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Abstract

Background: Functional transcanial Doppler ultrasound (fTCD) is a convenient approach to examine cerebral blood
flow velocity (CBFV) in major cerebral arteries.

Methods: In this study, the anterior cerebral artery (ACA) was insonated on both sides, that is, right ACA (R-ACA) and
left ACA (L-ACA). The envelope signals (the maximum velocity) and the raw signals were analyzed during cognitive
processes, i.e. word-generation tasks, geometric tasks and resting state periods separating each task. Data which were
collected from 20 healthy participants were used to investigate the changes and the hemispheric functioning while
performing cognitive tasks. Signal characteristics were analyzed in time domain, frequency domain and
time-frequency domain.

Results: Significant results have been obtained through the use of both classic/modern methods (i.e. envelope/raw,
time and frequency/information-theoretic and time-frequency domains). The frequency features extracted from the
raw signals highlighted sex effects on cerebral blood flow which revealed distinct brain response during each process
and during resting periods. In the time-frequency analysis, the distribution of wavelet energies on the envelope
signals moved around the low frequencies during mental processes and did not experience any lateralization during
cognitive tasks.

Conclusions: Even if no lateralization effects were noticed during resting-state, verbal and geometric tasks,
understanding CBFV in ACA during cognitive tasks could complement information extracted from cerebral blood flow
in middle cerebral arteries during similar cognitive tasks (i.e. sex effects).

Keywords: Anterior cerebral arteries, Cerebral blood flow, Functional transcanial Doppler ultrasound, Signal
processing

Background

Distribution patterns of cerebral blood flow can be

described by neuroimaging techniques such as functional

magnetic resonance imaging, single photon emission

computed tomography, positron emission tomography or

the xenon-clearance technique. All these methods have

a high spatial resolution [1–4]. Despite their advantages,

these methods restrict patient movements and usually
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have a low temporal resolution. The hemodynamic fea-

tures of major cerebral arteries and their rapid variations

in normal and pathological conditions can be character-

ized by functional transcanial Doppler ultrasound. Func-

tional transcanial Doppler ultrasound (fTCD) is a non-

invasive blood velocity measurement approach [5]. This

technique uses the fact that cerebral perfusion is linked

to neural activation which is translated into cerebral per-

fusion changes during cognitive tasks [6, 7]. It has a high

temporal resolution due to continuous insonation of cere-

bral blood flow velocity. The velocity measurement is

closely linked to cerebral blood flow in the event that the
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diameter of cerebral arteries does not change during the

insonation. Multiple studies showed that perfusion area

and diameter of cerebral arteries do not change during

mental processes [8–10]. Thus, blood flow velocity evo-

lutions are due to modifications in cerebral metabolism

because of cerebral activities.

fTCD has been studied during cognitive or physical

tasks for both healthy participants and patients affected

by neurological disorders (e.g., stroke, autism, epilepsy)

[11–15]. Previous publications have examined the effects

of visual perception [16, 17], auditory perception

[18, 19], language processes [20, 21], spatial processes

[22, 23], memory processes [24], other cognitive/mental

tasks and other neurological disorders [13, 25, 26] on cere-

bral blood flow using fTCD. These publications pointed

that the main advantages of a fTCD system include

its price, easiness-to-use and its minimally stressful

character [27].

fTCD is mainly used to target major cerebral arter-

ies [28]. Usually, transducers are placed on the thinnest

parts of head bone which are the acoustic windows

of the skull allowing to monitor activities on cerebral

arteries of the circle of Willis. The transtemporal win-

dow enables us to reach the middle (MCA), anterior

(ACA) and posterior (PCA) cerebral arteries. The trans-

foraminal window enables us to reach the basilar and

the vertebral arteries; while the transorbital window

reaches the ophthalmic and the internal arteries [29].

Arteries are identified by understanding the depth of

insonation, the transducers position and the flow direc-

tion [30]. The most commonly insonated arteries are the

ACA, the MCA and the PCA [31]. Each of these arter-

ies supplies blood to different areas: the ACA supply

to the medial regions, the MCA supply to the lateral

regions and the PCA supply to the posterior baso-

medial regions. The MCA is most usually insonated

in studies about cognitive processes [20, 32–34], as

80 % of blood to the brain is delivered by the MCA.

The ACA could be also insonated during high cogni-

tive functions such as arithmetic problems or receptive

language [35–37]. As ACA are deeper than MCA [29],

insonating ACA could provide complimentary informa-

tion to signals acquired fromMCA in order to gain further

understanding of cerebral blood flow characteristics while

performing mental activities [30, 38, 39].

Previous publications regarding cerebral blood flow

velocities during mental stimuli on MCA highlighted the

left and right hemispheric dominance introduced during

the geometric task and the word-generation task respec-

tively. However, the brain blood flow in ACA is closely

linked to the activity in MCA [32, 33, 35]. In fact, lat-

eralization in the ACA blood flow was predicted while

performing cognitive processes (i.e. evolutions of cerebral

blood flow velocity can be explained by the changes in the

MCA during mental challenges). Moreover, handedness

and sex appeared to have effects on brain response dur-

ing activation periods. Distinct functioning hemispheric

dominance may be foreseen according to sex and handed-

ness [40].

Our hypothesis was that cognitive tasks affect the cere-

bral blood flow velocities in ACAs similarly to those

changes observed in cerebral blood flow velocities in

MCAs. To examine our hypothesis, we collected both

raw signals and maximal velocity signals (usually called

the spectral envelope signals [41]). A few fTCD studies

only examined envelope signals and may lack informa-

tion contained in raw signals [5, 31, 42]. Previous studies

highlighted the significance of data embodied in raw sig-

nals during resting periods [43, 44]. Envelope signals are

usually extracted from raw signals, which are a sum of sig-

nals corresponding to erythrocytes movement at different

velocities. Raw results which are used to calculate enve-

lope signals, may contain exhaustive information about

the activation stimuli and resting-state periods.

Our major contributions include the understanding of

signal patterns in various domains (time, frequency, and

time-frequency) for raw and maximum velocity signals.

Features from the classical analysis were examined (i.e.

time and frequency approaches). We also used modern

analysis characteristics from information-theoretic and

time-frequency domains which have not been examined

in previous studies about brain response during mental

tasks [45]. Additionally, the current study complements

the study of the ACA resting-state characteristics [43]

and follows outcomes from MCA results during resting

periods and activation stimuli (word-generation and geo-

metric rotation tasks) [45]. These two previous papers

employed the same methodology. The repercussions of

sex and handedness on CBFV were also examined.

Methods

Subjects

Twenty able-bodied participants have taken part in the

experiment (Males/Females = 9/11, 22.1 ± 1.86 years old;

171±10.1 cm; 68.9±27.3 kg). Table 1 summarizes partic-

ipant demographic details. No participant had a history of

heart murmurs, strokes, concussions, migraines or other

brain-related injuries or neurological diseases. At first, the

subjects were asked to sign the consent form approved by

the University of Pittsburgh Institutional Review Board.

Table 1 Demographic information

Distribution Male Female All

Age (years old) 22.3 ± 1.64 22.0±2.00 22.1±1.86

Height (cm) 180±7.26 163±5.39 171±10.1

Weight (kg) 91.6±29.3 52.6±5.89 68.9±27.3
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The entire study was approved by the University of

Pittsburgh Institutional Review Board.

The handedness of each participant was tested using

the Edinburgh Handedness Inventory test [46]. This tech-

nique is one of the most widely used method for mea-

suring both the direction and the degree of handedness

[47, 48]. Subjects had to choose their hand preferences

based on a list of activities. They could assign 1 or 2 for

each activity (1 for a weak preference or 2 for a strict pref-

erence between right or left hand). The result was scored

based on the formula:

Score =

∑
Xi(R) −

∑
Xi(L)∑

Xi(R) +
∑

Xi(L)
(1)

where Xi(R) or Xi(L) can take values of 0, 1 or 2 accord-

ing to the domination of right/left domination. Positive

score leads to right-handedness whereas negative score

leads to left-handedness. This study was restricted to the

analysis of handedness direction. In fact, a majority of

previous publications about fTCD and brain cognitive

response focused on the effects of handedness direction

[35, 49, 50]. 16 subjects were right-handed (mean score of

64), 3 subjects were left-handed (mean score of -63) and

one was ambidextrous. Table 2 summarizes the Edinburgh

Handedness test results.

Procedure

ACA cerebral blood flow was assessed thanks to a

SONARA TCD System (Carefusion, San Diego, CA,

USA). Two 2 MHz transducers were placed on the left

side and the right side of the skull on transtemporal

windows to acquire bilateral cerebral blood flow mea-

surements. The temporal windows are found above the

zygomatic arch [38]. Transducers were fixed with a head-

set (5 cm in front of the ears) and were positioned to reach

ACA. Additionally, the end-tidal carbon dioxide ETCO2

(BCI Capnocheck Sleep Capnograph, Smiths Medical,

Waukesha, Wisconsin, USA) was monitored along with

respiration rate, electrocardiogram, head movement and

skin conductance via a multisystem physiological data

monitoring system (Nexus-X, Mindmedia, Netherlands).

The ETCO2 levels may have repercussions on cerebal

blood flow in the ACA.

The participants were asked to complete two 15-minute

cognitive parts interspersed by a 5-minute break. How-

ever, we did not collect data during these five minutes.

Each 15-minute part comprises 5 mental rotation tasks, 5

Table 2 Handedness information

Distribution Right-Handed Left-Handed Ambidextrous

Sex 8 males, 8 females 1 male, 2 females 1 female

Average score 64 -63 0

word generation tasks and 5 resting conditions between

each cognitive task. Each of these lasted for 45 seconds.

The order of cognitive tasks was randomly assigned, but it

was counterbalanced. Figures 1 and 2 illustrate the fTCD

setup.

After the acquisition of R-ACA and L-ACA cerebral

blood flow data in the form of audio file, information

are extracted from audio files sampled at 44100 Hz. Raw

data were downsampled to 8820 Hz to speed up data

processing.

Resting-state

During 5-minutes breaks and during the resting-state,

participants were requested to remain awake, maintain a

thought-free mental state and keep quiet.

Geometric rotation task

During the 45-seconds mental rotation tasks, pairs of

images were randomly selected from a database con-

structed from 3-D cubes [51]. Pairs were displayed for 9

seconds each. Participants were asked to rotate shapes to

find which ones are identical or mirror symmetrical.

Word generation task

Participants generated words silently based on letters ran-

domly chosen and displayed at the beginning of each

period. Subjects were cautioned not to vocalize any words

in order to avoid any brain activations related to speech

regions [52].

Feature extraction

Three common parameters in statistics were considered:

standard deviation, skewness, kurtosis of the signal ampli-

tude [53]. Statistical parameters from the envelope and

the raw signals were extracted. Standard deviation of a

signal estimates the spread of a distribution [53, 54].

The skewness of the amplitude distribution quantifies the

asymmetry of the distribution [53, 55]. The kurtosis of

a distribution evaluates the behavior of the distribution

close to the boundaries [53]. These statistical features

characterize signals from the right side and from the left

side of ACA.

The cross-correlation coefficient at the zero lag between

the L-ACA signal and the R-ACA signal was used to

demonstrate whether L-ACA signal and R-ACA signal are

related:

CCXR−ACA/YL−ACA =
1

N

N∑

i=1

(xiyi) (2)

where the signal XR−ACA = {xi} and YL−ACA = {yi}, i =

1, · · · ,N are extracted from the right and the left side of

the ACA.
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Fig. 1 Setup for the fTCD study

Information-theoretic feature

Information-theoretic features were also taken into con-

sideration. The Lempel-Ziv complexity (LZC) and the

entropy rate were extracted. These measures provide

information about the complexity and the regularity of

signals.

The amount of new patterns formation through finite

time sequences is determined by the Lempel-Ziv com-

plexity [56]. In fact, it estimates the predictability and the

randomness of the signal [57, 58]. The Lempel-Ziv mea-

sure is often used in applications of analysis of biomedical

signals [56, 59]. First, the signal amplitude is converted

into a finite binary series. It is divided into 100 finite

spaces defined thanks to 99 thresholds, Th, 1 ≤ h ≤ 99,

h ∈ ZZ+. The threshold is usually chosen as the median

of the signal [60]. Secondly, the quantized signal Xn
1 =

{x1, x2, · · · , xn} is divided into blocks. Each block is series

of successive data of length L. All block can be defined as

the following formula [61]:

B = Xl
j = {xj, xj+1, · · · , xl}, 1 ≤ j ≤ l ≤ n, j, l ∈ Z+ (3)

where the length L of the block is defined by j − l + 1. For

each L, every block is tested from left to right. A counter

c is defined and it increases by one unit if a block has not

already appeared in previous j and l. Finally, the LZC is

given as the following formula:

LZC =
c(log100c + 1)

n
(4)

where c denotes the final value of the counter at the end of

the signal analysis and n represents the total of quantized

levels in the signal.

The entropy rate ρ quantifies the regularity in a distri-

bution [62]. First, the signal needs to be normalized to

zero mean and unit variance (subtracting μX and dividing

by σX) and quantized into 10 equal levels. The quantized

signal X = {x1, x2, · · · , xn} is decomposed and grouped

into blocks of length L, 10 ≤ L ≤ 30, which are finite

series of consecutive points in the quantized signal such

as �L = {ω1,ω2, · · · ,ωn−L+1} [63].

ωi = 10L−1xi+L−1 + 10L−2xi+L−2 + · · · + 100xi (5)

where L is the length of successive series and ωi is classi-

fied between 0 and 10L − 1. The Shannon entropy S(L) of

ωL given the quantized signal �L, where X takes discrete

values ωj with probability pj is defined as [64]:

S(L) =

10L−1∑

j=0

pjlnpj (6)

where pj is the approximated sample joint probabil-

ity of the pattern j in �L with the understanding that∑n−L+1
j=1 pj = 1 with 0 ≤ pj ≤ 1 i = 1, · · · , n − L + 1.

The normalized entropy rate is computed as the following

formula [65, 66]:

N(L) =
S(L) − S(L − 1) + S(1)pe(L)

S(1)
(7)

where pe(L) is the percentage of the integers in the L-

dimensional phase space that appeared only once and

Fig. 2 A sample of the on-screen geometric and word-generation stimuli
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Table 3 Time features from raw (denoted by the subscript r) and envelope (denoted by the subscript e) CBFV signals (* denotes
multiplication by 10−3)

Standard deviation Skewness Kurtosis Cross-correlation

R-ACA L-ACA R-ACA L-ACA R-ACA L-ACA

Rr 0.12 ± 0.05 0.12 ± 0.05 (-2.62 ± 0.15)* (-0.59 ± 4.77)* 4.10 ± 2.06 4.43 ± 3.58 (5.67 ± 9.13)*

Wr 0.12 ± 0.05 0.12 ± 0.05 (-0.55 ± 9.02)* 0.89 ± 10.2)* 3.57 ± 0.90 4.26 ± 2.60 (6.96 ± 9.11)*

Gr 0.12 ± 0.04 0.12 ± 0.05 (-1.11 ± 9.38)* (-1.26 ± 4.69)* 3.74 ± 0.95 4.42 ± 2.87 (6.50 ± 8.59)*

Re 15.9 ± 4.76 15.1 ± 5.98 1.17 ± 0.93 1.07 ± 0.58 5.95 ± 6.51 5.17 ± 2.52 0.89 ± 0.06

We 16.0 ± 4.72 15.2 ± 5.93 1.20 ± 0.90 1.13 ± 0.67 5.94 ± 6.16 5.50 ± 3.22 0.89 ± 0.06

Ge 15.9 ± 4.95 14.5 ± 5.87 1.03 ± 0.46 1.11 ± 0.63 4.74 ± 1.80 5.41 ± 2.79 0.90 ± 0.05

where S(1)pe(L) is added due to the limited number of

samples and the underestimation of S(L) − S(L − 1) for

larger L. Given that the first term decreases while the

second term increases with L, the goal of this method is

looking for the minimum of the previous function. This

minimum is an index of complexity. Finally, the regu-

larity index ρ of the signal is defined by the following

relation [66]:

ρ = 1 − min(N(L)) (8)

where ρ is ranged from 0 which is equivalent to a max-

imal randomness to 1 which corresponds to a minimal

regularity.

The cross-entropy rate quantifies the coupling of the

entropy rate between two stochastic processes. It predicts

data in a signal from previous and current information in

another signal. Instead of making one signal normalized,

both X and Y were processed (normalized, quantized and

computed according to the previous method), yielding�X
L

and �Y
L . Finally, the cross-entropy rate�

X|Y
L which repre-

sents the information rate available in one of the samples

of the quantized signal x when a pattern of L − 1 samples

of the quantized signal y is established was constructed

as [65]:

ω
X|Y
i = 10L−1xi+L−1 + 10L−2yi+L−2 + · · · + 100yi (9)

The normalized cross-entropy NC of X|Y is figured out

as:

NCX|Y (L) =
SX|Y (L) − SY (L − 1) + SX(1)peX|Y (L)

SX(1)

(10)

where SX(L), SY (L) and SX|Y represent the Shannon

entropies ofωX
L ,ω

Y
L andω

X|Y
L . peX|Y (L) is the rate of data in

ω
X|Y
L that appeared only once and SX(1)peX|Y (L) is added

due to the limited number of samples and the underesti-

mation of SX|Y (L)−SY (L−1) for larger L. As the previous

method, the goal is looking for the minimum of the pre-

vious function. The index of synchronization was used as

the cross-entropy rate characteristic:

�X|Y = 1 − min(NCX|Y (L),NCY |X(L)) (11)

where �X|Y is between 0 which denotes that X and Y are

independent processes and 1 which proves a synchroniza-

tion of X and Y.

Frequency analysis

Spectral changes of the recorded signals were examined

through the peak frequency, the centroid frequency, the

bandwidth of the spectrum [67, 68]. The peak frequency

is associated with the maximal spectral power:

fp = argfmax{|FX(f )|2} (12)

where FX(f ) is the Fourier transform of the signal X and

fmax in this study was 8820 Hz. The spectral centroid is

defined as the center of gravity of the spectrum [69]:

fc =

∫ fmax

0 f |FX(f )|2 d f
∫ fmax

0 |FX(f )|2 d f
(13)

The bandwidth of the spectrum which represents the

difference between the higher and lower frequencies of

the spectrum measures the spreadness of the frequency

components:

B =

√√√√
∫ fmax

0 (f − f̂ )2|FX(f )|2 , d f
∫ fmax

0 |FX(f )|2 , d f
(14)

The bandwidth represents the squared differences

between the spectral centroid and the spectral compo-

nents.

Table 4 Significant time features from raw (denoted by the
subscript r) and envelope (denoted by the subscript e) CBFV
signals where p < 0.05

Signal ACA Feature Group Group 1 Group 2

e R-ACA Skewness R M: 1.81 ± 1.09 F: 0.91 ± 0.73

e R-ACA Skewness W M: 1.50 ± 1.13 F: 0.95 ± 0.50

e L-ACA Skewness G M: 1.40 ± 0.63 F: 0.87 ± 0.62

e R-ACA Kurtosis R M: 9.21 ± 8.01 F: 4.80 ± 3.08
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Table 5 Information-theoretic features from raw (denoted by the subscript r) and envelope (denoted by the subscript e) CBFV signals

LZC Entropy rate Index synchronization

R-ACA L-ACA R-ACA L-ACA

Rr 0.69 ± 0.03 0.68 ± 0.04 0.30 ± 0.14 0.35 ± 0.19 0.33 ± 0.17

Wr 0.69 ± 0.02 0.68 ± 0.03 0.28 ± 0.13 0.34 ± 0.18 0.32 ± 0.16

Gr 0.69 ± 0.02 0.68 ± 0.04 0.30 ± 0.14 0.37 ± 0.19 0.34 ± 0.17

Re 0.67 ± 0.04 0.67 ± 0.03 0.06 ± 0.07 0.04 ± 0.06 0.14 ± 0.08

We 0.67 ± 0.04 0.68 ± 0.03 0.06 ± 0.07 0.04 ± 0.06 0.14 ± 0.08

Ge 0.68 ± 0.03 0.67 ± 0.03 0.05 ± 0.05 0.04 ± 0.06 0.17 ± 0.10

Time-frequency analysis

A 10-level discrete wavelet decomposition of the sig-

nal using the discrete Meyer wavelet was calcu-

lated. The resulting decomposition is given by W =

[ a10 d10 d9 · · · d1] where a10 is the approximation coeffi-

cients and dk represents detail coefficients at the k
th-level.

The signal is observed at various frequency bands thanks

to this new distribution [70]. Then, the relative energy

from the approximation coefficients is defined as [71]:

�a =
‖a10‖

2

‖a10‖
2 +

∑10
k=1 ‖dk‖

2
(%) (15)

�dk =
‖dk‖

2

‖a10‖
2 +

∑10
k=1 ‖dk‖

2
(%) (16)

where ‖.‖ is the Euclidian norm. The relative energy which

is defined by the ratio of the energy at the kth level

divided by the total energy was calculated based on the

wavelet transform. It denotes the distribution of energies

at different frequency bands.

A wavelet entropy measures the amount of order of the

signal and gives information about the distribution [71, 72]:

� = −�a10 log2�a10 −

10∑

k=1

�dk log2�dk (17)

where �a10 is the relative energy. A value of � close to 0

demonstrates a concentration of wavelet energies in a fine

band of levels even though a higher value of � proves an

extensive band of levels (a random process).

Statistical test

To make comparisons across sex, within tasks, types of

measurements and sides in a unified manner, we fit-

ted a series of linear mixed models with each feature as

the dependent variable; sex (male/female), task (geomet-

ric/verbal/resting), measurement type (raw/envelope),

side (left/right) and their full multi-way interaction as

independent factors; and a subject random effect to

account for multiple measurements from each partici-

pants and the resulting non-independence of observa-

tions. Next, combining both sex, to make comparisons

between the levels of each of the task, measurement type

and side factors within the combinations of other factors,

we fit a similar mixed model but only with task, mea-

surement type, side and their interaction as independent

factors. In each case, appropriately constructed means

contrasts were used to estimate the pairwise means differ-

ences of interest reported here, along with their statistical

significance and 95 % confidence intervals. For cross-

correlation and synchronization index features which are

not side specific, we employed a largely similar strategy

but omitted side from the list of independent factors.

SAS version 9.3 (SAS Institute, Inc., Cary, North Carolina)

was used for the mixed model analysis. MATLAB (Math-

Works, Natick, MA, United States) was used for feature

extraction.

Results

Firstly, the effect of the end-tidal carbon dioxide level

which does not influence features (ACA diameter) is not

taken into consideration [73, 74], as we did not observe

any relations between signal features and end-tidal carbon

dioxide levels. Furthermore, participants did not exhibit

any excessive head movements. Secondly, feature values

for the raw and the envelope signals are displayed in tables

in the form of (mean ± standarddeviation) according to

experimental conditions: the 45-seconds resting-state is

indicated by a “R”, the word-generating task is indicated by

a “W” and the geometric task is indicated by a “G” in the

Table 6 Significant information-theoretic features from raw
(denoted by the subscript r) and envelope (denoted by the
subscript e) CBFV signals where p < 0.05

Signal ACA Feature Group Group 1 Group 2

e R-ACA LZC R M: 0.65 ± 0.04 F: 0.69 ± 0.04

e L-ACA LZC R M: 0.66 ± 0.03 F: 0.70 ± 0.04

e R-ACA LZC W M: 0.65 ± 0.04 F: 0.68 ± 0.03

e L-ACA LZC W M: 0.66 ± 0.04 F: 0.69 ± 0.04



Bleton et al. BMCMedical Imaging  (2016) 16:22 Page 7 of 12

Table 7 Frequency features from raw (denoted by the subscript r) and envelope (denoted by the subscript e) CBFV signals

Spectral centroid Peak frequency Bandwidth

R-ACA L-ACA R-ACA L-ACA R-ACA L-ACA

Rr 980 ± 193 939 ± 213 561 ± 308 564 ± 214 723 ± 116 564 ± 214

Wr 994 ± 184 950 ± 208 540 ± 239 584 ± 221 723 ± 116 696 ± 151

Gr 990 ± 192 939 ± 211 567 ± 269 527 ± 257 718 ± 120 690 ± 152

Re 13.3 ± 4.50 14.0 ± 4.30 0.36 ± 0.50 0.23 ± 0.46 13.5 ± 1.73 13.5 ± 1.43

We 13.5 ± 4.62 14.0 ± 4.30 0.38 ± 0.51 0.39 ± 0.55 13.5 ± 1.74 13.6 ± 1.47

Ge 13.5 ± 4.5 14.1 ± 4.36 0.45 ± 0.55 0.33 ± 0.51 13.5 ± 1.60 13.5 ± 1.37

tables. Using the calculated feature values, we examined

the effects of lateralization, sex, handedness and tasks on

the features. A, F, M, RH and LH denote “all participants”,

“female participants”, “male participants”, “right-handed

participants” and “left-handed participants,” respectively.

Time features

Table 3 presents time feature values for all participants

in the raw and the envelope signals while Table 4 shows

significant results in time domain concerning the handed-

ness and sex effects in time domain.

No significant statistical difference was established for

raw CBFV signals. On the opposite side, a few meaningful

results were detected between sex on the envelope signals.

Male subjects had higher skewness than female partici-

pants in R-ACA signals during resting-state (p = 0.01)

and during verbal challenge (p = 0.02). A rise of skew-

ness was noticed on the left ACA signals in the case of

men during geometric task (p = 0.02). Additionally, larger

kurtosis was observed for men on the R-ACA during the

45-seconds resting period (p = 0.03).

Information-theoretic features

A summary of information-theoretic feature values and

statistical differences (handedness and sex effects) in

information-theoretic approach are presented in Tables 5

and 6 for the raw and the envelope signals.

Multiple comparison test revealed significant results on

LZC between sex on the envelope signals during resting

periods and during word-generation challenges. Female

had higher LZC in the R-ACA and the L-ACA signals

during both periods (p < 0.05).

Frequency-domain features

Tables 7 and 8 present frequency feature values and signif-

icant results (handedness and sex effects) in the raw and

the envelope signals.

Meaningful results were only noticed on sex in raw

CBFV signals. The spectral centroid of raw R-ACA CBFV

signals increased in the case of women during cognitive

challenges and 45-seconds resting period (p < 0.02).

Moreover, the bandwidth values of R-ACA was larger

from female results during rest/verbal/geometric pro-

cesses (p < 0.05).

Time-frequency features

Table 9, Fig. 3 and Fig. 4 present the wavelet entropy

values and the feature values of wavelet energy decompo-

sition for raw and the envelope signals. Table 10 shows

significant results for both signals (handedness and sex

effects).

The multiple comparison test revealed signal informa-

tion in time-frequency domain. Sex had effects on R-

ACA and L-ACA raw signals. The relative energy d10
of R-ACA outcomes increased in the case of women

during resting state and during mental processes (p <

0.02), while decreasing in R-ACA and L-ACA d7 in the

case of women during rest periods and cognitive tasks

(p < 0.04). For envelope results, cognitive challenges

had some impact on R-ACA and L-ACA envelope signals

in comparison with the baseline results, i.e. 45-seconds

resting periods. A lower wavelet entropy was high-

lighted on both sides of ACA during cognitive processes

(p < 0.04).

On the other hand, 94 % of energy were concentrated

around the approximation band a10 for the envelope sig-

nals. Therefore, for these signals, we only considered the

a10 level. Statistical differences in R-ACA and L-ACA a10
were noticed: the mental periods showed larger a10 than

rest periods (p < 0.02).

Table 8 Significant frequency features from raw (denoted by the
subscript r) and envelope (denoted by the subscript e) CBFV
signals where p < 0.05

Signal ACA Feature Group Group 1 Group 2

r R-ACA Spectral Centroid R M: 855 ± 198 F: 1090 ± 225

r R-ACA Spectral Centroid W M: 913 ± 204 F: 1060 ± 181

r R-ACA Spectral Centroid G M: 896 ± 203 F: 1066 ± 192

r R-ACA Bandwidth R M: 641 ± 107 F: 734 ± 118

r R-ACA Bandwidth W M: 675 ± 137 F: 763 ± 139

r R-ACA Bandwidth G M: 665 ± 141 F: 760 ± 138
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Table 9 Wavelet entropy values for raw and envelope CBFV
signals

RAW ENVELOPE

R-ACA L-ACA R-ACA L-ACA

Wavelet entropy R 2.10 ± 0.23 2.12 ± 0.25 0.50 ± 0.19 0.47 ± 0.17

W 2.07 ± 0.17 2.10 ± 0.22 0.39 ± 0.17 0.36 ± 0.16

G 2.07 ± 0.19 2.12 ± 0.26 0.40 ± 0.18 0.35 ± 0.13

Comparison between raw and envelope signals

Results demonstrated differences between raw signals and

envelope signals and showed low p-values except for

results in Table 11.

Discussion

Raw and envelope signals were significantly different as

demonstrated by the features describing their probabil-

ity density functions. No effect of handedness was found

on time domain features while the sex effects were exhib-

ited on the R-ACA and L-ACA raw and envelope sig-

nals. Higher kurtosis proved that the CBFV variations

are grouped around one value [75], while larger skewness

highlighted higher signal assymetry [53]. R-ACA envelope

signals from female participants seemed more dispersive

andmore symmetrical than frommale subjects during the

rest and verbal periods. Hence, the cerebral blood flow

changed with a wider range in females than in males dur-

ing resting-state and word-generation processes on the

right side of ACA.

Time-domain outcomes did not reveal differences

between signal characteristics during resting-state peri-

ods and during mental challenges. For example, the cross-

correlation value was close to zero for raw signals implying

low signal dependence in the time domain. Previous stud-

ies highlighted the dependence of signals between the two

sides of MCA and the evolution of blood flow velocity

during cognitive processes. Lateralization was introduced

during the geometric task and the word-generation task.

It was shown that there was a hemispheric lateralization

due to an increase of the cerebral blood flow velocity

during cognitive tasks [32, 33, 35]. The geometric task

led to a dominance of R-MCA while the verbal task

results in a dominance of L-MCA. Moreover, the cere-

bral blood flow in MCA is closely linked to the flow in

ACA. Thus, an identical hemispheric dominance should

be identified using results fromACA. Changes in the ACA

blood flow and the possible lateralization observed in the

flow can be explained by the changes in the MCA blood

flow while performing cognitive processes. Nonethe-

less, time domain results from the current ACA study

did not confirm cerebral lateralization during mental

challenges.

Raw signals and envelope signals showed distinct cere-

bral blood flow characteristics which demonstrated the

significance of extraction of envelope signals and preser-

vation of raw signals from a statistical point of view.

The envelope signals also had higher standard devi-

ation and skewness than the raw signals. Raw sig-

nals centralized information around a value because

of lower skewness and standard deviation. However,

envelope signals exhibited higher cross-correlation val-

ues (CC > 0.89) than raw signals which proved that

there was a low dependence on raw signals in the time

domain.

When considering the information theoretic domain,

sex effects were observed on randomness and complexity

of the envelope signals. In fact, the Lempel-Ziv complexity

exhibited differences between men and women. Right-

sided and left-sided envelope signals from women were

more complex than signals from men during resting-state

period and word-generation processes. Rest periods and

verbal tasks implied that the left and right ACA blood

flow speed was distinguishable between men and women.

Indeed, the envelope signals vary with higher fluctuations

in the case of women.

Fig. 3 The 10th level wavelet decomposition of raw signals
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Fig. 4 The 10th level wavelet decomposition of envelope signals

In the frequency domain, raw signals exhibited higher

frequency characteristics than envelope signals. As a mat-

ter of fact, envelope signals revealed a low-pass structure,

while the raw signals presented a band-pass structure.

When differentiating sex effects, spectral centroid fre-

quencies and bandwidth of R-ACA raw signals from

female participants had higher values than those from

men during the geometric task. This finding implied an

increase of right-sided blood flow above baseline was

more pronounced for women than for men during geo-

metric tasks. Sex differences during mental stimuli have

beenwidely studied, particularly during spatial challenges.

Previous publications underlined distinct hemispheric

dominance seen in women and in men [40, 76, 77].

Women revealed activation of other right brain regions

during geometric tasks [76]. It could be explained by two

distinct strategies of task solving/the anatomical brain

structure/sex hormones [78–81]. A rise of centroid fre-

quency was also noticed during the resting-state and

verbal tasks. It appeared that female subjects showed a

Table 10 Significant time-frequency features from raw (denoted
by the subscript r) and envelope (denoted by the subscript e)
CBFV signals where p < 0.05

Signal ACA Feature Group Group 1 Group 2

r R-ACA �d10 R M: 6.92 ± 3.08 F: 11.4 ± 4.71

r R-ACA �d10 W M: 8.23 ± 4.05 F: 11.7 ± 3.25

r R-ACA �d10 G M: 7.90 ± 4.09 F: 11.7 ± 3.35

r R-ACA �d7 R M: 32.9 ± 12.0 F: 19.1 ± 8.02

r L-ACA �d7 R M: 30.3 ± 12.5 F: 21.2 ± 9.08

r R-ACA �d7 W M: 29.8 ± 12.2 F: 22.4 ± 9.73

r L-ACA �d7 W M: 29.7 ± 11.2 F: 22.1 ± 9.64

r R-ACA �d7 G M: 30.4 ± 12.7 F: 21.9 ± 9.97

r L-ACA �d7 G M: 29.5 ± 11.4 F: 21.8 ± 10.2

higher right-sided CBFV baseline. These distinct baseline

metabolisms may be caused by emotional brain responses

(i.e. sex hormones) or by anatomical brain differences

[79–82]. The frequency domain analysis did not indicate

the existence of handedness-based difference.

From the time-frequency point of view, lower wavelet

entropy values highlighted that right-sided and left-sided

envelope signals were more ordered during cognitive peri-

ods than during 45-second resting-state periods. In addi-

tion, the rise of wavelet energy a10 proved that cognitive

tasks led to modifications of CBFV signals comparing to

resting state. Time-frequency outcomes did not expose

major changes into brain functioning during mental tasks.

We did not observe neither handedness nor sex effects

on a10 values for R-ACA and L-ACA raw and envelope

signals.

The uneven small number of subjects in each group

may also be important limitation in the outcomes about

the sex effects (i.e. 20 subjects) and handedness effects

on brain response (i.e. 16 right-handed and 3 left-handed

subjects). Therefore, the results obtained after analyz-

ing comparisons between right and left-handed subjects

and between male and female participants are not as

pronounced. Given the low number of ambidextrous

Table 11 Absence of statistical difference between raw and
envelope CBFV signals where p > 0.06

Multiple
Rest periods Verbal tasks Geometric tasks

R-ACA L-ACA R-ACA L-ACA R-ACA L-ACA

Kurtosis A, F A, M, F F A, M, F A, M, F A, M, F

LZC F A, M, F F A, M, F A, M, F A, M, F

�d5 M, F M A, M, F M A, M, F M

�d4 A A A

�d2 M M M M

�d1 A, M, F A, M, F A, M, F A, M, F A, M, F M, F
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participants (i.e. 1 ambidextrous subject), we examined

the significant p-values between right and left-handed

participants.

Conclusions

In this study, the evolution of the cerebral blood flow

velocities in left and right ACA was investigated during

three different tasks: a mental rotation task, a word gen-

eration task and resting periods between cognitive tasks.

Characteristics of the raw signals and the envelope sig-

nals were analyzed in time, frequency, and time-frequency

domains. Significant results have been obtained through

the use of both classic/modern methods (i.e. enve-

lope/raw, time and frequency/information-theoretic and

time-frequency domains). The time and the information-

theoretic results underlined modifications of shape dis-

tribution and randomness. The acquired data in the fre-

quency domain presented a low-pass characteristic in the

case of envelope signals while the raw signals presented

band-pass characteristics. In the time-frequency analy-

sis, the distribution of wavelet energies for the envelope

signals was around the low frequencies during cognitive

activities. Finally, differences were obtained for the raw

and envelope signals based on sex effects. Distinct hemi-

spheric functioning between men and women was high-

lighted during each process. A few significant statistical

differences demonstrated the different brain response.
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