
Cognitive task analysis (CTA) is enjoying growing 
popularity in both research and practice as a 
foundational element of instructional design. However, 
there exists relatively little research exploring its value 
as a foundation for training through controlled studies. 
Furthermore, highly individualized approaches to 
conducting CTA do not permit broadly generalizable 
conclusions to be drawn from the findings of individual 
studies. Thus, examining the magnitude of observed 
effects across studies from various domains and 
CTA practitioners is essential for assessing replicable 
effects. This study reports the findings from a meta-
analysis that examines the overall effectiveness of CTA 
across practitioners and settings in relation to other 
means for identifying and representing instructional 
content. Overall, the effect of CTA-based instruction 
is large (Hedges’s g = 0.871). However, effect sizes vary 
substantially by both CTA method used and training 
context. Though limited by a relatively small number 
of studies, the notable effect size indicates that the 
information elicited through CTA provides a strong 
basis for highly effective instruction.
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Introduction
Cognitive task analysis (cta) is a core cluster 

of cognitive engineering tools frequently 
applied to understand work processes, inform 
the design of decision support systems, and 
develop ergonomically sound tools to effec-
tively support human performance (Woods & 
Roth, 1988). CTA techniques elicit from experts 
the knowledge and processes they use to per-
form complex tasks and analyze them to derive 

representations that can be used for various 
purposes (Crandall, Klein, & Hoffman, 2006). 
Increasingly, these tools are also used to con-
tribute to the design of training and instruction 
by providing detailed information to learners 
about how to perform target tasks at a high 
level of proficiency. These approaches often 
provide measurably greater quantities of useful 
information about the effective execution of 
tasks than other methods of identifying infor-
mation, such as the observation of task perfor-
mance alone and self-generated explanations 
provided by subject matter experts. Empirical 
assessments suggest that CTA contributes 
between 12% (Chao & Salvendy, 1994) and 
43% (Clark & Estes, 1996; Crandall & Getchell-
Reiter, 1993) more information for document-
ing performance-relevant processes than 
approaches that are not CTA based.

Task analysis in general has been an impor-
tant part of the instructional systems design pro-
cess since the 1980s (Reigeluth, 1983). 
However, Jonassen, Tessmer, and Hannum 
(1999, p. 5) note,

The value accorded to task analysis is 
often low. Even when designers are 
skilled in performing task analysis, time 
constraints prevent them from undertak-
ing any kind of analysis. Project manag-
ers do not perceive the need or importance 
of adequately articulating tasks, prefer-
ring to begin development in order to 
make the process more efficient.

Many approaches to task analysis differ from 
CTA, which emphasizes the cognitive compo-
nents of effective task performance. Typically, 
analyses are conducted with domain experts to 
identify those strategies, decisions, and proce-
dures that are highly effective for performing 
target tasks in authentic contexts and can pro-
vide an appropriate foundation for the design of 
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instruction (Guimond, Sole, & Salas, 2012). 
However, CTA is more expensive than other 
methods of obtaining instructional content, 
because the identification of cognitive processes 
can be time-consuming, be labor-intensive, and 
require the participation of experts, which pre-
cludes the performance of their usual responsi-
bilities (Clark & Estes, 1996; Clark, Feldon, 
van Merriënboer, Yates, & Early, 2008).

Consequently, other approaches to task anal-
ysis are more commonly used for instructional 
development, including job analysis, subject 
matter analysis, and anthropological analyses 
(Jonassen et al., 1999). Job analysis utilizes 
behavioral task analyses that emphasize directly 
observable activities rather than their underlying 
cognitive precursors. For example, determined 
using behavioral task analyses, the job specifica-
tions of a computer programmer might include 
the preparation of flowcharts to illustrate 
sequences of operations within a piece of soft-
ware, but they would not specify any of the com-
plex cognitive tasks that are necessary to develop 
the programming structures that the flowcharts 
represent (Clark & Estes, 1996; Cooke, 1992). 
Subject matter analysis emphasizes the exami-
nation of the structural nature of knowledge and 
the ways in which relevant concepts are related 
to one another (e.g., the hierarchical relation-
ships among tasks or categories). Other types of 
task analysis include anthropological methods 
that emphasize the situated nature of task perfor-
mance as part of cultural and social human 
activities (Jonassen et al., 1999). For instruc-
tional purposes, these forms of task analysis 
commonly utilize direct observations, content 
analysis of existing documents (e.g., manuals, 
policy handbooks), and interviews or focus 
groups with experts (Loughner & Moller, 1998).

Study Purpose
Despite the growing popularity of CTA, there 

exists relatively little research that quantifies its 
value for instructional design compared to other 
approaches used to create training in terms of 
stronger posttraining performance. Furthermore, 
practitioners of CTA may employ idiosyncratic 
combinations of CTA methods, which limit the 
extent to which the findings from individual 
studies might inform expectations for effects in 

other projects (Yates & Feldon, 2011). Thus, 
examining the magnitude of observed training 
benefits across studies from various domains 
and CTA practitioners is essential for determin-
ing a more generalizable estimate of its value as 
part of the instructional design process.

Meta-analysis provides the ability to com-
bine the findings of multiple, independent stud-
ies to assess aggregate effects of an independent 
variable (CTA-based elicitation of instructional 
content, in this case). Results from individual 
studies are converted into standardized units 
(i.e., effect sizes) that can be pooled to compute 
both descriptive and inferential statistics 
(Lipsey & Wilson, 2000). In this way, the range, 
average magnitude, and variance in outcomes 
associated with CTA-based instruction can be 
determined. Furthermore, the effects of differ-
ences in study design or implementation can be 
tested to better understand which factors influ-
ence the variable’s effectiveness (Cooper, 
Hedges, & Valentine, 2008). For these reasons, 
a meta-analysis of CTA-based training studies 
is useful in drawing more generalizable conclu-
sions about the value of CTA as a component of 
training design to enhance human performance. 
In addition to identifying an aggregate magni-
tude of effect size, this study also disaggregates 
effects to reflect differences in CTA technique, 
training setting, and types of training outcomes 
assessed.

Research Questions
The research literature on CTA-based instruc-

tion demonstrates much promise for its effec-
tiveness as an approach to capturing knowledge 
for use during instructional development (Clark 
et al., 2008). However, the lack of standardiza-
tion across CTA methods and individual studies 
leaves several broad questions unanswered. 
First, the aggregate effect of CTA on learning 
outcomes is not known, so it is difficult to deter-
mine if outcomes from a specific study are typi-
cal of the results that might be expected. Second, 
the variation in CTA methods may lead to differ-
ing levels of effectiveness for the resulting 
instruction. Third, the use of different outcome 
measures across domains leaves open the pos-
sibility that certain types of learning outcomes 
may be affected differently by CTA-based 
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instruction. Therefore, this study addresses the 
following research questions (RQs):

RQ1: What is the overall level of effec-
tiveness of using CTA as the basis for 
instructional content compared to other 
approaches?

RQ2: Does the use of different CTA meth-
ods lead to differing magnitudes of effect 
on learning outcomes?

RQ3: Does training delivered in different 
contexts lead to different magnitudes of 
effect for CTA-based training?

RQ4: Does the magnitude of effect for CTA-
based instruction vary as a function of 
the type of learning outcome measured?

Review of the Literature
Although there are many different models 

used to guide the design and development of 
training, the generic form typically entails the 
following phases in sequence: analysis, design, 
development, implementation, and evaluation 
(ADDIE). The sequence is so ubiquitous that the 
ADDIE acronym is “virtually synonymous with 
instructional systems development” (Malenda, 
2003, p. 34). The first phase, analysis, identifies 
and characterizes (a) the instructional goals (i.e., 
what learners will be able to do after receiving 
the developed training), (b) the knowledge and 
skills necessary to be imparted for learners to 
meet the instructional goals, (c) the parameters 
of the contexts in which the new skills must be 
utilized, and (d) the capabilities and existing 
knowledge of the people to be trained (Dick, 
Carey, & Carey, 2005).

CTA can be used to conduct the first three 
types of analysis. Typically its implementation 
follows the following five steps (Clark et al., 
2008, p. 580):

1.	 Collect preliminary knowledge
2.	 Identify knowledge representations
3.	A pply focused knowledge elicitation methods
4.	A nalyze and verify data acquired
5.	 Format results for intended application

However, within this sequence, a variety of 
approaches can be utilized, as described in the 
following section.

Types of Cognitive Task Analysis

There are three main categories of CTA as 
defined by Cooke (1994) and one additional 
category established by Wei and Salvendy 
(2004). These categories are (a) “observation 
and interview,” (b) “process tracing,” (c) “con-
ceptual techniques,” and (d) “formal models.”

Observation and interview techniques tend 
to be informal in nature, thus providing analysts 
high adaptability in gathering and analyzing 
data (Cooke, 1994). However, there is some 
variation in the application of these techniques, 
such that some may use highly structured proto-
cols and others might be more open-ended. 
Process tracing methods capture expertise dur-
ing task performance behavior within an actual 
problem-solving context. They use real tasks as 
a means to explicate the path taken by experts 
when completing a procedure. In addition to 
fine-grained, frequently instrumented observa-
tions of task performance, these methods may 
also include various types of think-aloud proto-
cols. Conceptual techniques are those CTA 
methods that attempt to identify hierarchical 
relationships among knowledge relevant to task 
performance within a domain (e.g., card sorting 
or concept mapping tasks). Formal models of 
CTA are computational models that generate 
simulated instances of targeted tasks. The simu-
lated performance is then compared to human 
(expert) performance to assess the complete-
ness of the model (Wei & Salvendy, 2004).

Although many CTA efforts incorporate 
multiple tools from one or more of these catego-
ries, certain named approaches are common in 
the CTA literature (Yates & Feldon, 2011). Two 
of the more frequently cited are the critical deci-
sion method (CDM; Klein, Calderwood, & 
MacGregor, 1989) and PARI (precursor, action, 
result, interpretation; Hall, Gott, & Pokorny, 
1995). These approaches employ semistruc-
tured interview techniques to focus experts’ 
recall on specific facets of their relevant knowl-
edge. CDM elicits information about the rele-
vant cues and strategies used by an expert in a 
specific problem-solving instance that was 
atypical or highly challenging. In contrast, 
PARI’s protocol focuses on the identification of 
the elements that compose its acronym for tasks 
as typically performed.
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Expert Cognition and Self-Report 
Accuracy

Experts are important sources of information 
about how to perform tasks effectively. Thus, 
they can be invaluable resources for developing 
instruction to train others to perform similar 
tasks. Experts have extensive, well-organized 
knowledge in their domains and excellent recall 
of the concepts that govern their respective 
domains (Glaser & Chi, 1988). However, their 
ability to recall the procedures that they use to 
perform tasks is less robust (Feldon, 2007).

Experts typically have at least a decade of 
effortful (deliberate) practice in their fields 
(Ericsson & Charness, 1994). However, as cog-
nitive skills are practiced, they require decreas-
ing levels of mental effort to execute and 
regulate (Blessing & Anderson, 1996). As a 
result of this skill automaticity, experts con-
serve most of their cognitive resources to 
accommodate complexities that nonexperts 
would be unable to navigate successfully. 
However, as decision making in these situations 
becomes automatic, it also becomes more diffi-
cult to notice and articulate the decision points 
and strategies used.

Consequently, experts are often unable to 
share fully what it is they do and how they do it 
(Blessing & Anderson, 1996; Feldon, 2010). 
Comparing the explanations provided by 
experts with direct observations of their perfor-
mance identifies substantial disconnects 
between their actions and their descriptions of 
them. Across multiple studies, the rate of omis-
sion is approximately 70% (Clark, 2009). For 
example, Cooke and Breedin (1994) asked a 
number of experts in physical mechanics to pre-
dict the trajectories of various objects and 
explain how those estimates were generated. 
The researchers used the explanations provided 
to attempt a replication of the predictions made. 
However, the trajectories computed from the 
explanations did not correlate to the original 
trajectory estimates. Similarly, a study of scien-
tific reasoning during laboratory meetings in 
leading research laboratories found that even 
when scientific breakthroughs were made dur-
ing discussions, the scientists participating in 
those discussions were unable to accurately 

recall the reasoning processes that led to their 
insights (Dunbar, 2000).

This phenomenon also surfaces during 
instruction. For example, Sullivan and col-
leagues (2007) found that of the 26 identified 
steps in a surgical procedure taught to medical 
residents, individual expert physicians articu-
lated only 46% to 61% when teaching the pro-
cedure. Similarly, content analysis of instruction 
to train undergraduate biology students in sci-
entific problem solving based on unguided 
report by an expert was less specific than the 
instruction based on CTA in nearly 40% of the 
content covered by both versions (Feldon & 
Stowe, 2009).

Accuracy and Instruction

The negative effects of such omissions on 
instructional effectiveness of results are mea-
surable. Gaps in instructional content require 
learners to allocate more cognitive resources 
than otherwise necessary to learn a skill with 
complete information available to them. This 
extraneous effort leads to lower recall and 
poorer task performance (Kirschner, Sweller, & 
Clark, 2006; van Merriënboer & Sweller, 2005). 
However, when steps are taken to increase the 
completeness of instructional materials, student 
performance increases.

Studies of training in a variety of domains, 
including radar troubleshooting (Schaafstal & 
Schraagen, 2000), spreadsheet use (Merrill, 
2002), and medicine (Sullivan et al., 2007), 
reflect significantly better posttraining perfor-
mance for learners receiving instruction where 
efforts are made to fully articulate experts’ strat-
egies compared to “business as usual” instruc-
tional conditions. Other studies have reported 
higher levels of self-efficacy (Campbell et al., 
2011), less time necessary for task performance 
(Velmahos et al., 2004), and deeper conceptual 
knowledge related to the task (Schaafstal & 
Schraagen, 2000).

Method
Inclusion and Exclusion Criteria

A comprehensive search of the literature was 
conducted to ascertain studies appropriate for 
this meta-analysis. Searches were conducted 
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using the Boolean search phrase (“cognitive 
task analysis” or “knowledge elicitation”) and 
(training or instruction). Based on a review of 
the prior literature in the area, these terms were 
determined to be the ones that would cast the 
broadest net for successfully finding studies in 
which CTA was used as a tool for further train-
ing or learning agenda. This search yielded 467 
articles from the following databases: 
PsycINFO, ERIC, Education Research 
Complete, ProQuest Dissertations and Theses, 
Medline, PubMed, and ISI Web of Science.

In an attempt to augment the literature 
attained through database search, several indi-
viduals recognized as major contributors to the 
development and study of CTA were contacted 
to request any additional studies or technical 
reports that had not been published. These indi-
viduals were Richard Clark, Maura Sullivan, 
Robert Hoffman, Jan Schraagen, Beth Crandall, 
Roberta Calderwood, Robert Pokorny, and 
Gary Klein. These snowball techniques yielded 
two additional unpublished dissertations, four 
technical reports, one conference paper, and one 
additional peer-reviewed article that were 
appropriate but not obtained through the data-
base search.

The selection of articles was winnowed by 
selecting criteria that would allow for the most 
direct analysis of studies related to the current 
study’s RQs. In selecting studies for this meta-
analysis, three excluding criteria were used. 
First, studies were excluded if they were theo-
retical articles or literature reviews that lacked 
empirical data. Because of the questions being 
asked in this study, theoretical pieces, although 
beneficial for understanding the depth and 
breadth of thinking on CTA, were not going to 
possess the data necessary to make the method-
ological and instructional comparisons sought 
in this study. These articles (n = 301) were 
removed from consideration of the overall lit-
erature search.

The remaining literature (n = 166) was 
reviewed and evaluated for appropriate inclu-
sion based on their robustness to other exclu-
sion criteria. The second factor for exclusion 
considered for the remaining studies was the 
type of research study. Because of the nature of 
qualitative research and the descriptive 

questions asked therein, case studies and pieces 
focusing on CTA process or technique explica-
tion were also excluded. Although explications 
of the CTA methods would provide insight into 
the differences between those methods, their 
data would not provide the quantifiable infor-
mation necessary to determine effect size differ-
ences. Specifically, this left studies reporting 
quantitative measures of training outcomes.

We also excluded studies that did not use a 
comparison in the form of a control group or 
historical baseline established using non-CTA 
instruction. Studies containing a control or 
comparison group allow for the most robust 
examination of the effects of CTA compared to 
other methods of instruction development. This 
factor left a small corpus of literature (n = 20) 
yielding 56 comparisons on specific variables 
that could directly examine use of CTA as an 
instructionally effective practice.

Coding

All articles included in this meta-analysis 
were reviewed by both authors. All areas of 
disagreement were discussed until consensus 
was reached. Intercoder agreement prior to dis-
cussion was established at 92%. Studies were 
coded for each specifically measurable out-
come: tests of conceptual knowledge (declara-
tive), task performance (procedural), 
self-efficacy, and time required for task comple-
tion. The specific measures employed varied 
between studies, as the content on which par-
ticipants trained differed. However, these cate-
gories of assessment are typical classes of 
training outcomes (Alliger, Tannenbaum, 
Bennett, Traver, & Shotland, 1997). Tests of 
conceptual knowledge were traditional tests 
asking multiple-choice or free-response ques-
tions about the principles or concepts relevant to 
performance of the target task. Task perfor-
mance measures included checklist-based scores 
of live performance, counts of errors made, or 
attempts required to complete the target task. 
Self-efficacy measures utilized surveys of learn-
ers in which they were asked to estimate their 
confidence in their ability to perform the task in 
the future using a numeric scale (e.g., 1–5, with 
1 representing very low confidence and 5 repre-
senting very high confidence). Time necessary 
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for task completion following training was mea-
sured in hours, minutes, or seconds, depending 
on the nature of the target task.

Each comparison made between CTA train-
ing outcomes and non-CTA training outcomes 
was treated as an individual case. Some studies 
reported multiple outcomes, resulting in more 
than one case from a single report represented 
in the meta-analysis.

To maintain consistency in the treatment of 
effect size data across cases and studies, two 
data transformations were applied when appro-
priate. The first involved data reflecting counts 
of errors, problem-solving attempts, and perfor-
mance duration (time). These were coded nega-
tively (i.e., –1 × attained effect sizes) to maintain 
consistency with the rest of the data entered into 
analysis for which larger effect sizes reflect bet-
ter performance. This transformation was 
applied because more time necessary to per-
form a task and higher numbers of errors/
attempts are negative indicators of training out-
comes. In the second transformation, a study 
reported only gains from pretest to posttest 
without reporting the scores themselves; since 
equivalence was established for participants 
across study conditions prior to training, pre-
tests were recorded as scores of zero and post-
test scores were recorded as equal to the reported 
gains to maintain consistency with the rest of 
the data points reported.

When identifying effect sizes from studies, 
several standards were applied to the selection 
of appropriate comparisons and computations. 
The overarching principle used in these instances 
was to adopt the most conservative approach. 
For example, some studies reported multiple 
delayed posttests. Reporting every comparison 
between the pretest and each posttest would 
have severely overrepresented certain studies in 
the sample, so only the longest delay compari-
son was used. It was anticipated that these gains 
would be smaller than immediate posttest results 
but more durable. Furthermore, if exact p values 
were not reported, the value used for p in com-
putations of effect size was the identified critical 
value reported. As such, significance reported as 
p < .05 was recorded as p = .05. Thus, effect 
sizes reported here may slightly underestimate 
effect sizes actually obtained.

Analyses

In examining the CTA literature, several chal-
lenges presented themselves. Most prominent 
among them was the highly divergent and rela-
tively sparse nature of the literature. CTA began 
being used for training only in the mid-1980s 
(Glaser et al., 1985). Because of this, there are 
few empirical articles appropriate for analysis. 
Many of the studies found during the literature 
search were noted later to not provide all of the 
information necessary for computing effect 
sizes. This created relatively small cell sizes for 
more detailed examinations. Effect sizes were 
initially computed using Cohen’s d since the 
RQs being asked were trying to determine the 
effect of CTA generally (RQ1) and types of CTA 
specifically (RQ2). However, further examina-
tion led to the conclusion that the relatively 
small sample sizes within the studies analyzed 
might be skewing the d values (Hedges & 
Olkin, 1985). Therefore, Cohen’s d values were 
transformed into Hedges’s g, which is an effect 
size measure that accounts for the inflation of 
effect size inversely related to sample size. 
According to Cohen’s (1988) guidelines for 
interpreting measures of effect size, a Hedges’s 
g value of 0.2 is considered to be small, 0.5 is a 
medium effect, and 0.8 or greater is large.

For each of the RQs discussed in this paper, 
separate analyses were computed. Because the 
data were not uniform in reporting standards, 
several of the ANOVAs were run on less than 
the full data set. For some analyses, the sample 
did not pass tests for homogeneity of variance 
and normality. However, one-way fixed effects 
ANOVAs are robust to Type I errors under con-
ditions of nonnormality (Glass, Peckham, & 
Sanders, 1972; Harwell, Rubinstein, Hayes, & 
Olds, 1992), so they did not present limitations 
for the analyses.

Results

RQ1: What is the overall level of effective-
ness of using CTA as the basis for instructional 
content compared to other approaches? Analy-
ses compare the effects of CTA-based instruc-
tion to the effects of instruction developed using 
content derived through means other than CTA 
(e.g., behavioral task analysis, unguided expert 
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self-report). All studies using a non-CTA con-
trol group and a CTA-based instruction treat-
ment group were used to compute a mean effect 
size for the overall treatment effects of CTA-
based instruction. Across the 56 comparisons 
identified, the overall value of Hedges’s g is 
0.871 (SD = 0.846), as presented in Table 1.

RQ2: Does the use of different CTA methods 
lead to differing magnitudes of effect on learn-
ing outcomes? Unfortunately, the majority of 
studies within the literature reviewed failed to 
report the type of CTA used in the development 
of training materials, making a meaningful 
comparison of CTA methods impossible. In 
fact, of the more than 100 types of CTA dis-
cussed by Cooke (1999), only 2 varieties of 
CTA were reported within the empirical find-
ings of these studies. Of the 56 comparisons 
identified within this meta-analysis, only 15 
were associated with a reported CTA method.

With that caveat in mind, a one-way fixed 
effects ANOVA yields significant differences 
between CTA method types, F(2, 53) = 6.566,  
p = .003 (see Table 2). The mean effect sizes of 
the reported methods are g = 0.329 (SD = 0.308) 
for CDM and g = 1.598 (SD = 0.993) for the 
PARI method. The mean effect size for studies 
with unidentified CTA methods is g = 0.729 
(SD = 0.731). Tukey’s honestly significant dif-
ference (HSD) multiple comparison follow-up 
test produced a statistically significant differ-
ence between the CDM method and the PARI 
method of CTA-based training (p = .018). CDM 
and other CTA methods did not differ signifi-
cantly (p = .586). PARI method outcomes dif-
fered significantly from other CTA (non-PARI) 
techniques (p = .005).

RQ3: Does training delivered in different 
contexts lead to different magnitudes of effect 
for CTA-based training? Five distinct settings 
are identified in the included studies as environ-
ments where CTA-based training has been 
implemented and reported. Specifically, these 
are military, government (nonmilitary), aca-
demic, medical, and private industry. Of the 56 
comparisons of CTA-based training, almost half 
are conducted within medical settings (n = 25). 
A Shapiro–Wilk test indicates two of the five 
groups do not meet the threshold value for 

normality (p > .05/5). A one-way fixed effects 
ANOVA indicates that study setting signifi-
cantly affects training outcomes, F(4, 51) = 
4.257, p = .005. Post hoc Tukey’s HSD tests 
reveal significant differences between the mili-
tary setting and the government (nonmilitary) 
setting (p = .004), and approach significance 
between the military and the medical setting (p = 
.056). The mean effects of all settings are 
reported in Table 3.

RQ4: Does the magnitude of effect for CTA-
based instruction vary as a function of the type 
of learning outcome measured? Four specific 
types of outcome measures are used in assessing 
CTA-based training outcomes: procedural 
knowledge gains, declarative knowledge gains, 
self-efficacy, and performance speed. Mean 
Hedges’s g effect size scores for each measure 
type are g = 0.872 for procedural knowledge, g 
= 0.926 for declarative knowledge, g = 0.893 for 
self-efficacy, and g = 0.611 for performance 
speed (time). A one-way fixed effects analysis of 
variance does not indicate a significant differ-
ence between the outcome measures, F(3, 52) = 
0.072, p = .975. Follow-up pairwise compari-
sons among the methods using Tukey’s test con-
firm a lack of significant differences between 
groups (see Table 4).

Discussion
Much of the CTA literature advocates its use 

for effectively eliciting a more complete set of 
procedural directions from which better instruc-
tion can be derived. In fact, a prior, unpublished 
meta-analysis reported effect size gains triple 
those of non-CTA-based training (Lee, 2005). 
Although the effect sizes seen in this analysis 
are not as large, the gains measured here do 
robustly support the claim that CTA-based 
training is more effective than training not 
based on CTA. Furthermore, by correcting for 
the inflating effects of small sample size on 
effect size estimates and including a larger 
sample of studies, the large effect size obtained 
supports the assertion that CTA-based training 
yields highly effective results even under con-
servative analyses.

Analyses determined that the PARI method 
yields the largest effects. However, many 
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Table 1: Effect Sizes of All Identified Comparisons in Included Studies of Cognitive Task Analysis–
Based Instruction

Article
Knowledge 

Type
Training 
Setting Cohen’s d Hedges’s g N

Bathalon et al. (2004) Procedural Medical 1.197 1.164 29
Biederman and Shiffrar (1987) Procedural Academic 2.870 2.806 36
Campbell (2010) Procedural Medical 0.835 0.815 33
Campbell (2010) Procedural Medical 0.916 0.894 33
Crandall and Calderwood (1989) Procedural Medical 3.330 2.664 6
DaRosa et al. (2008) Declarative Medical 0.697 0.686 48
DaRosa et al. (2008) Procedural Medical 0.032 0.031 48
DaRosa et al. (2008) Procedural Medical 0.491 0.483 48
DaRosa et al. (2008) Procedural Medical 0.118 0.116 48
Feldon et al. (2009) Procedural Government –0.292 –0.286 41
Feldon et al. (2009) Procedural Government –0.142 –0.139 41
Feldon et al. (2009) Procedural Government –0.038 –0.037 41
Feldon et al. (2009) Procedural Government –0.225 –0.221 41
Feldon et al. (2010) Procedural Academic 0.270 0.269 298
Feldon et al. (2010) Procedural Academic 0.310 0.309 298
Feldon et al. (2010) Procedural Academic 0.270 0.269 298
Feldon et al. (2010) Procedural Academic 0.230 0.229 298
Gott (1998) Procedural Military 1.286 1.262 41
Gott (1998) Procedural Military 1.170 1.147 41
Gott (1998) Declarative Military 0.870 0.835 41
Gott (1998) Procedural Military 0.960 0.941 41
Gott (1998) Declarative Military 0.760 0.745 41
Green (2008) Declarative Academic 0.091 0.052 4
Hall et al. (1995) Procedural Military 1.084 1.056 32
Lajoie (2003) Procedural Academic 0.757 0.725 20
Merrill (2002) Procedural Industry 0.685 0.680 98
Merrill (2002) Time Industry 0.685 0.680 98
Park et al. (2010) Procedural Medical 0.909 0.872 21
Park et al. (2010) Procedural Medical 0.909 0.872 21
Roth et al. (2001) Procedural Industry 1.372 1.267 12
Roth et al. (2001) Procedural Industry 1.472 1.359 12
Roth et al. (2001) Procedural Industry 1.330 1.227 12
Roth et al. (2001) Procedural Industry 1.258 1.161 12
Schaafstal and Schraagen (2000) Procedural Military 2.231 2.142 21
Schaafstal and Schraagen (2000) Procedural Military 2.461 2.362 21
Schaafstal and Schraagen (2000) Procedural Military 3.848 3.694 21
Schaafstal and Schraagen (2000) Declarative Military 2.865 2.750 21
Schaafstal and Schraagen (2000) Declarative Military 0.671 0.644 21
Staszewski and Davison (2000) Procedural Military 0.888 0.854 22
Staszewski and Davison (2000) Procedural Military 0.888 0.854 22
Staszewski and Davison (2000) Procedural Military 0.888 0.854 22

(continued)
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studies did not identify which type of CTA 
method yielded the most significant results. In 
fact, some methods lack formal method names. 
As one researcher stated regarding his approach, 
“I’ve not named it. I should have given it a 
name years ago” (R. E. Clark, personal commu-
nication, February 10, 2011). Furthermore, as 
discussed extensively by Yates and Feldon 
(2011), named CTA methods may mask similar 
techniques used under different approaches or 

application of different techniques that use the 
same name. Future work in the area would ben-
efit greatly from significantly more detailed 
reporting regarding the CTA including the type 
of CTA performed, its duration, and the role of 
subject matter experts in the training and mate-
rials development.

One of the most notable findings is the 
observed influence of studies’ settings on the 
effectiveness of CTA-based training. Studies in 

Article
Knowledge 

Type
Training 
Setting Cohen’s d Hedges’s g N

Sullivan et al. (2007) Procedural Medical 1.476 1.413 20
Sullivan et al. (2007) Declarative Medical 1.617 1.548 20
Tirapelle (2010) Self-efficacy Medical 0.852 0.831 33
Tirapelle (2010) Declarative Medical 0.208 0.203 33
van Herzeele et al. (2008) Procedural Medical –0.908 –0.869 29
van Herzeele et al. (2008) Procedural Medical –0.103 –0.099 29
van Herzeele et al. (2008) Procedural Medical 1.398 1.339 29
van Herzeele et al. (2008) Procedural Medical 1.314 1.259 29
van Herzeele et al. (2008) Procedural Medical 0.076 0.073 29
van Herzeele et al. (2008) Procedural Medical –0.282 –0.270 29
Velmahos et al. (2004) Declarative Medical 0.903 0.875 26
Velmahos et al. (2004) Procedural Medical 1.458 1.412 26
Velmahos et al. (2004) Procedural Medical 0.904 0.875 26
Velmahos et al. (2004) Procedural Medical 0.599 0.580 26
Velmahos et al. (2004) Time Medical 0.560 0.542 26

Table 1: (continued)

Table 2: Mean Effect Sizes and Standard 
Deviations for CTA-Based Instruction by Type of 
CTA Used

CTA Method

Number  
of Cases  
(k = 56)

Mean 
Effect  
Size SD

CDM   4 0.329 0.308
PARI 11 1.598 0.993
Other (unreported) 41 0.729 0.731

Note. CDM = critical decision method; CTA = cogni-
tive task analysis; PARI = precursor, action, result, 
interpretation.

Table 3: Mean Effect Sizes and Standard 
Deviations for Cognitive Task Analysis–Based 
Instruction by Instructional Setting

Setting

Number  
of Cases  
(k = 56)

Mean  
Effect  
Size SD

Military 14 1.439 0.926
Government 
(nonmilitary)

4 –0.171 0.107

Academic/
university

7 0.666 0.966

Medical 25 0.732 0.714
Industry 6 1.062 0.303
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the military setting significantly outperform 
those in all other categories except university 
settings for reasons that are not immediately 
evident. Further exploration of approaches to 
design, implementation, and characteristics of 
trainees is warranted.

Limitations
There are three substantial limitations to this 

study. First, there is only limited experimental 
and quasi-experimental research within the 
CTA literature. This causes overall effects 
detected to be less stable than might otherwise 
be seen within a larger corpus of literature. 
Second, most studies did not report the reliabil-
ity coefficients associated with the measures 
used to assess training outcomes. This could be 
because of the use of CTA-based instruction in 
highly specialized domains for which previ-
ously validated assessments may not exist. 
However, it prevented consideration of mea-
surement error as an indicator of study quality 
and when computing meta-analytic effect sizes. 
Third, divergent reporting practices across the 
many disciplines using CTA-based training 
prevented coding of all variables from some 
studies. Many of the details identified to ana-
lyze study findings were obtained through per-
sonal emails with authors and research 
assistants. Compilation of data in this manner, 
although replicable, is difficult.

Conclusions
Now, 25 years after the first training-based 

study of CTA effectiveness was published, strong 
evidence exists regarding the effectiveness of 

CTA-based training. Despite its high costs rela-
tive to other methods used during the instruc-
tional design process (Clark & Estes, 1996; 
Clark et al., 2008), the large effects it demon-
strates on learning outcomes suggest that it 
offers great value to organizations with human 
performance needs. Industrial and military train-
ing outcomes included in this study reported 
mean effect sizes greater than 1.0 (very large), 
and mean effects of medical training and aca-
demic instruction were also medium to large. 
The success found across these diverse settings 
indicates that the benefits of CTA are broadly 
applicable and can enhance the quality of instruc-
tion in contexts critical to economic growth and 
human health.

Future research in this area would be 
strengthened by significant changes in the 
approach to reporting data. Specifically, more 
information regarding the method of CTA com-
pleted may yield significant results regarding 
the effectiveness of specific CTA methods. In 
addition, there are strong indications that vari-
ous groups within various settings respond dif-
ferently to CTA-based training. With additional 
study features reported, more nuanced under-
standings regarding specific effects may be 
identified.
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