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Abstract: This position paper introduces the concept of “artificial co-pilot” (that is, a driver model), with a focus on 

driver’s oriented cognitive cars, in order to illustrate a new approach for future intelligent vehicles, which 

overcomes the limitations of nowadays models. The core consists in adopting the human cognitive frame-

work for vehicles, following an artificial intelligent approach to take decisions. This paper illustrates in de-

tails these concepts, as they are under development in the EU co-funded project HOLIDES. 

1. INTRODUCTION 

Nowadays, automation systems to support, or 

even to replace, human drivers have become a trend 

in the current Intelligent Transportation Systems 

research. They are called Advanced Driver Assis-

tance Systems (ADAS) or Partially Autonomous 

Driving Assistance Systems (PADAS), depending 

on the level of automation considered; anyway, their 

goal is to strengthen driver’s sensing ability, to warn 

/ inform in case of errors and to reduce the control 

efforts of the vehicle itself. In fact, drivers are lim-

ited in recognizing, interpreting, understanding and 

operating in critical situations; moreover, they are 

prone to errors and to get tired (many accidents are 

due to human wrong behaviour, drowsiness, or inat-

tention in general (Tango, 2013)). Therefore, these 

ADAS/PADAS can effectively avoid some acci-

dents, by cooperating with the driver and assuring 

the mutual understanding between the human-agents 

and the machine-agents, in order to reduce or avoid 

conflicts. This principle of smart collaboration be-

tween humans and machines have been the focus of 

a number of theoretical studies, such as (Inagaki, 

2008), (Flemisch, 2003), (Heide and Henning, 

2006), (Li, 2012), in which full automation can be 

regarded as one extreme point of interaction spec-

trum. 

In particular, for Li and colleagues, the concept 

of a “cognitive vehicle” was proposed and defined 

as cognitive driving assistance systems, which – 

utilizing the findings of multidisciplinary engineer-

ing and cognition science – is able to monitor and 

detect the errors of human drivers and correctly 

respond / intervene to avoid accidents. As mentioned 

by Da Lio and colleagues, depending on its applica-

tion context, a system capable to determine how a 

human expert should drive, can be regarded as an 

artificial co-driver, which is considered a symbiotic 

system, that is, it is described using the rider-horse 

metaphor (or H-metaphor), in which an animal can 

“read” human intentions and, reciprocally, the rider 

can “read” the animal’s intentions. 

The goal of this position paper is to illustrate a 

new approach for the implementation of this virtual 

driver (hereafter, co-pilot), which adopts a human 

cognitive framework as basis and follows an artifi-

cial intelligence approach. This activity is carrying 

out inside the European co-funded project 

HOLIDES, whose main goal is to design adaptive 

cooperative systems, focussing on the optimization 

of the distribution of workloads between humans 



 

and machines, to compensate losses of capacities for 

instance in stress situations (http://www.holides.eu/).  

2. MODELLING THE DRIVER 

Theories of cognition can be divided in two sepa-

rate classes according to the role that context plays 

in cognitive processes. The implication for the artifi-

cial systems lays at the core of the debate among 

these different perspectives. The new embodied 

view, aiming at reducing the relationship between 

the individual and the environment in the cycle per-

ception-action, suggests that information needed to 

act on the environment are given by the context, 

without any intervention of high cognitive processes 

(as in (Da Lio, 2013)). On the contrary, classic 

views of cognition divide between low and high 

cognitive processes being the high level of pro-

cessing abstract and independent from the sensor 

modality through which information is acquired. 

Active Control of Thought – Reflexive (hereafter 

ACT-R) is a computational model aimed to simulate 

the behaviour of a driver (Salvucci, 2006) following 

the second perspective. ACT-R emphasizes the ef-

fort to integrate different sources as the task that a 

person is going to perform, the artefact necessary to 

perform the task and the cognition through which a 

person perceives, reasons and acts. ACT-R is an 

example of how cognitive processes are inserted into 

computational models to simulate driving behaviour. 

However, it reflects also the limits and the gaps 

between research on cognition and their implemen-

tations. The cognitive module is embodied in nature 

but inserted in a modular architecture and without a 

clear explanation about how the different processes 

interact each other.  

Starting from ACT-R, but with the specific aim 

to improve safety control and to reduce the number 

and the impact of human errors in human-machine 

interaction, the Cognitive Architecture for Safety 

Critical Task Simulation (hereafter CASCaS) archi-

tecture has been developed. As described by Lüdtke, 

Weber, Osterloh and Wortelen (2009), the CASCaS 

model is a three layers architecture, which distin-

guishes the human behaviour on the base of different 

intentional demands: 

1) autonomous behaviour: the level of “acting 

without thinking”; it is the level of the manual con-

trol which controls everyday low level actions; 

2) associative behaviour: the level of actions 

based on plans elaborated in familiar contexts; 

3) cognitive behaviour: the level of elaboration 

of new plans in new contexts. 

In short, the functioning of the model is based on 

rules stored at the associative level in a memory 

component. Each rule has an “if…then” structure 

which relies an action on a goal, a series of sub-

goals and conditions imposed by the context.  

Unlike the ACT-R architecture, CASCaS model 

allows parallelism between autonomous and associa-

tive layer simulating the human ability to manage 

two tasks simultaneously. 

 

 
Figure 1: the cognitive architecture CASCaS. 

 

For the implementation of the co-pilot in the 

HOLIDES vehicle demonstrator, we have adopted 

the CASCaS architecture as a basis, reproducing the 

autonomous behaviour and the associative behaviour 

into the co-pilot architecture (the cognitive layer can 

be foreseen as a further step of model development). 

The adopted probabilistic approach is described in 

the following sections. 

3. IMPLEMENTING THE 

DRIVER MODEL 

The new artificial driver solution we propose ex-

ploits probabilistic techniques, in particular Markov 

Decision Process (MDP) (Howard, 1960; Bellman, 

1957) which we briefly recall in the following to 

pave the way to the explanation of how MDPs are 

been applied inside the CASCaS architecture, for the 

case under study. 

3.1 Markov Decision Processes 

 MDP is a mathematical formalism introduced in 

the 1950s by Bellman and Howard (Howard, 1960; 

Bellman, 1957) in the context of operations research 

and dynamic programming. It has been used in a 

wide area of disciplines including economics, manu-



 

facturing, robotics, automated control and communi-

cation systems. More precisely, it is a stochastic 

control process, where, at each time step, the process 

is in some state 𝑠 ∈ 𝑆, and a decision maker may 

choose any action 𝑎 ∈ 𝐴 that is available in s. Then, 

the process responds by randomly moving into a 

new state s’ according to a specified transition prob-

ability, and giving to the decision maker the corre-

sponding reward (cost) Ra(s,s’) (depending by the 

chosen action and by the source and destination 

state). 

A key notion for MDPs is the strategy, which de-

fines the choice of action to be taken after any pos-

sible time step of the MDP. Analysis methods for 

MDPs are based on the identification of the strate-

gies that maximize (or minimize) a target function 

based on the MDP’s rewards (or costs). 

It has been proved that the maximal (or minimal) 

reward and its associated optimal strategy for an 

MDP can be computed in polynomial time using 

linear programming techniques. However this is not 

practical for large MDPs, and alternative solution 

techniques based on iterative methods have been 

proposed, such as value iteration and policy itera-

tion. Roughly speaking, value iteration (Bellman, 

1957) consists in the successive approximation of 

the required values. At every iteration, a new value 

for a state is obtained by taking the maximum (or 

minimum) of the values associated with the state’s 

outgoing actions. A value of an action is derived as a 

weighted sum over the values, computed during the 

previous iteration, of the possible next states, and 

where the weights are obtained from the probability 

distribution associated with the actions. Each itera-

tion can be performed in time O( 𝑆 !
∙ 𝐴 ), where S 

is the state space set and A the set of all the possible 

actions. Instead the policy iteration algorithm (How-

ard, 1960) alternates between a value determination 

phase, in which the current policy is evaluated, and a 

policy improvement phase, in which an attempt is 

made to improve the currently computed policy. The 

policy improvement step can be performed in 

O( 𝑆 !
∙ 𝐴 ), while the value determination phase in 

O( 𝑆 !) by solving a system of linear equations. In 

this regard, a critical issue for the application of 

MDPs to realistic complex problems is scalability 

with respect to the MDP size: for MDPs with very 

large or infinite state space, these algorithms may be 

inapplicable, and approximate solution techniques 

are the only viable approach. 

In this paper we focus on sparse sampling tech-

niques (Kearns et al., 1999), which do not need a 

complete description of the MDP, but that only 

require access to a generative model that can be 

queried to generate, from an initial state, a smaller 

MDP that is still sufficient to compute a near-

optimal strategy. Hence, the complexity of these 

approaches does not have dependence on the global 

MDP size, but it is exponential in the solution hori-

zon time (which depends on the desired degree of 

approximation of the optimal policy). 

Obviously a crucial aspect of this technique is 

the definition of the generative model which, taking 

in input a state-action pair 𝑠, 𝑡 , must be able to 

randomly generate a next state s’ according to a 

transition probability Ps,a(⋅). 

In this paper, we propose to exploit the high level 

formalism, called Markov Decision Petri Net 

(MDPN) as starting point for the generative model. 

A MDPN models a system in terms of its events, 

while for an MDP the system evolution has to be 

expressed by explicitly describing all possible states, 

actions and probabilistic transitions. The high level 

description of the MDPN can ease the modeller task 

and can reduce the risk of introducing errors. 

3.2 Markov Decision Petri Nets 

The MDPN formalism provides a graphical de-
scription of the system, where a complex non-
deterministic or probabilistic behaviour is described 
as a composition of simpler nondeterministic or 

probabilistic steps in which the probabilistic behav-
iour is clearly distinct from the non-deterministic 
one. In details, a MDPN model is composed by two 
Petri nets: the probabilistic subnet N

pr
 (enriched with 

a transition weight function) and the non-
deterministic subnet N

nd
. These subnets represent the 

probabilistic and non-deterministic behaviours of the 
underlying MDP, respectively. 

 Figure 2 shows a simple probabilistic sub-net 
N

pr
 modelling the vehicle speed. According to PN 

notation the places, graphically represented as cir-
cles, correspond to the state variables of the system 
(i.e. Low, Normal and High), while the transitions 
(graphically represented as boxes) correspond to the 
events that can induce a state change (i.e. Decreas-
eSi, IncreaseSi, and StableSi). The arcs connecting 
places to transitions and vice versa express the rela-
tion between states and event occurrences. Each 

Vehicle speed

Low Normal High

DecreaseS0

IncreaseS1

StableS0

DecreaseS1

IncreaseS2

StableS1 StableS2

Figure 2: sub-net for the vehicle speed. 



 

place can contain tokens, drawn as black dots. The 
number of tokens in each place defines the state, 
called “marking”. The evolution of the system is 

given by the firing of an enabled transition1, which 
removes a fixed number of tokens from its input 
places and adds a fixed number of tokens into its 
output places (according to the cardinality of its 
input/output arcs). 

 
Figure 3 shows a non-deterministic subnet N

nd
 in 

which the automatic driver can choose among three 
possible actions: break, do no action, or send a 
warning.  

Observe that N
pr

 and N
nd

 can share places (as 
shown in Figure 3, where the places L0…L5 belong 
to a probabilistic sub-model describing the level of 
driver's attention), but they cannot share transitions. 

Moreover, an MDPN model must have an asso-
ciated reward function defined in terms of its places' 
markings and of transition firings; such reward func-
tion is used to compute the corresponding MDP 
reward to be optimized. 

The generation of the MDP corresponding to a 
given MDPN has been described in details in (Bec-
cuti et al., 2007): it consists of (1) a composition 
step, merging the two subnets in a single net, (2) the 
generation of the RG of the composed net, (3) two 
reduction steps transforming each PR and ND se-
quence in the RG into a single MDP transition. 

 
 
 
 
 
 
 
 
 
 
 
 

1
 A transition is enabled if each input place contains a 

number of tokens greater or equal than a given thresh-

old, and each inhibitor place contains a number of to-

kens strictly smaller than a given threshold. 

3.3 The MDPN Model 

The MDPN model that we use to derive the 
MDP of our co-driver requires defining first a multi-
interval discretization of all the continuous-valued 
measures collected by the sensors (i.e. frontal Long 
Range Radar, Lane Recognition Camera and rear 
Short Range Radar for the blind-spot areas). Obvi-
ously a higher number of intervals increase the qual-
ity of the solution, but it makes the model more 
complex. Therefore, the most appropriate trade-off 
is an important part of our planned investigation 
during the HoliDes project. 

The second step is a careful selection of which 
system's components have to be modelled. Our ini-
tial proposal is to consider the following system's 
components: 

• A vehicle component describing the vehicle 
dynamic status (according to the infor-
mation available on CAN bus); 

• A driver component describing the driver 
status as reported in section 2; 

• An obstacle component describing the ob-
stacle status in terms of its relative speed 
and position (longitudinal and lateral) w.r.t. 
our vehicle; 

• An action component describing the possi-
ble actions (e.g. to break, to do no action, to 
send a warning) that the artificial driver can 
execute. 

 
It naturally follows that the first three compo-

nents will be used to generate the corresponding N
pr

 
net, while the last one the N

nd
 net. 

Moreover, the reward function for this MDPN 
model can be defined by combining the following 
transition reward: 

• if action Break is selected then it returns 
CostBreak; 

• else if action SendWarning is selected then 
it returns CostSendWarning else it returns 0; 

with the following marking reward:  
• if place Collision is marked then it returns 

CostCollision else it returns 0; 
with CostCollision ≫CostBreak ≥ CostSendWarning. 

This obtained reward function is hence able to 
assure that the system goal is to avoid collision min-
imizing the total number of actions Break and 
SendWarning. Obviously, more complex reward 
functions could be also investigated during the pro-
ject.  

Figure 3: sub-net for the co-pilot’s actions. 

Driver StatusPossible actions

Brake NoAction SendWarning L0 L5



 

3.4 Integration in the vehicle 

Vehicle integration is shown in Figure 4, where 
the On-line Sparse Sampling Algorithm (OSSA) 
uses the MDP derived automatically by MDPN 
model as generative model. Practically, data collect-
ed by the vehicle's sensors are discretized to map 
them on a specific MDP state s. 

Then, such MDP state is passed as input to the 
OSSA, which will return a small “sub-MDP” to be 
solved to derive a near-optimal strategy.  

In details, starting from state s the OSSA will 
query the generative model N times on each possible 
pair 𝑠, 𝑎! . Then, this step is recursively applied on 
any generated states up to a selected time horizon H.  

This essentially generates a sub-MDP with a tree 

structure (as shown in Figure 4) where the number 
of children for each node s is N·|As|, assuming As to 
be the set of all the available actions in s. Moreover 
H gives the tree depth. 

Finally this generated sub-MDP is solved (using 
policy or value iteration algorithms) to derive a near-
optimal strategy, which is used to suggest the next 
action to the current driver. 

4. DISCUSSION AND CONCLU-

SIONS 

Researchers have widely investigated the possi-
bility to reduce or eliminate the accidents due to 
driver’s errors or inappropriate behaviors, by using 
specific ADAS/PADAS applications that warn the 
driver or even by using automated systems that can 
replace the human user, by taking control of the 
vehicle in a proper time. In this position paper, we 
have selected an appropriate cognitive model and 
related architecture (CASCaS) of the driver and 
implemented an artificial co-pilot starting from it 
and reproducing the autonomous and associative 
layers. To achieve that, we follow a probabilistic 
approach, described in terms of Markov Decision 
Petri Net formalism. In Figure 5, the architectural 
scheme of the co-pilot is shown. Under normal con-

dition, the driver (the human-agent) perceives the 
environment, evaluating the possible risks (using the 
information from the co-pilot as a support). Based 
on these results, the driver formulates an intention 
and plans the next action (a trajectory in the future), 
which are implemented by acting on the pedals and 
on the steering. In the meanwhile, if a co-pilot is 
present, it analyzes the environment as well, and 
predicts the possibility to have a crash or a potential-
ly critical situation. Thus, the co-pilot assesses risks 
creating its own driving plan, comparing this ma-
neuver with the one that the driver is actually per-
forming and taking into consideration the intention 
of the driver. This determines how dangerous a giv-
en situation can be, and thereby the level of automa-
tion which is necessary (e.g. by displaying a warning 
signal or some information to the human-agent, or 
whether an automatic intervention is needed). 

With respect to the current state of the art, we 

consider the works of Da Lio and colleagues, of Wu 
and colleagues and also of Li and colleagues. In (Da 
Lio, 2006) the perception-action framework is con-
sidered (embodied view); in this paper, we regard 
the “classical” view of cognition as the most appro-
priate, because we can reproduce the different levels 
of cognition in a hierarchical way which can be 
reproduced in a system architecture and implement-
ed by a computational point of view. In this context, 
our choice of using CASCaS is motivated by its 
goal-oriented model, for which its predictions are 
easier to be generalized respects to a task-oriented 
model (e.g. it can be applied to automotive domain 
or to aeronautics domain, indifferently), by using a 
probabilistic approach, such as the one described.  

In this sense, we follow the line indicated by Li 
and colleagues, with their concept of “cognitive 
car”, where our co-pilot can be regarded as an in-
stantiation. Another contribution of our work is 
about the understanding of which functions can be 
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automated next and to which extent. This could 
provide a kind of roadmap towards the realization of 
fully autonomous vehicles in a near or far future, 
where the co-pilot can substitute the human driver 
(although the introduction of more automated hu-
man-machine systems should occur gradually). 

Finally, it is worth to mention the work of NaiQi 
Wu and colleagues, since they adopted Coloured 
Hybrid Petri Nets (CHPN). Their goal was to show a 
model based on CHPN to describe cooperation be-
haviour between a driver and a co-pilot in an ADAS 
application. They showed that their model is dead-
lock-free and conflict-free. In our case, Petri Nets 
are used instead as a high level formalism for the 
MDP, which derives the strategy of the co-pilot 
itself and the intelligence of the automated system. 

To sum up, in this position paper we have at-
tempted a new technological system for co-pilot 
implementations, using MDP for the computational 
implementation of the cognitive system. Since 
HOLIDES project have just started October 2013, 
the development of the proposed framework is in its 
initial phase. The next steps consist now in the prep-
aration and execution of the experimental phase on 
the field with the demonstrator vehicle to collect 
real-time and on-line data for the tuning and the 
evaluation of the MDP co-pilot. This phase, together 
with the prototype set-up, is foreseen in this year and 
at the beginning of 2015; while the final implemen-
tation and assessment of the co-pilot will be the 
activity to carry out within the end of the project 
(August 2016). 

One important future work will be to investigate 
the possibility of extending this approach using 
Partially Observable MDP (POMDP) (Leslie, 
1995)). Indeed, a POMDP is a generalization of an 
MDP, in which an agent must base its decisions on 
incomplete information about the state of the envi-
ronment. Hence, POMDP can be used more effi-
ciently to model systems where the agent cannot 
directly observe the complete underlying state. 
However, POMDPs are often computationally in-
tractable to solve a real system and its approximate 
solution techniques for POMDPs could not provide a 
sub-optimal solution that satisfies the time con-
straints imposed by our application. 

In addition, another important achievement is 
represented by the full exploitation of the CASCaS 
framework, in particular for the cognitive behaviour. 
In this context, the integration of driver’s state clas-
sifier inside the co-pilot (driver state becomes an 
input in this case) is a crucial point for deciding the 
level of automation. 
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