organizations
to gradually invest in custom knowledge support.

3.5. Opportunistic table views

Argo/UML complements graphical design
representations with task-specific table views. Each table
view selects relevant attributes of design elements and
presents them in a dense format. For example, one table
view shows states as rows with the name, entry, and exit
actions of each state in columns. Another table view
shows the transitions as rows with the trigger, guard,
effect, source, and destination as columns (Figure 4). As
with navigational perspectives (described below), our
goal is to provide views that support common design
tasks. In particular, tables are much easier to
systematically scan or fill-in than are diagrams.

However, designers work opportunistically as well as
systematically. For example, if a designer is checking that
each state has sensible entry and exit actions and finds
one with a problematic assumption, he or she may switch
to looking over the entire design for other elements which
depend on that same assumption. These design
excursions are natural and common; unfortunately,
returning from an excursion imposes the cognitive
difficulty of recalling one’s prior plans. Argo/UML can
help establish and recover systematic scanning behavior
by highlighting blocks of table cells: as the designer
moves the selected cell across rows or down columns, the

entire row or column is highlighted. This highlighting
fades gradually so that the designer can see what he or
she was doing previously.

3.6. Navigational perspectives

Argo/UML, like most CASE tools, provides a
navigation tree for the designer to access the various parts
of the design. Unlike other tools, Argo/UML provides a
much richer set of tree-structured perspectives and a
customization language.

The designer can choose a navigational perspective
from the menu above the navigation tree. For example, if
the designer is working to define the possible states of a
particular class, he or she might use the state-centric
navigational perspective, which shows states as children
of the state machine and transitions as children of states
(Figure 5a). This emphasizes the states and makes the
transitions secondary. Once the designer has a firm
understanding of the states, he or she may wish to
emphasize the transitions. The transition-centric

Figure 4. Table view of a state machine emphasizing transitions.

Figure 5. Two navigational perspectives.
(a) (b)

navigational perspective emphasizes transition by
showing them as children of the machine and states as the
children of transitions (Figure 5b).

We have defined several navigational perspectives
that support various tasks in object-oriented software
design. For each of these tasks we identify questions
about the design that the designer must answer. One such
perspective is the transition-paths perspective, it shows
initial states as children of state machines and successor
states as children of states. This helps the designer answer
the question “if an object leaves this state, where can it
go?” A related question is “how can an object get into
this state?” We do not provide a predefined perspective to
answer this question, but the designer can use a
configuration window to define new perspectives to
answer such questions as they arise.

Argo/UML’s navigational perspective configuration
window is shown in Figure 6. The top pane lists currently
defined perspectives. The lower-left pane lists all
predefined navigation rules, while the lower-right pane
lists those navigation rules that are included in the
selected perspective. Each navigation rule generates
children of tree nodes. For example, the rule “State-
>Preceding States” will be applied to any tree node that
represents a state and will generate a child for each state
with a transition into the parent state. This rule could be
used to answer the question of how an object can get into
a given state. The set of possible navigation rules is large
but finite; the UML standard meta-model includes about
one hundred associations, each of which can have a
corresponding navigation rule. Navigational perspectives
are generated by applying all applicable rules whenever
the user expands a tree node.

3.7. Broom alignment tool

UML’s syntax reserves the meaning of icons and text
within a diagram. However, there are other visual aspects
of diagrams that are left to the designer’s discretion,
including size, color, spacing, and alignment. Much as
programmers use indentation and blank lines to express
program structure, designers use the unreserved visual
aspects of a diagram as a “secondary notation” that
expresses relationships that are of concern but that are not
covered by the formal notation [9]. Alignment is one
important form of secondary notation.

Our broom alignment tool pushes objects that come
into contact with it, like a real-world push broom. This
aligns objects along the face of the broom and provides
immediate visual feedback. Pressing the space bar causes
objects to be spaced evenly (Figure 7a). Unlike a real-
world broom, moving backwards allows objects to return
to their original position (Figure 7b).

We recently finished a user study of this user interface
feature [18]. The study indicated that users moved and
dragged the mouse substantially less when using the
broom than when using standard alignment commands.

4. Architecture

The JavaBeans change notification design pattern [10]
is the primary, recurring theme in Argo/UML’s
architecture (Figure 8). The top-level component is
responsible for the rough layout of the user interface and
the loading of features. The bottom-level component is
our implementation of the standard UML meta-model.
The middle layer consists of user interface features.

Integration between layers is generally loose. Each
feature implements an API that defines its role in the user
interface. The top-level component passes information to
the features based on run-time type information that
identifies their role, rather than having specific
knowledge of individual features. Features work fairly
independently, but share underlying models. TheseFigure 6. The perspective customization window.

Figure 7. The broom alignment tool.
(a) (b)

shared models include the UML design representation, a
user model, and the designer’s “to do” list. Dependencies
between the models and features are minimized and
managed. For example, our critiquing and graph editing
frameworks operate over networks of objects, without
assuming that they are part of the UML meta-model. And
in the other direction, our UML meta-model consists
almost entirely of get-and-set methods that broadcast
standard JavaBeans change notifications.

To enhance interactive performance, we have allowed
some dependencies from the models to the features.
However, each of these takes the form of an optional hint,
and the features are implemented to work robustly in the
absence of these hints. For example, most “set” methods
in our UML meta-model also send a “critique as soon as
possible” hint to the critiquing framework; however, all
model elements will still be critiqued eventually, even
without this hint.

4.1. UML meta-model and XMI

We generated our initial Java implementation of the
UML meta-model by using a Rational Rose™ model
provided with the UML 1.1 standard. As a result, our tool
strictly adheres to the UML standard, including all the
names of packages, meta-classes, attributes, and
associations. Leveraging the standard helped to save
development resources, which are very limited in an
academic setting. Furthermore, strict adherence made it
easier to support the XMI standard, which is itself based
on the UML standard.

We made limited meta-model modifications to fit the
Java language and our libraries. For example, we

replaced multiple inheritance in the standard with Java
interfaces and single inheritance. We also integrated
JavaBeans-style method naming and change notifications
into the meta-model. An assumption in GEF (described
below) required us to add a Realization meta-class that is
analogous to the Generalization meta-class. Recent
proposed changes to the UML standard seems to better
match our tool, and we expect to support UML 1.3
shortly after it is completed [21].

Argo/UML uses XMI files to store design
representations. Using the XMI standard has helped us
focus on cognitive issues by allowing us to defer issues of
interoperability, version control, and repositories. We
make use of IBM’s XML parser to read XMI files using a
straightforward set of tag handlers. We generate XMI
files using a language we call TEE (Templates with
Embedded Expressions). One TEE template is associated
with each meta-class and consists of plain text to be
echoed to the output file and embedded OCL (Object
Constraint Language) expressions. Each OCL expression
is applied to the design element and results in a bag of
objects. Each result object is output in sequence and may
use its own template. We also believe that TEE files
could be an easily customizable way to generate Java
source code. Table 1 gives some examples of the TEE
files we use to generate XMI.

We chose not to use XMI’s ViewElement,
presentation, geometry, and style tags to represent
diagrams. Instead we use the PGML (Precision Graphics
Markup Language) standard file format for diagrams [1].
This has the advantage of being better defined, and may

Figure 8. Argo/UML architecture.

Argo/UML User Interface Manager

JavaBeans-style UML Meta-Model

To Do List
and Clarifiers

Diagram
Editor

Navigation
Tree View

Checklist
Viewer

Opportunistic
Table Views

Graph Editing
Framework

Argo Critiquing
Framework

UML-Diagram
Types

UML-Specific
Critics and Checklists

Navigational
Perspectives

UML-Specific
Perspectives

UML-Specific
Table Views

User Model “To do” List

Hints

allow users to view Argo/UML diagrams in future web
browsers.

Template for Meta-class: Model
<Model XMI.id = ’<ocl>self.id</ocl>’>
 <name><ocl>self.name</ocl></name>
 <visibility XMI.value
 =’<ocl>self.visibility</ocl>’/>
 <isAbstract XMI.value
 =’<ocl>self.isAbstract</ocl>’/>
 <isLeaf XMI.value=’<ocl>self.isLeaf</ocl>’/>
 <isRoot XMI.value=’<ocl>self.isRoot</ocl>’/>
 <ownedElement>
 <ocl>self.ownedElement</ocl>
 </ownedElement>
</Model>

Template for Meta-class: Class
<Class XMI.id = ’<ocl>self.id</ocl>’>
 <name><ocl>self.name</ocl></name>
 <visibility XMI.value
 =’<ocl>self.visibility</ocl>’/>
 <isAbstract XMI.value
 =’<ocl>self.isAbstract</ocl>’/>
 <isLeaf XMI.value=’<ocl>self.isLeaf</ocl>’/>
 <isRoot XMI.value=’<ocl>self.isRoot</ocl>’/>
 <isActive XMI.value = ’false’/>
 <feature>
 <ocl>self.behavioralFeature</ocl>
 <ocl>self.structuralFeature</ocl>
 </feature>
 <taggedValue>
 <ocl>self.taggedValue</ocl>
 </taggedValue>
</Class>

Table 1. TEE templates for XMI.

4.2. Argo critiquing framework

The Argo critiquing framework is a major component
of Argo/UML, it consists of about 5,000 lines of Java
code in 40 classes. This framework provides default
behavior for critics, schedules the application of critics,
maintains a user model and the designer’s “to do” list,
and records each criticism and its resolution. One goal of
this framework is to allow critic developers to start small
and invest effort incrementally; for example, guidelines
can be added easily as checklist items, refined into critics,
and later supported by wizards with various degrees of
automation. Another goal is to keep critiquing logic
separate from the main application and robust in the case
of incomplete information.

Critics are implemented as Java classes subclassed
from class Critic. Class Critic defines several methods
that may be overridden to define and customize a new
critic. Each critic’s constructor specifies the headline,
problem description, and relevant decision categories.
The central method is a predicate that accepts a design
element to be critiqued and returns true if a problem is
found. Most of the critics implemented in Argo/UML go
no further than overriding this predicate. However, the
default methods for generating a “to do” item and a
clarifier can also be overridden. Another customizable

aspect of critiquing is the determination of when an
identified problem has been resolved. The headlines and
descriptive text produced by critics contain embedded
OCL expressions which are evaluated to specialize them
to the offending design element; for example, the
headline “Capitalize <ocl>self.name</ocl>” might
become “Capitalize undergraduate”, where “under-
graduate” is the name of a class in the design. OCL
expressions are also used to specialize checklist items.

Criticism control mechanisms are also implemented
as Java classes that implement a predicate. This predicate
accepts a critic and a user model and returns true if the
critic should be enabled. Several criticism control
mechanisms have been implemented and are jointly
applied to the critics. All control mechanisms must agree
that a critic should be enabled. For example, a relevance
control mechanism checks that the critic supports a goal
listed in the user model, and a timeliness control
mechanism checks that the critic supports a design
decision type listed in the user model.

The scheduling and application of critics is done in a
critiquing thread of control, so as not to interrupt or slow
down normal user interaction with Argo/UML. The intent
of the scheduling algorithm is to minimize response time
to design manipulations that introduce errors and to make
productive use of otherwise idle computer time.

The critiquing thread executes an endless loop of
three main steps: (1) recomputing the set of active critics,
(2) applying critics to design elements in the “hot queue,”
(3) applying critics to a few design elements in the “warm
queue.” The overall CPU utilization of the critiquing
thread is kept to an average of approximately twenty
percent. The warm queue is essentially the open list of a
standard breadth-first tree traversal that starts at the
object representing the entire design project and
eventually touches every design element. For most design
projects this traversal would take longer than the desired
interactive response time of one second, so it is done
incrementally. The hot queue contains only design
elements that are likely to generate new feedback and is
typically short enough to be completely cleared in less
than one second. Design elements are promoted to the hot
queue in response to design manipulations that have the
possibility of introducing problems. We further focus
critiquing of hot queue elements by applying only those
critics that have registered interest in the relevant type of
design manipulation.

One key trade-off in a critic scheduling algorithm is
the amount of knowledge the scheduler has about each
critic. With no knowledge about what causes a particular
critic to produce feedback, the scheduler can do no better
than periodically applying all critics to all design
elements. With complete knowledge about the analysis
performed by individual critics, the scheduler can apply
exactly those critics that will produce feedback as the
result of a given design manipulation. Requiring less
knowledge about critics helps to simplify the scheduler
and reduce the development effort needed to author a

critic. Providing more knowledge about critics allows the
critiquing system to work more efficiently and reduces
feedback delays. In Argo/UML we require that all critics
register interest in specific types of design elements and
we allow critics to register interest in specific types of
design manipulations. If the critic author does not define
which design manipulations should trigger the critic, the
critic will still be applied eventually via the warm queue.
Likewise, if the design representation does not send hints
to the critiquing scheduler when changes are made, the
design elements will still be critiqued eventually.

We have found our critiquing framework flexible
enough to build critiquing into four design and
requirements tools. These include a state-based
requirements tool, developed by a third-party, to which
critiquing was added with no major modifications to its
existing design representation. In Argo/UML we have
implemented over sixty design critics.

4.3. Graph editing framework

GEF (Graph Editing Framework) is a major reusable
component of Argo/UML. It consists of about 24,000
lines of Java code in 160 classes. Many software
engineering tools include connected graphs in their user
interfaces, and many researchers have developed
connected graph editors. Two notable class frameworks
for diagram and graph editing are HotDraw [2] and
Unidraw [24]. We learned from these and decided to
develop our own emphasizing extensibility, simplicity,
and a high-quality user experience. HotDraw and
Unidraw both achieve great extensibility by using
flexible, abstract concepts. We limited the number and
flexibility of our concepts to make our framework more
understandable. Over time, we have applied GEF to many
diagram types and enhanced the look and feel of GEF to
provide a better user experience, but these extensions
have not required us to generalize our basic concepts.

There are six major concepts in GEF. The Editor class
acts as a hub that holds the other pieces together and
routes messages among them. Figs (short for figures) are
the primitive shapes; for example, FigCircle draws a
circle and FigText draws text. Layers contain Figs in
back-to-front order. Selections keep track of which Figs
are selected and the effect of each handle; for example,
SelectionResize allows the bounding box of a Fig to be
resized, while SelectionReshape allows individual points
of a FigLine or FigPoly to be moved. Cmds (short for
commands) make modifications to the Figs; for example,
CmdGroup removes the selected Figs from their Layer
and adds a new FigGroup in their place. Modes are
objects that process user input events (e.g., mouse
movement and clicks) and execute Cmds to modify the
Figs; for example, dragging in ModeSelect shows a
selection rectangle, while dragging in ModeModify
moves the selected objects. We have made central those
concepts that are familiar to diagram editor users and
avoided those that are unfamiliar or too abstract; for

example, GEF does not use the decorator pattern [7] or
attempt to offer general purpose constraint solving.

Initially, we implemented a generic connected graph
representation as the underlying model for GEF
diagrams. After using GEF in several applications we
found existing data structures that could be interpreted as
graphs; for example, Argo/UML has the UML meta-
model. Now, the mapping from Figs in a diagram to
application objects in an underlying data structure is
managed by GraphModels. GraphModels themselves do
not hold much data, rather they interpret existing data
structures as graphs. For example, StateDiagramGraph-
Model interprets UML States as nodes and UML
Transitions as edges. Our GraphModels are analogous to
mediators found in Java’s Swing user interface library;
for example, Swing tree widgets use TreeModels and
table widgets use TableModels. As with other standards
we have adopted, following Swing’s design patterns has
conserved our development resources.

Overall, we have found GEF’s design to be flexible
enough to define UML’s diagram types, and extensible
enough to accommodate novel interaction styles; for
example, the broom alignment tool fitted in nicely as
ModeBroom. GEF has been distributed via our web site
since 1996 and used by dozens of universities and
companies. Some developers using GEF have reported
that it takes about three days to grasp the framework well
enough to begin making extensions.

5. Development approach

It has been a great challenge to develop and support a
product as large as Argo/UML in an academic setting.
Since 1996 about two person-years of effort have gone
into development, testing, documentation, and support.
Students did essentially all of this work.

Three main factors allowed us to achieve so much.
First, a very small team with the right tools can make
huge strides, partly because of low communication
overhead. Second, leveraging standards guides
development and reduces the need to develop and
document new approaches. Third, the open-source
approach helps generate realistic requirements and
motivate higher quality. Using standards and gathering
feedback via the open-source approach both help avoid
the risk that a small team will produce an idiosyncratic
product.

Work on GEF and Argo/UML has followed the open-
source approach from the start. As soon as an initial
version of each library or product was completed, we
built a web site to distribute the source code and
documentation and invite feedback and code
contributions. Ideally, early users of our code would have
become co-developers, thus increasing development
resources. To date, Argo/UML has about 2000 registered
users in addition to classroom use. Unfortunately, we
have received very few code contributions. This is partly
due to the effort needed to encourage and coordinate
remote developers; we now realize that managing an

open-source project is itself a full-time effort. We have,
however, received a large volume of feedback on the way
CASE tools are used, features needed in Argo/UML, and
bug reports. Currently, we receive about five such email
messages each day. This feedback has helped us directly
in making a practical and desirable tool, and it has also
helped indirectly by maintaining a product-oriented
attitude in our academic environment.

6. Conclusion

In this paper we have described some of the cognitive
features of Argo/UML and key parts of the system’s
design. The cognitive features provide designers with
support for decision-making, decision ordering, and task-
specific design understanding. These features are inspired
by published theories of human cognition during design
tasks. We have discussed the features in the context of
Argo/UML, however, we believe them to be useful in
many design contexts and tools.

Our immediate research plans include the addition of
new cognitive features to Argo/UML and evaluation of
the impact of these features. We have already conducted
one user study of the broom alignment tool [18], and plan
to conduct two more studies of navigational perspectives
and design critics.

Our overall goal in developing Argo/UML is to test
how our cognitive features can add value to a production
quality CASE tool. We have realized that goal to a large
extent and also produced a free, open-source CASE tool
that has been used in academic and industrial settings.
Furthermore, we encourage other researchers to use
Argo/UML as a starting point and test-bed for their own
features.

References

1. Al-Shamma, N., et al. Precision Graphics Markup Language
(PGML): World Wide Web Consortium Note 10-April-
1998. Available from http://www.w3.org/TR/1998/NOTE-
PGML.

2. Beck, K. and Johnson, R. Patterns generate architectures.
Proc. European Conf. on Object-Oriented Programming
(ECOOP’94). Bologna, Italy. 1994.

3. Bonnardel, N. and Sumner, T. Supporting evaluation in
design: the impact of critiquing systems on designers of
different skill levels. Acta Psychologica. vol. 91. 1996. pp.
221-244.

4. Chun, H. W. and Lai, E.M.-K. Intelligent critic system for
architectural design. Trans. Knowledge and Data
Engineering. July 1997.

5. Fischer, G., Girgensohn, A., Nakakoji, K., Redmiles, D.
Supporting Software Designers with Integrated, Domain-
Oriented Design Environments, IEEE Transaction on
Software Engineering, Special Issue: “Knowledge
Representation and Reasoning in Software Engineering”,
vol. 18, no. 6, pp. 511-522.

6. Fu. M. C., Hayes, C. C., and East, E. W. SEDAR: expert
critiquing system for flat and low-slope roof design and

review. Journal of Computing in Civil Engineering. vol. 11.
no. 1. January 1997. pp. 60-68.

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley. 1994.

8. Gertner A. S. and Webber B. L., TraumaTIQ: online
decision support for trauma management. IEEE Intelligent
Systems. January/February 1998. pp. 32-39.

9. Green, T. R. G. and Petre, M. Usability Analysis of Visual
Programming Environments: A ‘Cognitive Dimensions’
Framework. J. Visual Languages and Computing, vol. 7, no.
2 (June 1996). pp. 131-174.

10. JavaBeans Specification 1.01. Available from http://java.
sun.com/beans/.

11. Kintsch, W. and Greeno, J. G. Understanding and Solving
Word Arithmetic Problems. Psychological Rev. vol. 92.
1985. pp. 109-129.

12. Langlotz, C. P. and Shortliffe, E. H. Adapting a consultation
system to critique user plans. International Journal of Man-
Machine Studies. vol. 19. no. 5. Nov. 1983. pp. 479-496.

13. Lemke, A. C. and Fischer, G. A cooperative problem
solving system for user interface design. AAAI-90. 1990.
pp. 219-240.

14. Lowgren, J. and Nordqvist, T. Knowledge-based evaluation
as design support for graphical user interfaces. Conference
Proceedings on Human Factors in Computing Systems
(CHI’92). 1992. pp. 181-188.

15. Object constraint language specification. Object
Management Group document ad/97-08-08. Sept. 1997.
Available from http://www.omg.org/docs/ad/97-08-08.pdf.

16. Pennington, N. Stimulus Structures and Mental
Representations in Expert Comprehension of Computer
Programs. Cognitive Psychology. vol. 19. 1987. pp. 295-
341.

17. Riel, A. Object-Oriented Design Heuristics. Addison-
Wesley: Reading, MA. 1996.

18. Robbins, J. E., Kantor, M. and Redmiles, D. F. Sweeping
away disorder with the broom alignment tool. Conference
Proceedings on Human Factors in Computing Systems
(CHI’99). May 1999.

19. Schoen, D. The Reflective Practitioner: How Professionals
Think in Action. 1983. New York: Basic Books.

20. Silverman, B. G. and Mezher, T. M. Expert critics in
Engineering design: Lessons learned and research needs. AI
Magazine, Spring 1992.

21. UML Revision Task Force. UML v1.3 R20 Metamodel
abstract syntax. Jan. 1999. Available from http://uml.
shl.com

22. UML Semantics. Object Management Group document
ad/97-08-04. Sept. 1997. Available from http://www.
omg.org/docs/ad/97-08-04.pdf.

23. Visser, W. More or Less Following a Plan During Design:
Opportunistic Deviations in Specification. Int. J. Man-
Machine Studies. 1990. pp. 247-278.

24. Vlissides, J. M., Linton, M.A. Unidraw: A framework for
building domain-specific graphical editors. ACM
Transactions on Information Systems, vol. 8, no. 3, July
1990. pp. 237-268.

25. XML Metadata Interchange (XMI). Object Management
Group document ad/98-07-01. July. 1998. Available from
http://www.omg.org/docs/ad/98-07-01.pdf.

