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ABSTRACT

The fragmentation of strategies that distinguishes the more

successful elementary grade students from those least successful has been

documented previously. This study investigated whether this phenomenon of

divergence and fragmentation of strategies would occur among undergraduate

students enrolled in a remedial algebra course. Twenty-six undergraduate

students enrolled in a remedial algebra course used a reform curriculum, with

the concept of function as an organizing lens and graphing calculators during

the 1997 fall semester. These students could be characterized as "victims of

the proceptual divide," constrained by inflexible strategies and by prior

procedural learning and/or teaching. In addition to investigating whether

divergence and fragmentation of strategies would occur among a population

assumed to be relatively homogeneous, the other major focus of this study was

to investigate whether students who are more successful construct, organize,

and restructure knowledge in ways that are qualitatively different from the

processes utilized by those who are least successful. It was assumed that,

though these cognitive structures are not directly knowable, it would be

possible to document the ways in which students construct knowledge and

reorganize their existing cognitive structures. Data reported in this study

were interpreted within a multi-dimensional framework based on cognitive,

sociocultural, and biological theories of conceptual development, using

selected insights representative of the overall results of the broad data

collection. In an effort to minimize the extent of researcher inferences

concerning cognitive processes and to support the validity of the findings,

several types of triangulation were used, including data, method, and

theoretical triangulation. Profiles of the students characterized as most

successful and least successful were developed. Analyses of the triangulated

data revealed a divergence in performance and qualitatively different

strategies used by students who were most successful compared with students

who were least successful. The most successful students demonstrated

significant improvement and growth in their ability to think flexibly to

interpret ambiguous notation, switch their train of thought from a direct

process to the reverse process, and to translate among various

representations. They also curtailed their reasoning in a relatively short

period of time. Students who were least successful showed little, if any,

improvement during the semester. They demonstrated less flexible strategies,

few changes in attitudes, and almost no difference in their choice of tools.

Despite many opportunities for additional practice, the least successful were

unable to reconstruct previously learned inappropriate schemas. Students'

concept maps and schematic diagrams of those maps revealed that most

successful students organized the bits and pieces of new knowledge into a
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basic cognitive structure that remained relatively stable over time. New

knowledge was assimilated into or added onto this basic structure, which

gradually increased in complexity and richness. Students who are least

successful constructed cognitive structures which were subsequently replaced

by new, differently organized structures which lacked complexity and

essential linkages to other related concepts and procedures. The bits and

pieces of knowledge previously assembled were generally discarded and

replaced with new bits and pieces in a new, differently organized structure.
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Summary

The fragmentation of strategies that distinguishes the more successful elemen-

tary grade students from those least successful has been documented previously. This

study investigated whether this phenomenon of divergence and fragmentation of strat-

egies would occur among undergraduate students enrolled in a remedial algebra
course. Twenty-six undergraduate students enrolled in a remedial algebra course used

a reform curriculum, with the concept of function as an organizing lens and graphing

calculators during the 1997 fall semester. These students could be characterized as
"victims of the proceptual divide," constrained by inflexible strategies and by prior
procedural learning and/or teaching. In addition to investigating whether divergence

and fragmentation of strategies would occur among a population assumed to be rela-

tively homogeneous, the other major focus of this study was to investigate whether stu-

dents who are more successful construct, organize, and restructure knowledge in ways

that are qualitatively different from the processes utilized by those who are least suc-

cessful. It was assumed that, though these cognitive structures are not directly know-

able, it would be possible to document the ways in which students construct
knowledge and reorganize their existing cognitive structures.

Data reported in this study were interpreted within a multi-dimensional frame-

work based on cognitive, sociocultural, and biological theories of conceptual develop-

ment, using selected insights representative of the overall results of the broad data
collection. In an effort to minimize the extent of researcher inferences concerning cog-

nitive processes and to support the validity of the findings, several types of triangula-

tion were used, including data, method, and theoretical triangulation. Profiles of the
students characterized as most successful and least successful were developed. Analy-

ses of the triangulated data revealed a divergence in performance and qualitatively dif-

ferent strategies used by students who were most successful compared with students
who were least successful.

The most successful students demonstrated significant improvement and
growth in their ability to think flexibly to interpret ambiguous notation, switch their

train of thought from a direct process to the reverse process, and to translate among

various representations. They also curtailed their reasoning in a relatively short period

of time. Students who were least successful showed little, if any, improvement during

the semester. They demonstrated less flexible strategies, few changes in attitudes, and

almost no difference in their choice of tools. Despite many opportunities for additional

practice, the least successful were unable to reconstruct previously learned inappropri-

ate schemas. Students' concept maps and schematic diagrams of those maps revealed

that most successful students organized the bits and pieces of new knowledge into a
basic cognitive structure that remained relatively stable over time. New knowledge

was assimilated into or added onto this basic structure, which gradually increased in

complexity and richness. Students who are least successful constructed cognitive
structures which were subsequently replaced by new, differently organized structures

which lacked complexity and essential linkages to other related concepts and proce-

dures. The bits and pieces of knowledge previously assembled were generally dis-
carded and replaced with new bits and pieces in a new, differently organized structure.



CHAPTER 1 Thesis Overview

Say something to us we can learn

By heart and when alone repeat.

Say something!...

Use language we can comprehend.

Tell us what elements you blend...

Robert Frost, Choose Something Like a Star

1.1 Introduction

There is a group of students who have not been the subject of much research to

date, those who enroll in undergraduate institutions under-prepared for college level

mathematics course work. Remedial (also referred to as "developmental") courses at

U.S. colleges and universities are a filter which blocks many students from attaining

their educational goals. These students pay college tuition for courses they have taken

previously in high school and which do not count for credit towards graduation at most

colleges and universities. These courses move along at a pace which many students

find impossible to maintain. During each term and in each course, some students suc-

ceed, others fail. Dropout rates as high as 50% in the traditional developmental courses

have been cited [Hi llel, et. al., 1992]. Already over-taxed algebraic skills, combined

with time constraints due to unrealistic commitments of full-time enrollment (12

semester hours) and 15 or more hours of outside employment per week on the part of

many of these students doom them to yet another unsuccessful mathematical experi-

ence. Historically, at the community college of this study, less than 15% of students

who initially enroll in a traditional introductory algebra course complete a mathemat-

ics course that satisfies general education graduation and/or transfer requirements

within four semesters of their enrollment in the developmental program [Mc Gowen,

DeMarois, and Bernett, 1995].

1.2 Background and Statement of the Problem

For the most part, students who enroll in the developmental courses could be

characterized as victims of "the proceptual divide" described by Gray and Tall [1994].

These students have experienced mathematics which "places too great a cognitive

14



Thesis Overview Background and Statement of the Problem

strain, either through failure to compress (knowledge) or failure to make appropriate

links." They have resorted to the "more primitive method of routinizing sequences of

activitiesrote learning of procedural knowledge" [Tall, 1994, p 6].

It is not uncommon for the students enrolled in undergraduate remedial mathe-

matics courses to be left with feelings of failure and a belief that mathematics is irrelevant.

For these students, mathematics inspires fear, not awe, discouragement, not jubilation,

and a sense of hopelessness, not amazement. Why is it that mathematics proves to be

so difficult for so many students who attempt rigorous mathematics courses and that

they do not succeed? Even many of those who complete three or four years of "rigor-

ous" high school mathematics are unsuccessful in subsequent college-level mathemat-

ics coursesonly 27 percent of students who enroll in college complete four years,

despite the fact that 68 percent of incoming freshman at four-year colleges and univer-

sities had taken four years of mathematics in high school [National Center for Educa-

tion Statistics, 1997].

Many parents, students, and instructors of mathematics believe that there are

students "who cannot do mathematics." At a time when our classes increasingly are

filled with students that many dismiss as incapable of learning mathematics, we are

reminded of Krutetskii's perspective. Thirty-six years ago, in a book for parents,

Krutetskii wrote in support of the case of mathematics for all:

...generally speaking, the discussion cannot be about the absence of any abil-

ity in mathematics, but must be about the lack of development of this abil-

ity...Absolute incapability in mathematics (a sort of "mathematical

blindness") does not exist... [Krutetskii, 1969a, Vol. II, p. 122].

His description of children's difficulties in learning mathematics also describes the

undergraduate students enrolled in developmental algebra courses and the reasons why

they are in our remedial courses. He reminds us:

Don't make a hasty conclusion about the incapacity of children in mathemat-

ics on the basis of the fact that they are not successful in this subject.

First,...clarify the reason for their lack of success. In the majority of cases, it

turns out to be not lack of talent, but a deficiency of knowledge, laziness, a

negative attitude toward mathematics, the absence of interest in mathematics,

conflict with the teacher, or some other reason, having little to do with ability.

Success in removing these causes may bring about great success on the part of

the student in mathematics. A common reason for apparent "incapability" in

the study of mathematics is that the student does not believe in his abilities as

. 15



Thesis Overview What skills, when, and for whom?

a result of a series of failures [Ibid., p. 122].

The failure to develop various components of the structure of mathematical

abilities identified by Krutetskii are also causes of students' lack of success in addition

to the reasons cited. These include the failure to:

think flexibly;

develop conceptual links between and among related concepts;

curtail reasoning;

generalize;

modify improper stereotyped learning strategies.

I would add the following which the results of this study suggest underlie and contrib-

ute to students' lack of success, in addition to those already cited:

the qualitatively different ways of constructing and organizing new
knowledge and the restructuring of existing cognitive structures;

inadequate categorization and information-processing skills.

1.3 What skills, when, and for whom?

For many instructors whose teaching responsibilities include large numbers of

these students, the question of "What mathematics, when, and for whom?" is the sub-

ject of much concern in recent years and is increasingly in need of a response from the

mathematics community. Many students do not have as their objective the develop-

ment of advanced mathematical thinking [e.g in the sense of Tall, 1991a], particularly

those who are enrolled in undergraduate developmental mathematics programs. Cer-

tainly, for those students who intend to enroll in courses in which they are expected to

make the transition to advanced mathematical thinking, a necessary prerequisite is the

development of an object-oriented perspective and a high level of manipulative com-

petency [Beth and Piaget, 1966; Dubinsky, 1991; Breidenbach et al., 1992; Cottrill et

al., 1996; Sfard, 1995, 1992; Sfard & Linchevski, 1994; Cuoco, 1994; Tall, 1995a].

Undergraduate calculus enrollment in the U.S. has declined 20% in the past

five years and increased enrollments in relatively the same percentages in statistics and

teacher preparation courses have been reported [Loftsgaarden, et al., 1997]. Given
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Thesis Overview What skills, when, and for whom?

these facts, how appropriately is the present curriculum aligned with the needs of our

students? To what degree is the development of an object-oriented perspective neces-

sary for those students who do not have as their goal advanced mathematical thinking;

who do not intend to enroll in the calculus course sequence appropriate for future engi-

neers, for those intending to major in mathematics, and for others who need math-

intensive programs?

1.3.1 A "Splintered Vision"

Competing visions of what mathematics students should learn have polarized

mathematics practitioners and educators, students, their parents, and the community at

large. Robert Davis described the position in which we trap students: "There is at

present a tug of war going on in education between a 'drill and practice and back to

basics' orientation that focuses primarily on memorizing mathematics as meaningless

rote algorithms vs. an approach based upon understanding and making creative use of

mathematics" [Davis, 1996, personal communication].

These conflicting beliefs and practices were recently cited and the current U.S.

mathematics curriculum described as unfocused, "a splintered vision" [Beaton, et. al.,

1997]. They are reflected in our mathematics curricular intentions, textbooks, and

teacher practices. In comparison to other countries, the U.S. "adds many topics to its

mathematics and science curriculum at early grades and tends to keep them in the cur-

riculum longer than other countries do. The result is a curriculum that superficially

covers the same topics year after yeara breadth rather than a depth approach." Does

this current splintered vision of mathematics really serve the best interests of mathe-

maticians, teachers, students, and the public?

A need for a different vision was argued by Whitehead, who offered the fol-

lowing scathing indictment of algebra as traditionally taught in many classrooms:

Elementary mathematics... must be purged of every element which can only

be justified by reference to a more prolonged course of study. There can be

nothing more destructive of true education than to spend long hours in the

acquirement of ideas and methods that lead nowhere....[The] elements of

mathematics should be treated as the study of fundamental ideas, the impor-

tance of which the student can immediately appreciate;...every proposition

and method which cannot pass this test, however important for a more

advance study, should be ruthlessly cut out. The solution I am urging is to

eradicate the fatal disconnection of topics which kills the vitality of our mod-
_
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ern curriculum. There is only one subject matter, and that is Life in all its

manifestations. Instead of this single unity, we offer children Algebra, from

which nothing follows...

Alfred North Whitehead, 1957

The different vision of Algebra called for by Whitehead is still a subject of con-

tention and debate more than sixty years later. Algebra, as envisioned by the U.S.

Department of Education, is an essential component of the school curriculum, not a

subject which should be eliminated from the curriculum. Recent papers presented at

the Algebra Initiative Colloquium set forth principles to guide algebra reform:

Algebra must be part of a larger curriculum that involves creating, rep-

resenting, understanding, and applying quantitative relationships.

The algebra curriculum should be organized around the concept of
function (expressed as patterns and regularity).

New modes of representation need to complement the traditional
numerical and symbolic forms.

Algebraic thinking, which embodies the construction and representa-
tion of patterns and regularities, deliberate generalization, and most
important, active exploration and conjecture, must be reflected through-

out the curriculum across many grade levels.

The Algebra Initiative Colloquium, 1995

Though the National Council of Teachers of Mathematics proposes the standard

"Algebra for All," the NCTM Curriculum and Evaluation Standards [1989] fail to clar-

ify what algebra concepts and skills all students should be expected to learn. What do

we really mean by "Algebra for All?" In our efforts to make mathematics accessible

and attractive to a large number of students, are we, as Al Cuoco worries, "changing

the very definition of mathematics?" [Cuoco, 1995].

Terms whose meanings were once commonly understood by those engaged in

the practices of mathematics now have different meanings and serve as flashpoints for

increasingly vehement discourse. Dialogue based on a common language and defini-

tions has become extremely difficult. As Humpty Dumpty pointed out to Alice in

Through the Looking Glass: "You see, it's like a portmanteauthere are two meanings

packed up into one word." In the absence of mutually agreed-to definitions and
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accepted meanings, the debate continues among those who favor a "return to basics"

and those who are attempting to implement reforms into the teaching and learning of

school mathematics, with increasingly high costs for all. Our vision has not only

become fragmented, but clouded by emotion. Witness the on-going saga in California

where efforts to establish a set of statewide mathematics standards have generated con-

tentious debate and vehemence on both sides. In, 1997, the California State Board of

Education revised the K-7 mathematics standards their own appointed commission

had worked more than a year to develop. At the heart of the debate is how much

emphasis to put on fundamentals such as memorizing multiplication tables and formu-

las. Appointed Standards commissioners, along with those who support reform initia-

tives argue that the State Board revisions shifts the focus to a back-to-basics

computational approach.

The U.S. government strongly supports the idea of "Algebra for All." Several

recent papers written by staff of the U.S. Department of Education and by U.S. Secre-

tary of Education Richard Riley advocate taking more mathematics courses in high

school [National Center for Education Statistics (NCES), 1997]. These documents

offer evidence to support the claim that U.S. students wait too long to take Algebra.

The assumption that algebra is the key to well-paying jobs and a competitive work

force however is challenged by many who claim they succeeded without needing to

take Algebra. It requires greater efforts on the part of mathematically-knowledgeable

observers to support this assertion with more data and to disseminate the results to the

public, as well as to those who teach mathematics in classrooms.

The extent to which problem-solving skills and the use of symbols to mathe-

matize situations are recognized in the workplace frequently go unnoticed by employ-

ers as well as by employees [National Center for Education Statistics, 1997]. School

mathematics, and algebra in particular, are seen by many as irrelevant, except as a bar-

rier to be gotten past and then forgotten. We urgently need to address the question:

What mathematics do we want students to learn? A clearer understanding of the differ-

ences and needs of the individual students in our classes must be taken into account in

our curricular design and instructional practices. Current practices result in our "build-

ing Alban houses with windows shut down so close" some students' spirits cannot see

[Dickinson, 1950].

19



Thesis Overview Theoretical framework

1.3.2 Flexible Thinking: Interpreting Mathematical Notation

The difficulty facing instructors of remedial undergraduate courses is that of

clarifying the reasons for the student's previous lack of success and identifying what

precisely is lacking in an individual student's development. Preliminary studies con-

firmed that one of the difficulties students experience in developmental algebra courses

is that of interpreting mathematical notation. They have not learned to distinguish the

subtle differences symbols play in the context of various mathematical expressions.

What do students think about when they encounter function notation, the minus sym-

bol, or other ambiguous mathematical notation? What are they prepared to notice?

1.4 Theoretical framework

This research is situated within the theoretical framework of current research

that suggests that the development of new knowledge begins with perception of

objects in our physical environment and/or actions upon those objects [Piaget, 1972;

Skemp, 1971, 1987; Davis, 1984; Dubinsky & Harel, 1992; Sfard, 1991, Sfard &

Linchevski, 1994; Tall, 1995a]. Perceptions of objects leads to classification, first into

collections, then into networks of local hierarchies. Actions on objects lead to the use

of symbols both as processes to do things and as concepts to think about. The notion

of procept, i.e., "symbolism that inherently represents the amalgam of process/concept

ambiguity" was hypothesized by Gray and Tall to explain the divergence and qualita-

tively different kind of mathematical thought evidenced by more able thinkers com-

pared to the less able [Gray and Tall, 1991a, p. 116].

1.5 Thesis

It is hypothesized that (i) divergence and fragmentation of strategies occur

between students of a undergraduate population of students who have demonstrated a

lack of competence and/or failure in their previous mathematics courses. In order to

explain why this phenomenon occurs, it is also hypothesized that (ii) successful stu-

dents construct, organize, and reconstruct their knowledge in ways that are qualita-

tively different from those of students least successful and that how knowledge is

structured and organized determines the extent to which a student is able to think flex-

ibly and make appropriate connections. The inability to think flexibly leads to a frag-
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mentation in students' strategies with resulting divergence between those who succeed

and those who do not. These processes of construction, organization, and reconstruc-

tion are constrained by a student's initial perception(s) and the categorization of those

perceptions which cue selection and retrieval of a schema that directs subsequent

actions and thoughts.

1.6 Research questions

A divergence of performance and fragmentation of strategies in elementary

grade classrooms have been reported in Russian studies [Krutetskii, 1976, 1969a,

1969b, 1969c, 1969d; Dubrovina, 1992a, 1992b; and Shapiro, 1992] and in the studies

of Gray and Tall [1994, 1993, 1992, 1991b, 1991c], and Gray, Tall, and Pitta [1997].

This study investigated the nature of the processes of knowledge construction, organi-

zation, and reconstruction and the consequences of these processes for undergraduate

students enrolled in a remedial algebra course. Strategies students employed in their

efforts to interpret and use ambiguous mathematical notation and their ability to trans-

late among various representational forms of functions were also subjects of study.

Given a population of undergraduate students who have already demonstrated a lack of

competence or failure previously, the main research questions addressed are:

does divergence and fragmentation of strategies occur among under-
graduate students enrolled in a remedial algebra course who have previ-

ously been unsuccessful in mathematics?

do students who are more successful construct, organize, and restruc-
ture knowledge in ways that are qualitatively different from the proc-

esses utilized by those who are least successful?

Related questions addressed students' ability to think flexibly, recognize the

role of context when interpreting ambiguous notation, and develop greater confidence

and a more positive attitude towards mathematics. The study examined whether stu-

dents classified as 'less able' and/or 'remedial,' could, with suitable curriculum:

demonstrate improved capabilities in dealing flexibly and consistently

with ambiguous notation and various representations of functions?

develop greater confidence and a more positive attitude towards mathe-

matics?
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1.7 Design and Methodology

One aim of this research was to extend the classroom teaching experiment

[Steffe & Cobb, 1988; Steffe, von Glaserfeld, Richards and Cobb, 1983; Confrey,

1995, 1993, 1992; Thompson, 1996; 1995] to students at undergraduate institutions

enrolled in a non-credit remedial algebra course. This course is prerequisite for the

vast majority of U.S. college mathematics courses. The subjects of study were twenty-

six students enrolled at a suburban community college in the Intermediate Algebra

course. A reform curriculum was used, with a process-oriented functional approach

which integrated the use of graphing calculator technology.

Research for this dissertation included two preliminary studies: a broad-based

field study (n = 237) and a classroom-based study (n = 18) at the Chicago northwest

suburban community college which was also the site of the main study. The quantita-

tive field study was undertaken in order to develop a profile of undergraduate remedial

students and to characterize some of the prior variables they bring to the course, such

as their attitudes and beliefs. Classroom-based preliminary studies were conducted so

that a local student profile could be developed and prior variables identified, which

could be compared with those of the broader-based field study. A preliminary class-

room-based qualitative study also investigated students' ability to deal with ambiguous

mathematical notation.

The main study (n=23) included both quantitative and qualitative components.

Data was collected which focused on two groups of extremes: the most successful and

least successful students of those who participated in the study. Students' concept

maps, i.e., external visual representations of a student's internal conceptual structures

at a given moment in time, were used to document the processes by which the most

successful and least successful students construct, organize, and reconstruct their

knowledge and to provide evidence of how students integrate new concepts and skills

into their existing conceptual frameworks. They also reveal the presence of inappropri-

ate concept images (in the sense of Tall and Vinner, 1981) and connections.

The accumulated data reported in this study was interpreted within a multi-

dimensional framework based on cognitive, sociocultural, and biological theories of

conceptual development, using selected insights representative of the overall results of

the broad data collection of this research. In an effort to minimize the extent of
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researcher inferences concerning cognitive processes and to support the validity of the

findings several types of triangulation were used, including data, method, and theoreti-

cal triangulation [Bannister et. al., 1996, p. 147]. Profiles of the students characterized

as most successful and least successful were developed based on analysis and interpre-

tation of the triangulated data.

1.8 General Conclusions

The most successful students construct and organize new knowledge and

restructure their existing conceptual structures in ways that are qualitatively different

from those of the least successful students. The divergence and fragmentation of strat-

egies over time of undergraduate remedial students were documented, both quantita-

tively and qualitatively. Qualitative differences were found that suggest that the most

successful students:

experienced growth in understanding and in competence to a far greater

extent than did the least successful, who experienced almost no growth

in understanding or improvement in their mathematical abilities.

constructed and organized new knowledge into a basic cognitive struc-

ture that remained relatively stable over time.

assimilated new bits and pieces of knowledge into this basic structure,

generally enriching the existing structure(s) and by accommodation
which resulted in a restructuring of existing cognitive structures over
time.

focused on qualitatively different features of perceived representations

than did the least successful students.

used classification schemes which were qualitatively different from
those used by the least successful students.

improved in their ability to deal flexibly with the ambiguity of notation.

improved in their ability to translate among various representations of

functions during the semester.

improved in their ability to reverse their train of thought from a direct

process to its reverse process.

demonstrated an ability to curtail reasoning in a relatively short period

of time.
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exhibited a consistency of performance in handling a variety of concep-

tual and procedural tasks stated in several different formats and con-

texts, using various representational forms.

were able to demonstrate they had developed relational understanding,

i.e., they were able to make connections with an existing schema which

resulted in a changed mental state which gave them a degree of control

over the situation not previously demonstrated, accompanied by a
change in feeling from insecurity to confidence.

Least successful students, on the other hand

replaced their existing cognitive structures with new structures. They
retained few, if any of the bits and pieces of knowledge previously
assembled in the new, differently organized structure.

were constrained by their inefficient ways of structuring their knowl-
edge and inflexible thinking. Caught in a procedural system in which

they were faced with increasingly more complex procedures, they
increasingly experienced frustration and cognitive overload.

demonstrated a lack of appropriate connections which contributed to
their inability to flexibility recall and select appropriate procedures,
even when they had these procedures available to them.

were unable to curtail their reasoning within the time span of the
semester in many instances.

were inconsistent in handling a variety of conceptual and procedural
tasks stated in several different formats and contexts, using various rep-

resentational forms.

Other findings indicate that:

the initial focus of attention cues the selection of different cognitive
units and retrieval of different schemas by the two groups of students of

the extremes.

there were generally positive changes in nearly all students' beliefs
about their ability to interpret mathematical notation, interpret and ana-

lyze data, and to solve a problem not seen previously. There was also a

positive change in attitude about the use of the graphing calculator to
better understand the mathematics and in the willingness to attempt a

problem not seen previously.
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1.9 Thesis Organization

This thesis consists of nine chapters, a bibliography, and appendices.

Chapter 1 contains an overview of the thesis and includes: a brief introduction

and background description; a statement of the problem; a brief description of the the-

oretical framework on which the study is based; the thesis and the main research ques-

tions; an overview of the methodology and design of the study; and a summary of the

conclusions. This synopsis of the dissertation concludes the chapter.

Chapter 2 is a general literature review. The main research topics reviewed

include: the nature of cognitive structures and their organization; the processes of

knowledge construction; relevant theories of cognitive development, issues of repre-

sentation, and current issues of knowledge acquisition.

Chapter 3 describes the researcher's theoretical perspective and how this per-

spective is situated among past and current research. A theoretical model of the proc-

esses of knowledge construction is presented, situated among other major models

previously developed, together with the main theses and research questions. A ration-

ale for the use of concept maps and corresponding schematic diagrams as tools of

analysis to document the nature of students' processes of construction, assimilation,

and accommodation is presented.

Chapter 4 describes the methodology and key components of the methods used

to collect and analyze the data reported in this study. The methodology and methods

employed in this study are situated within the theoretical framework of constructivist

extended teaching experiments adapted to the study of undergraduate students enrolled

in a remedial Intermediate Algebra course.

Chapter 5 describes the preliminary studies. A description of the subjects of

the study, the instruments used, a summary of the data, and observations resulting

from the analysis of the data are presented. The preliminary studies include a broad-

based field study, a local, classroom-based quantitative study and a qualitative class-

room study which examined students' difficulties interpreting ambiguous notation and

in reconstructing their existing concept images. The chapter concludes with a sum-

mary of and conclusion about the findings of the preliminary studies. Modifications

made in the data collection instruments and methods of analysis prior to undertaking

the main study are described.
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Chapter 6 begins with an overview of the main study and statement of the first

thesis to be addressed. Quantitative and qualitative studies are described which exam-

ined the thesis:

Thesis I: Fragmentation of strategies and divergence of perform-
ance occur among undergraduate students enrolled in a remedial

algebra course who have previously been unsuccessful in mathe-
matics.

The research question related to this thesis is addressed:

Question I: Does a fragmentation of strategies and resulting divergence

of performance occur among students of an already stratified population

of undergraduate students who have previously been unsuccessful in
mathematics?

Two other questions related to this thesis are also addressed in Chapter 6. Do students

classified as 'less able' and/or 'remedial,' with suitable curriculum:

demonstrate improved capabilities in dealing flexibly and consistently

with ambiguous notation and various representations of functions?

develop greater confidence and a more positive attitude towards mathe-

matics?

Results of the main study quantitative surveys are reported and analyzed. They

are used to establish a student profile which includes identification of prior variables,

situating the findings of this study within the context of the field and preliminary stud-

ies. The results of the qualitative component which document the divergence and frag-

mentation of strategies that occurred during the semester between the two groups of

extremes (the most successful and the least successful) are presented. The findings are

interpreted, using the theoretical framework described in Chapter 3. Modifications of

the preliminary instruments prior to the main study which were described previously

in Chapter 5 are reviewed briefly, where appropriate.

Chapter 7 describes the qualitative component of the main study which investi-

gated the nature of students' processes of construction. Two students who are repre-

sentative of the extremes of the class of students who participated in the study are

profiled. For each of the two typical students, a brief description of the student's back-

ground is given, followed by an analysis of each student's mathematical growth during
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the semester. The divergence in performance and use of strategies are reported. The

second main thesis question is examined:

Thesis II: Successful students construct, organize, and reconstruct their

knowledge in ways that are qualitatively different from those of students

least successful. How students structure and organize knowledge deter-

mines the extent to which a student is able to think flexibly and make

appropriate connections. These processes of construction, organization,

and reconstruction are constrained by a student's initial perception(s) and

the categorization of those perceptions which cue selection and retrieval

of a schema that directs subsequent actions and thoughts.

Chapter 8 continues the examination of this thesis. The processes of knowl-

edge construction, organization and reconstruction of the two representative students

are analyzed. Data which suggests the extent to which these processes are constrained

by a student's initial perception(s) and the categorization of those perceptions are

reported and the second main research question is addressed:

Question II: Do successful students construct, organize, and recon-
struct their knowledge in ways that are qualitatively different from the

processes utilized by those least successful?

Concept maps constructed by students and the corresponding schematic diagrams pre-

pared by the researcher are presented, together with analyses of the data and are

offered as evidence in support of the thesis.

Chapter 9 summarizes the findings of the study and describes the researcher's

conclusions and reflections. An overview of other theoretical perspectives that hold

promise for informing on-going efforts in mathematics education research and suggest

possible new directions and frameworks for future studies is presented. Strengths and

weaknesses of the research design used in this study are also discussed.

A Bibliography of References and Appendices follow Chapter 9.
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CHAPTER 2 General Literature Review

Everything has been thought of before;

the task is to think of it again in ways

that are appropriate to one's current circumstances.

Attributed to Goethe

2.1 Introduction

Students who enroll in our undergraduate institutions under-prepared for col-

lege level mathematics course work have not been the subject of much research to

date. Most of the research on cognitive development has had as its focus students in

grades K-6 [Piaget, 1972; Steffe et. al., 1983; Davis, 1984; Gray, 1991; Gray & Tall,

1994] or students in grades 6-12 [Confrey, 1991, 1993; Davis, 1984; Sfard, 1991;

Kieran, 1993, 1992; Heid, 1989; Tall & Thomas, 1991; Thompson, 1994a]; or under-

graduate students enrolled in Calculus or other advanced mathematics courses [Dubin-

sky, 1991; Frid, 1994; Ferrini-Mundy & Graham, 1994; Tall, 1995, 1991c]. Students

enrolled in remedial programs constitute a substantial part of undergraduate enroll-

ment at many U.S. colleges and universities. Unfortunately, this population continues

to grow. The 1995 Conference Board of Mathematical Sciences [CBMS] Survey of

Undergraduate Programs [Loftsgaarden et al., 1997] reports that 800,000 students

studying mathematics in two-year college mathematics programs were enrolled in

developmental courses, (i.e., remedial courses: Arithmetic, Beginning Algebra, Inter-

mediate Algebra, Geometry). These students constitute 53% of total mathematics

enrollment, a 10% increase since the 1990 CBMS survey. At four-year colleges and

universities, 222,000 students were enrolled in undergraduate remedial mathematics

courses in 1995 (15% of the total undergraduate mathematics course enrollment).

Together, these populations constitute nearly one-third of the combined total of 3.2

million undergraduate mathematics course enrollments, a not insignificant portion of

the teaching load of many college mathematics departments.

This study focused on the conceptual development of undergraduates enrolled

in remedial algebra courses. Skemp's theory of intelligence [1971, 1987], Davis'

[1984] general theory of mathematical thinking, and Gray & Tall's [1994, 1991d]

notions ofprocent and proceptual divide were major influences in the development
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of the theoretical framework described in Chapter 3. These theories have a common

characteristic: they are all based on the belief that an individual's knowledge represen-

tations in the mind are characterized as structured and connected in some manner, not

merely a collection of isolated facts. These theories are reviewed, along with a number

of other theories which offer insights into how knowledge is represented in the mind.

Theorists who operate within this framework attempt to account for the experiential

aspect of cognition, focusing on cognition from the point of view of the cognizing sub-

ject.

Theories of cognitive development which influenced this study include those

which postulate a process-object construction of knowledge and the conceptual struc-

tures that result from these construction processes [Piaget, 1950; Dienes, 1960; Davis,

1975, 1984; Skemp, 1979; Greeno, 1983; Rumelhart & Norman, 1978, 1981; Dubin-

sky, 1991; Sfard, 1991, 1994; Gray and Tall, 1994; Tall, 1995]. Other literature rele-

vant to this thesis is also reviewed, including theories which do not reflect the

perspectives of those already cited, but rather reflect an evolutionary perspective of the

brain [Dehaene, 1997; Edelman, 1992]; theories of distributed intelligence [Pea,1993;

Salomon,1993]; epistemological pluralism [Papert & Turk le, 1992]; and socio-cultural

theories developed in the Vygotskian tradition, including those of Cobb, Bauersfeld, &

Yaekel [1995] and Lave [1988].

2.2 The Nature of Knowledge Construction and Representation

Current research suggests that the development of new knowledge begins with

perception of objects in our physical environment and/or actions upon those objects. In

the process of developing understanding, various knowledge representation structures

are created [Piaget, 1970]. The literature is replete with the use of terms such as con-

cept, concept image, and schemas to describe these conceptual structures. A concept

has been defined by Skemp as the end product of abstracting which requires for its for-

mation a number of experiences which have something in common [Skemp, 1987, p.

11]. Tall and Vinner introduced the term concept image to describe "the total cognitive

structure that is associated with the concept, which includes all the mental pictures and

associated properties and processes" [Tall & Vinner, 1981, p. 152]. Barnard & Tall

[1997] postulated the existence of cognitive units, pieces of cognitive structure that can
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be held in the focus of attention all at one time, in which inessential details are sup-

pressed to manageable levels by the multi-processing system of the brain. They argue

that these cognitive units can be expanded or compressed and refined into concept

images. The term schema generally is understood to mean concept images that are

refined and restructured into a more complex, stable structure [Skemp, 1971, 1987;

Tall & Vinner, 1981; Dubinsky, 1991; Tall, 1994, 1995; Thompson, 1994] or frames

that are retrievable when needed [Davis, 1984]. Skemp defined a schema as a concep-

tual structure with its own name that has, beyond the separate properties of its individ-

ual concepts, three functions: it integrates existing knowledge, it acts as a tool for

future learning and it makes possible understanding [Skemp, 1987, p. 24].

In a constructivist approach, students are assumed to construct their own con-

ceptual understandings as they participate in cultural practices, frequently while inter-

acting with others. A constructivist perspective holds that understandings are not built

up of received pieces of knowledge but are the products of previous acts of construc-

tion. The restructuring of previously built structures is synonymous with the Piagetian

notion of accommodation or conceptual change, a process which becomes the content

in subsequent constructions as knowledge is actively built up by the cognizing subject

[von Glaserfeld, 1989]. Ernest summarized this perspective when he wrote: "Knowing

is active, it is individual, and personal, and it is based on previously-constructed

knowledge" [Ernest, 1996, p. 338].

2.3 Conceptual Structures

What are the ways in which new knowledge is assembled, organized and

restructured? What might these processes of knowledge construction look like and

how do we recognize them? Are the bits and pieces of knowledge assembled into dif-

ferent cognitive structures for students who are successful compared with the cognitive

structures assembled by less able students? Since these questions have a direct bearing

on the present research, a review of the theories of Skemp, Davis, Gray and Tall, which

postulate conceptual structures together with the relationships hypothesized to exist

between these structures, provide a framework within which to interpret the data col-

lected in this study.
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Davis [1984, 1996] has argued for a postulated general theory of mathematical

thinking of how the human mind can deal with the wholeness of knowledge, and not

see everything as a large collection of very small pieces (in the way too many curricula

do). He postulated that "there has to be some sort of knowledge representation struc-

ture. One cannot think about a problem without some mental representation of the

problem, and one cannot make use of a piece of knowledge without some representa-

tion for that knowledge. One needs, then, a representation of the problem situation,

and a (separate) representation of relevant knowledge. The representation of the prob-

lem situation will often need to be built up gradually by successive approximations"

[Davis, 1984, p. 294]. He uses the term "assembly" as a technical term to describe how

a new piece of knowledge representation structure is built up using bits and pieces of

previously synthesized knowledge representation structures.

Davis believed that "when we know something we know it metaphorically....

We use a metaphor in order to represent some piece of knowledge within our own

minds. Quite apart from sharing any ideas with anyone else, we use metaphors within

our own minds in order to be able to think" [Davis, 1984, p. 178]. He thought of a

complex network of schemas, concept images, and cognitive units metaphorically as a

cognitive collage, uniquely and dynamically constructed over time as new knowledge

is added to and synthesized into one's existing network of knowledge representation

structures. In describing how a piece of knowledge is represented in the mind, he

wrote: "a single 'piece of knowledge' in the mind is, in fact, the cognitive equivalent of

a collage, a 'chunk' made up of bits and pieces that were lying around and available as

building material---with a little bit of added construction or adjustment where neces-

sary" [Davis, 1984, p 154].

Dorfler uses the terms "mind" and "cognition" interchangeably, which he

views metaphorically:

...as a kind of space that can contain something and that can be structured.

As the product of so-called cognitive or mental constructions in that men-

tal space, mental objects originate or are produced. These mental objects

then can be manipulated, transformed, combined, and so on with a kind

of mental operation. And, even more importantly, the mental objects are

representatives or replicas of so-called mathematical objects. This means

they have properties and behave as the mathematical objects do. [Dorf ler,

1996, p. 467].
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Knowledge conceived of as a connected web of local hierarchies has been

described metaphorically by other researchers. Hiebert & Carpenter are in agreement

with Davis's claim that, in order to think about mathematical ideas, they must be repre-

sented in some way internally [Hiebert & Carpenter, 1992; p. 66]. They hypothesized

that internal representations can be connected; these connections can only be inferred;

internal representations are influenced by external activity; and connections between

internal representations can be stimulated by connections that are constructed between

corresponding external representations. Once constructed, the relationships between

internal representations would produce networks of knowledge:

The notion of connected representations of knowledge...provides a useful

way to think about understanding mathematics...it provides a level of

analysis that makes contact with both theoretical cognitive issues and

practical educational issues; it generates a coherent framework for con-

necting a variety of issues in mathematics teaching and learning, and it

suggests interpretations of students' learning that help to explain their

successes and failures [Hiebert & Carpenter, 1992, p 67].

Like Davis, Hiebert and Carpenter use metaphors to think about and communi-

cate their ideas about networks of knowledge. Metaphorically, networks of connected

internal representations are structured in local hierarchies, with some representations

subsumed by other representations, with special cases examples of details and general-

izations the overarching representations. A network of internal representations of

knowledge is thought of as a spider web:

The junctures, or nodes, can be thought of as the pieces of represented

information, and the threads between them as the connections or relation-

ships. All nodes in the web are ultimately connected, making it possible

to travel between them by following established connections. Some

nodes, however, are connected more directly than others. The webs may

be very simple, resembling linear chains, or they may be extremely com-

plex, with many connections emanating from each node. [Hiebert & Car-

penter, 1992, p. 67].

This description suggests a familiarity with the notion of semantic nets, i.e.,

visual re-presentations of a student's internal representations and connections between

those representations. In some of the literature, semantic nets are also referred to as

cognitive maps, concept maps, or just simply, webs. In fact, Hiebert and Carpenter

acknowledge this familiarity, citing the extensive work on knowledge structures and
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semantic nets of Chi [1978]; Geeslin & Shavelson [1975]; Greeno [1978]; Leinhardt &

Smith [1985], and Quillian [1968]. The notion of semantic nets, or concept maps, is

reviewed in greater depth in Section 2.7.1.

Other researchers agree that internal representations of knowledge are struc-

tured, though they do not use metaphors to describe the organization of internal knowl-

edge representations. Rumelhart & Norman [1978, 1981] maintain that knowledge is

reorganized as more and more pieces of knowledge are acquired. Hatano argues that

"most, if not all, mathematics educators would agree that students' mathematical cog-

nition constitutes a theory-like knowledge system, that is, an organized body of knowl-

edge" [Hatano, 1996, p. 197]. He also argues that one's knowledge becomes richer and

better organized as one gains expertise, with the reorganization of the knowledge sys-

tem occurring at a number of different levels, individual to societal [Hatano, 1996, p.

202]. Tall [1992a], in describing the exponential growth of knowledge in recent years,

questions how this growth is encompassed in the minds of ordinary human beings

today. His response provides yet another example of the notion that knowledge is

structured and that the manner in which knowledge is structured assists or constrains

the development of concepts:

First it is through the use of language, that enables the communication of

thought, and through written symbolism that enables the essence of this

thought to be passed on from generation to generation. But what is more

important still is the manner in which the underlying concepts develop

and the way in which the symbolism is used to assist the development of

these concepts [Tall, 1992a, p. 58].

2.3.1 Schemas and Frames

Skemp considers a schema to be "a conceptual structure stored in memory"

[Skemp, 1981, p. 163]. He argues that a schema integrates existing knowledge and,

even more than a concept, greatly reduces cognitive strain. He considers it as a major

instrument of adaptability, "being the most effective organization of existing knowl-

edge both for solving new problems and for acquiring new knowledge...The schema is

a tool of learning" [Skemp,1987, p. 24]. Skemp argues that inappropriate early sche-

mas will make the assimilation of later ideas much more difficult, perhaps impossible.

Tall [1992a] extends Skemp's definition of schema to explicitly acknowledge the

33,..)



General Literature Review Conceptual Structures

dynamical functionality of schemas, defining a schema to be a coherent mental activity

in the mind of an individual that exists in time and changes over time.

Davis [1984] postulated a very special kind of knowledge representation struc-

ture or schema, known as a 7rame," a fairly large knowledge representation structure

that includes a considerable body of information. Davis credits Minsky [1975] with

introducing the term "frame." A frame can be retrieved or modified, synthesizing new

information with existing general information [Davis, 1984, p.45-48]. This frame-ori-

ented view provides an explanation as to why individual students reading (or viewing)

the same information display differences in their processing of information and hence,

in their learningthey have non-identical frames in memory through which the infor-

mation is processed.

Davis' notion of 7rames" corresponds closely to that of Skemp's notion of

schema, although Davis claims that frames "can be explicitly identified and described

as a result of observable behavior which they produce" [Davis, 1984, p. 126]. The

inflexible nature of well-practiced schemas is mentioned by both Davis and Skemp,

who argue that a schema can become an obstacle to adaptability. Consider the

observed behavior of students who are able to demonstrate a change in performance

shortly after instruction, but subsequently revert to their earlier behavior. Piaget

explains this phenomenon as the lack of readiness for transition to another stage. Davis

argues that it is not a lack of readiness so much as it is the existence and continued

presence of earlier frames. Skemp explains the phenomenon claiming that if what is

learned does not fit into an existing schema, it is rejected. It has a highly selective

effect on our experience and that what does not fit into the schema is largely not

learned at all.

Skemp uses the terms schema and conceptual structure interchangeably,

though he claimed that the term conceptual structure emphasizes two qualities: its

components are concepts and these are integrated, not isolated. He rejected Davis' use

of the term frame, claiming it was less suggestive of many of the qualities of a schema,

particularly its organic quality and the interiority of its concepts; i.e., the richness of

the various concepts in a network of cognitive structures and the complexity of appro-

priate linkages among them. Skemp points out that the term schema has been in use

much longer, having been introduced by Bartlett [1932]. He also argued that Davis'
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use of the terms "slots" or "variables" does not make the important distinction between

primary and secondary concepts, nor do these terms explain the process of abstraction

by which we form progressively higher order concepts. Skemp was wary of accepting

information technology metaphors as explanations of human thinking, arguing that

"Computers process symbols, not information. They work at the level of syntax only,

not semantics" [Skemp, 1987, p. 123-125].

Davis was recently asked if "frames" could be thought of as very refined, stable

cognitive collages and if this interpretation was consistent with what he intended the

relationship between 'frames' and cognitive collages to be. In a personal communica-

tion, Davis replied:

That is EXACTLY what I meant! You are pointing out to me that I never

clearly discussed the relation between what I called "collages" (a phrase I

really picked up from Bob Lawler), and what I called "frames" (the name

Marvin Minsky introduced)but the relation between the two is essen-

tially what you suggest. I presume that every frame WAS originally con-

structed by increments, as a collage....So, in what way is a "frame"

different from any other collage? I think it is precisely what you have sug-

gested: when a collage has been carefully shaped and trimmed into some-

thing that works really welland perhaps when we have used it enough

to recognize how well it worksthen I would call it a frame. It isn't dif-

ferent, but it is very refined and very stable and most of the time it is very

adequate. [Davis, 1997, personal communication].

Despite the different terminology, Skemp and Davis are describing the same

ideas, something each acknowledged in their references to the other's work. Both

developed theories of cognitive development which built on the ideas of Piaget [1970],

reflecting cognitive positions that hold that knowledge is constructed by an active,

knowing subject. Instruments of construction include cognitive structures such as con-

cepts, concept images, and schemas [Skemp], or frames and cognitive collages

[Davis], which are themselves products of the processes of knowledge construction.

2.3.2 Concept Images

Another cognitive structure that is an instrument of knowledge construction is

that of concept image, an expression widely referenced in the current literature. Tall

and Vinner formulated the notion of concept image, i.e. "the total cognitive structure

that is associated with the concept, which includes all the mental pictures and associ-

ated properties and processes" to explain the phenomenon that many concepts met in
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mathematics have been encountered in some form or other before they are formally

defined [Tall & Vinner, 1981]. As a consequence of these previous encounters, com-

plex cognitive structures are created which yield a variety of images unique to an indi-

vidual when the concept is invoked. The distinction arose as a way to understand the

reasoning expressed by students which was inconsistent with mathematical definitions

they were taught.

Thompson reaffirms Tall & Vinner's notion of concept image, focusing on the

dynamics of mental operations; reminding us that "a person's actual images can be

drawn from many sources and that an individual's concept images will be highly idio-

syncratic:

By "image" I mean much more than a mental picture. Rather I have in

mind an image as being constituted by experiential fragments from kines-

thesia, proprioception, smell, touch, taste, vision, or hearing. It seems

essential also to include the possibility that images entail fragments of

past affective experiences, such as fearing, enjoying, or puzzling, and

fragments of past cognitive experiences, such as judging, deciding, infer-

ring, or imagining [Thompson, 1996, pp. 267 -268].

Writing about the role of imagery in his analysis of students' concepts of speed and

acceleration, Thompson describes how he made sense of what he observed while inter-

acting with the students. His concepts of students' mental operation and mental images

were given meaning in the context of working with the students. He imputed his con-

cepts of their mental operations and images to the students to explain their reasoning.

Thompson [1996] argues that the role imagery plays in mathematical activity

evolves as particular concepts become increasingly abstract. He portrays the construct

of image as dynamic, originating in bodily actions and movements of attention, and as

the source and carrier of mental operations. "Mathematical reasoning at all levels is

firmly grounded in imagery;" it is drawn from many sources and is highly idiosyn-

cratic [Thompson, 1996, pp. 267-68]. Piaget's distinctions between three types of

images are interpreted by Thompson to mean (a) images associated with the creation

of objects; (b) images which contribute to the building of understanding and compre-

hension, with 'understandings-in-the-making' as contributing to ever more stable

images, and (c) images that support thought experiments and reasoning by way of

quantitative relationshipsshaped by operations which, in turn, are constrained by the
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image; nothing more than a symbol of an operation [Ibid]. Thompson argues that the

predominant image evoked in students by the word function, i.e., "two written expres-

sions separated by an equal sign" [Thompson, 1994, p. 24].

One might ask: Is a concept different from a concept image and if so, in what

way(s)? In this study, using the definition of concept as an idea, an abstraction which

requires for its formation a number of experiences which have something in common,

a named concept is considered a notion that is widely accepted by the community, i.e.,

quadratic function is a concept with characteristics and properties accepted by a wide

community. A concept image of quadratic function, used in the sense of Tall and Vin-

ner [1981], is unique for each individual who has some understanding of the general

notion of quadratic function, which may or may not include all of the characteristics

and properties associated with the notion of quadratic function by the wider mathemat-

ics community.

2.3.3 Conceptual Reorganization

Piaget postulated two basic learning mechanisms for major conceptual reorga-

nizations that occur in the course of intellectual development; assimilation and accom-

modation. Various researchers have interpreted these constructs to fit within their own

theoretical frameworks. Steffe [1996] cites Piaget's definition of assimilation in sup-

port of his observation that, without assimilation, there would be no learning.

Assimilation is the integration of any sort of reality into a structure. It is

this assimilation which seems to me fundamental in learning, and which

seems to me the fundamental relation from the point of view of pedagog-

ical or didactic applications [Piaget, 1964, p. 18; cited in Steffe, 1996, p.

490].

Accommodation is described by Steffe as "a modification of a conceptual struc-

ture in response to a perturbation which is necessary for cognitive development to

occur." He regards a perturbation as "any disturbance in the components of an interact-

ing system created through the functions of the system... which can activate or dise-

quilibrate a system at rest or a system in a dynamic equilibrium" [Steffe, 1996, p. 490-

491]. Steffe explains the need for the second learning mechanism, accommodation,

based on the observation that "items produced by assimilation are constructed items"

which are not fully accounted for by assimilation alone. He considers accommodation
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to be a modification of an existing conceptual structure in response to a perturbation

which "accounts for qualitative changes in mental or physical actions, operations,

images, and schemes" [Steffe, 1996, p. 490].

Davis [1984] interprets accommodation not only as a modification of an exist-

ing system, but extends this Piagetian notion to include a synthesis of new knowledge

representation structures. He argues that frame retrieval and frame instantiation are

examples of what Piaget called "assimilation" and that an unacceptable match between

perceived input(s) and a retrieved frame is a precondition for Piaget's notion of accom-

modation:

It is easy to relate these decisions to Piaget's concepts of assimilation and

accommodation. When the judgement is made that the instantiated frame

is an acceptable match to the input data, we can say that `assimilation'

occurs. If this judgement is that the match is unacceptable, we have a pre-

conditions for `accommodation' to take place, although more steps are

needed before accommodation can be considered complete [Davis,

1984, p. 178].

2.4 Process-Object Theories of Cognitive Development

The development of mathematical growth is described as starting from percep-

tions of and actions on objects in the environment, thinking about them, and resulting

in the performance of new actions upon the mental and/or physical objects [Piaget,

1970]. Tall [1995] hypothesized that there are two sequences of development of math-

ematical thinking beginning with object and action, and argues that these two

sequences are quite distinct. He identified three components of human activity: per-

ceptions as inputs; thought as internal processing; and actions as the outputs. Percep-

tions of objects leads to classification, first into collections, then into hierarchies and

the beginnings of verbal deduction relating to the properties and the development of

systematic verbal proof. Actions on objects lead to the use of symbols both as pro-

cesses to do things and as concepts to think about.

Tall's theory of cognitive development is situated within the literature of theo-

ries of learning and reasoning which hold that (a) intelligence is largely a property of

the minds of individuals; (b) mathematical knowledge is hierarchically structured; and

(c) which highlight the duality of process and concept. Piaget [1970] described the

processobject duality as a development in which the process by which mathematical
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entities move from one level to another and is achieved by operations on these entities,

which in turn results in objects. The process repeats itself until "structures that are

alternately structuring or being structured by 'stronger' structures "are reached.

Davis [1984] describes the cognitive shift from process to object as "achieving

noun status," saying "As a procedure is practiced, the procedure itself becomes an

entityit becomes a thing. It, itself, is an input or object of scrutiny" [Davis, 1984, p.

36]. Greeno [1983] discussed the notion of "conceptual entities" which could be used

as inputs to other procedures. Dubinsky [1991] speaks of encapsulation of process as

object. Sfard [1994] argues that "the operational (process-oriented) conception

emerges first and that the mathematical objects (structural conceptions) develop after-

ward through reification of the processes." She theorizes that the majority of mathe-

matical notions draw their meaning from two kinds of processes: the primary

processes (those from which the given notion originated), and secondary processes,

(those in which the given notion serves as input). Abstract objects act as a link between

these two kinds of processes and appear crucial for our understanding of the corre-

sponding notions.

This process-object construction is accompanied by a cognitive shift from

concrete to abstract thought. Process-object theories of cognitive development hypoth-

esized by Dubinsky and Sfard identified several stages in the transition from process to

object. Sfard hypothesized in addition to the two approaches to concept development

(operational and structural), three stages of development: interiorization (processes

performed on already familiar objects), condensation (the process is compressed into a

more compact, self-contained whole which can be dealt with without necessarily con-

sidering the intermediate steps); and reification (the cognitive shift that converts the

already condensed process into an object-like entity [Sfard, 1992, pp. 64-65].

Dubinsky [1991] and his colleagues also proposed a theory (APOS) character-

ized by three stages of development from action to encapsulated object: action (any

physical or mental transformation of objects to obtain other objects), processes (steps

can be described or reflected upon, without necessity to perform them), object (indi-

vidual sees totality of the process, recognizes that transformations can act on it, and is

able to construct the transformations. A schema, for Dubinksy and his colleagues, is an

object, "a coherent collection of actions, processes, objects and other schemas, which
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are linked in some way and brought to bear upon a problem situation." Skemp con-

siders existing schema as indispensable tools for the acquisition of further knowledge

and argues for the organization of processes and objects into schemas, though, he does

not characterize the process as one of encapsulation in the sense of Dubinsky or Sfard.

What model of cognitive development describes the students of this study?

Sfard's process-object theory, with three stages of development: interiorization, con-

densation, and reification, and Dubinsky's APOS theory are hierarchical models which

do not consider the roles of perception and categorization in the retrieval of schemas,

nor the connectedness of ideas which are not always hierarchically organized. Kieran

questions whether students must first develop process conceptions which precede

object construction when technology and various representations are used [Kieran,

1993, pp. 189-237]. Kieran also raised the question of whether the learning of graphi-

cal representations of functions follow the same process-to-object sequence that has

been documented in studies involving algebraic representations and set-theoretic defi-

nitions. She notes that a process conception is generally the first step in acquiring new

mathematical notions and that this process approach to graphical representations

might not be appropriate. "The technology-supported projects...have clearly shown

that this route is not the one that has to be followed if we want to encourage students to

learn to read the global features of graphs. We have choices now" [Kieran, 1993, p.

232]. In addressing Kieran's question, Thompson wrote:

I see every reason to believe that in an individual student's construction of

function, process conceptions of function will precede object conceptions

of function. What has changed because of technological advances are the

kinds of experiences we can engender in the hope that students eventually

create functions as objects [Thompson, 1994, p. 28].

The notion of procept enables us to think about different kinds of encapsula-

tion in different contexts and to see how learners face cognitive difficulties related to

symbolism [Tall, 1995]. Tall hypothesizes two sequences of development beginning

with the object and action that are quite distinct. By viewing growth in elementary

mathematics as a single development in the manner of a neo-Piagetian stage theory,

Tall proposed an alternative theory in which two different developments occur at the

same time, which can occur independently of each other.
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One is visuo-spatial becoming verbal and leading to proof, the other uses

symbols both as processes to do things (such as counting, addition, multi-

plication) and also concepts to think about (such as number, sum, prod-

uct) [Tall, 1995, p. 162].

His theory explicitly takes into consideration the perception and categorization of

objects in the external world, something the theories of Sfard and Dubinsky fail to do.

I find it useful to separate out three components of human activity as

input (perception), internal activity (thought) and output (action)....Ele-

mentary mathematics begins with perceptions of and actions on objects in

the external world. The perceived objects are at first seen as visuo-spatial

gestalts, but then, as they are analyzed and their properties teased out,

they are described verbally, leading in turn to classification (first into col-

lections, then into hierarchies) [Tall, 1995, pp. 161-162].

Davis, Tall, and Thomas (in press) point out the need to focus on both opera-

tional processes and the properties of objects. They conclude that "focusing on both

operational processes and the properties of objects...gives a versatile approach"

[Davis, Tall, & Thomas, in press]. Dugdale considers shifts in concepts as students

reorganize their ideas "to accommodate new information, apply previous ideas in dif-

ferent contexts, and establish interconnections to be a normal part of learning: a pro-

cess of changing perceptions and evolving ideas" [Dugdale, 1993, p. 126].

2.5 What does it mean "to understand?"

Understanding is frequently characterized as connected knowledge, i.e.,

knowledge that includes meaningful connections [Davis, 1992a, 1986; Eisenberg &

Dreyfus, 1994; Hiebert & Carpenter, 1992; Hiebert & Lefevre, 1986; Kaput, 1992a;

Kaput, 1992b; Krutetskii, 1976; Skemp, 1971; Tall, 1995]. Understanding is subjec-

tive, a process by which one assimilates "something into an appropriate schema"

[Piaget, 1972; Skemp, 1987, p. 29-33]. Hiebert and Carpenter define understanding in

terms of whether the ideas are connected:

A mathematical idea or procedure is understood if it is part of an internal

network. More specifically, the mathematics is understood if its mental

representation is part of a network of representations. The degree of

understanding is determined by the number and the strength of the con-

nections. A mathematical idea, procedure, or fact is understood thor-

oughly if it is linked to existing networks with stronger or more numerous

connections [Hiebert & Carpenter, 1992, p. 67].
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They suggest that the structure of the internal representation assists or con-

strains the development of understanding and that an external representation is neces-

sary in order to communicate mathematical ideas. Sierpinska [1992, 1994] makes the

point that, in order to understand a concept, it is necessary to see instances and non-

instances of the defined object to become aware of its relations with other concepts,

noting the similarities and differences, and have grasped the applications possible. She

characterizes understanding using four categories: identification (the ability to recog-

nize the object within a group of objects); discrimination (ability to recognize similar-

ities and differences between two distinct objects); generalization (which permits the

extension of the object's use); and synthesis (implies the existence of appropriate links

among objects).

The notion of understanding as the assimilation of new knowledge into an

existing, appropriate schema is generally accepted among cognitive scientists, though

there are those who would disagree with Hiebert & Carpenter's claim that a more thor-

ough understanding is always reflected by more numerous connections. Tall [1995]

would counter that it is not the number of connections that is significant but the nature

of the connections and linkages formed. The nature of external mathematical represen-

tations influence the nature of internal representations, which, in turn influence how

external mathematical representations are perceived, categorized and assimilated

[Greeno, 1988; Kaput, 1989].

Skemp [1976] distinguishes two types of understanding, crediting Stieg Mel-

lin-Olsen for bringing to his (Skemp's) attention the fact that there were two meanings

of the word understanding currently in use at the time. Mel lin-Olsen named the two

types of understanding "relational understanding" and "instrumental understanding."

Skemp initially did not regard this latter type of understanding as a form of under-

standing, describing it as "rules without reason." Skemp characterizes relational under-

standing as knowing both what to do and why [Skemp, 1976, p. 20]. He describes

instrumental learning as learning an increasing number of fixed plans in which the

learner is dependent upon outside guidance for learning each new plan. Relational

understanding, on the other hand, consists of "building up a conceptual structure

(schema) from which its possessor can (in principle) produce an unlimited number of

plans for getting from any starting point within his schema to any finishing point"
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[Skemp, 1976, p. 25]. Skemp distinguishes between cognitively-based skills (auto-

matic skill with understanding characterized by adaptability and a well-connected

schema) and well-drilled habits (mechanical skill or rote-learned habit with little or no

adaptability and few linkages in the existing schema) [Skemp, 1987, p. 126-127].

A growing recognition of the roles of curriculum and instructional practices

that promote the development of understanding as described by Skemp and encourage

the formation of meaningful connections is evident in recent reform projects [Harvard

Consortium Calculus Project; DeMarois, McGowen, & Whitkanack Developmental

Algebra Project; the Connected Math Project; the ARISE Project, etc.] and national

standards documents [National Council of Teachers of Mathematics Curriculum and

Evaluation Standards, 1989; The American Mathematical Association of Two Year

Colleges Crossroads Standards, 1995; The Algebra Initiative Colloquium,1995, etc.].

Though the need to form meaningful connections among the bits and pieces of knowl-

edge that are acquired is widely recognized, how to achieve this goal remains an open

question, as much of the current literature attests [Cuoco, et. a., 1996; Cuoco, 1994;

Demana, 1993; Dugdale, 1993; Gray & Tall, 1993; Kieran, 1993; Kaput, 1993; Mason,

et. al., 1982; Moschkovich et al., 1993; Sfard & Linchevski, 1994; Romberg et. al.,

1993; and Thompson, 1994; 1996].

2.6 Ambiguous Notation: A Need for Flexible Thinking

Davis [1984] argues that fundamental processes such as the need to recognize

and resolve ambiguities need to be analyzed across a broad spectrum of mathematical

topics in order to improve the odds of obtaining a reasonably representative picture of

students' mental information processing. The ability to flexibly interpret and use the

ambiguity of mathematical notation is necessary for successful mathematical thinking.

This dual use of symbolism for both procedure and concept is found throughout math-

ematics. Most ambiguity in mathematics is a natural consequence of the identity or

equivalence of structure that makes mathematics so powerful and utilizes this isomor-

phism of structure to make mathematical language and notation as brief, concise and

multi-interpretable as possible.

The mathematician is untroubled by the ambiguity of mathematical notation,

understanding that interpretation may vary in the course of a calculation, argument or
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deduction, according to context. The student who is unaware of the existence of the

duality and ambiguity cannot even attempt to develop more flexible strategies which

improve his/her chances for success. Skemp claims that "symbols are magnificent ser-

vants, but bad masters, because by themselves they don't understand what they are

doing" [Skemp, 1971]. Skemp cautions that new material needs to be presented in

such a way that it can always be assimilated conceptually. He defines symbolic under-

standing to be "the ability to connect mathematical symbolism and notation with rele-

vant mathematical ideas" [Skemp, 1987, p. 184]. Skemp's definition is similar to that

put forth by Backhouse [1978] and by Byers and Herscovics [1977]. A symbol system

is "a set of symbols corresponding to a set of concepts, together with relations between

the symbols corresponding to relations between the concepts" [Skemp, 1987, p. 185].

The duality and ambiguity of mathematical notation is encountered in fields

other than the mathematics classroom and research. Computer programmers and soft-

ware engineers must deal unambiguously with the fact that the minus symbol can be

interpreted in various waysit is used to indicate subtraction, to indicate the process

of taking the additive inverse or as the sign of a negative number. Mathematically, the

first two instances can be interpreted as functional processes, the first binary and the

second unary. However, in the third instance, a negative number is not a process but an

object. Mathematicians and those teaching mathematics are themselves comfortable

with the duality of notation. Accustomed to thinking flexibly, mathematicians and

mathematics education researchers, on occasion however, fail to deal unambiguously

with notation themselves. A recently published research article described an activity

used in a task-based interview as follows:

The fact that 22 would give an imaginary number leads to a discussion

of the alternative suggestions of (a) accepting complex numbers as legiti-

mate results of exponentiation or (b) limiting the extension of exponentia-

tion to positive bases [Borasi, 1994 p. 207].

The ambiguity of notation is cited by Skemp, who identifies position, as well

as size, as components of a symbol system which contribute to students' difficulties.

The expression 22 requires the mutual assimilation of separate schemas, each of

which has a structure of its own. Skemp points out that, if the relationship between

ambiguous symbols and the conceptual structure is such that they are in equilibrium,
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or in which the conceptual structure is dominant, symbols help us use the power of

mathematics. If, however, the symbols dominate the conceptual system, students will

become "progressively more insecure in their ability to cope with the increasing num-

ber, complexity, and abstractness of the mathematical relations they are expected to

learn" [Skemp, 1987, p. 186].

It has been suggested that because of the mathematician's desire for precision

and rejection of ambiguity, we have failed to fully understand this duality and ambigu-

ity of symbolism which gives it such flexibility, particularly in the teaching of mathe-

matics. The cognitive obstacles faced by students who attempt to reconcile the

ambiguities of notation frequently go unrecognized by their professors, particularly

when these struggles occur at the college level. Thompson [1994] reminds us of the

need to align our perspectives about mathematics and the learning of mathematics in

order to more effectively communicate with our students:

...an instructor who fails to understand how his/her students are thinking

about a situation will probably speak past their difficulties. Any symbolic

talk that assumes students have an image like that of the instructor will

not communicate. Students need a different kind of remediation, a reme-

diation that orients them to construct the situation in a mathematically

more appropriate way... Whatever students have in mind as they employ

symbolic mathematics it often is not the situation their professors intend

to capture with their symbolic mathematics [Ibid., p. 32].

2.6.1 The notions of procept and the "proceptual divide"

This phenomenon of the duality and ambiguity of mathematical notation per-

ceived as procedure and concept has been proposed by Gray and Tall [1991a] as an

explanation of an underlying cause of elementary-grade students' success or lack of

success in mathematics. Subsequently, Gray and Tall [1994] hypothesized that the

ability to think flexibly in mathematics depends on the dual use of symbolism for both

procedure and concept, a duality found throughout mathematics. They defined the

amalgam of procedure and concept which is represented by the same notation to be a

procept, ie.e, "symbolism that inherently represents the amalgam of process/concept

ambiguity" to explain the divergence and qualitatively different kind of mathematical

thought evidenced by more able thinkers compared to the less able [Gray and

Ta11,1991a, p.1]. The symbol 3 is an example of a procept which can be interpreted in
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several ways, depending upon the context. If arithmetic operations are analyzed using

the notion of function, 3 could be interpreted as either the unary process of taking the

additive inverse (a process requiring one input) or as a mathematical object, the con-

cept negative three, and subtraction is a binary process which requires two inputs, 7

and 3, in the subtraction, 7-3.

The ability to think flexibly is considered to be an essential component of the

ability to be successful in mathematics. The theories of 'encapsulation' focus on the

manner in which processes are encapsulated as objects, which generally lead to quan-

tifiable differences in procedures. Qualitative differences in more able student's abili-

ties to think successfully compared with the abilities of less able students have been

documented in the studies of Krutetskii [1969] and other Russian researchers includ-

ing Dubrovina [1992] and Shapiro [1992]. A qualitative difference in the numerical

processing of elementary grade children was noted and reported by Gray [1991].

The divergence between procedure and procept was characterized by Gray and

Tall as the "proceptual divide" (i.e., a bifurcation of strategy between flexible thinking

and procedural thinking which distinguishes more successful students from those less

successful) [Gray & Tall, 1994, p. 132]. This divergence is evidenced by observable

qualitative differences in the strategies employed by the less successful and the more

successful students. Various levels of the encapsulation of the procedure can be seen to

be successively sophisticated growth of the procept. Skemp alludes to the notions of

procept and proceptual divide.when he discusses the difficulties students have in learn-

ing to understand mathematical symbolism. He asks:

So how can we help children to build up an increasing variety of mean-

ings for the same symbols? How can we prevent them from becoming

progressively more insecure in their ability to cope with the increasing

number, complexity, and abstractness of the mathematical relations they

are expected to learn? [Skemp, 1987, p. 186].

Although rote-learning of procedures may increase the foundation on which to

build, the meaningful learning of procedures is essential for flexible thinking. Some

students experience a cognitive shift from concrete actions and processes to abstract

cognitive objects able to be manipulated in the mind while others remain locked into

procedures. The more successful develop a flexible proceptual system of deriving new

knowledge from old and have a built-in feed-back loop that creates new mathematical
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objects. The less successful are caught in a procedural system in which they are faced

with harder and harder procedures that eventually result in cognitive overload. Even

when the less successful have the procedures available to them, they may lack the flex-

ibility to use them in the most economical and productive way [Gray and Tall, 1994;

1991a].

It should be noted, however, that performing sequential steps of a process is not

necessarily an indicator of inflexibility. Davis cautions us to distinguish between

inflexible, rote procedures and steps in a procedure that are decision steps. He points

out that "the phrase 'definite sequential order' does not imply inflexibility" [Davis,

1984, p. 30]. Skemp makes a similar distinction between routine manipulations and

problem-solving activity; and between "automatic" skills which are performed auto-

matically according to well formed habits, whereas rote skills are characterized by

"mechanical manipulation of meaningless symbols" [Skemp, 1987, p. 61].

The findings of Krutetskii [1969] and of his Russian colleagues, Dubrovina

[1992a, 1992b] and Shapiro [1992], offer strong evidence in support of the notion that

schemas can be both instruments of adaptability and of inflexibility. Krutetskii and his

colleagues studied the characteristics of thought of students (grades 5-8) of varying

levels of ability over several years, using the genetic method of observing individual

students in teaching-learning situations. Krutetskii found that mathematically able stu-

dents' thinking is characterized by (1) broad generalizations which occur immediately;

(2) the tendency to think in terms of curtailed structures; (3) great flexibility of mental

processes; and (4) a striving for clarity, simplicity, and economy. His colleagues exam-

ined the extremes of children in various grades (2-4; 9-10) to further test the structure

of mathematical abilities hypothesized by Krutetskii. A full report of this body of

research is included in the volumes translated and published by the National Council

of Teachers of Mathematics (Volumes 1-6) and the subsequent volumes by the Univer-

sity of Chicago Press.

The findings of Gray [1991], Gray and Tall [1994], and, more recently, Gray,

Pitta and Tall [1997], support and add to the body of research that shows qualitative

differences in the strategies and initial foci of attention of the extremes of classes of

elementary grade children (grades 3-6). They report low achievers appear to focus on

detail and exhibit a tendency to mentally imitate procedures. High ability students
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demonstrate flexible interpretations of symbolism, an ability to compress knowledge,

and to focus on generative properties that leads to the formation of qualities of abstrac-

tion. Image formation appears to be a crucial factor in the divergence of thinking that

is termed the proceptual divide.

2.7 The Notion of Representation

An issue on which researchers hold differing perspectives concerns the notion

of "representation." Steffe argues that "Many accounts of knowledge representation

are misleading because they are based on the assumption that concepts are things

mental objects "out there" to be represented. He, like Dorf ler, regards "mathematical

concepts as mental acts or operations, and it is these operations that are represented.

We believe that representation elements are constructed as part of the construction of

the concept...Image and externalization are two basic aspects in the construction and

elaboration of representational elements" [Steffe,1995, p.487].

Thompson characterizes Piaget's notion of image as the products of acting. He

contrasts Piaget's notion, which includes its theoretical context, with that of Kosslyn,

who characterizes images as the products of acting. Piaget's idea of image is that

images are "residues of coordinated actions, performed within a context with an inten-

tion, and only early images are concerned with physical objects." Kosslyn conceives of

images as data structures that result from the processes of perception [Thompson,

1996, p. 270]. Kosslyn [1980] argues forcefully that it is erroneous to equate image

representations with mental photographs, while describing organizational processes of

knowledge construction:

These organizational processes result in our perceptions being structured

into units corresponding to objects and properties of objects. It is these

larger units that may be stored and later assembled into images that are

experienced as quasi-pictorial, spatial entities resembling those evoked

during perception itself....It is erroneous to equate image representations

with mental photographs, since this would overlook the fact that images

are composed from highly processed perceptual encodings [Kosslyn,

1980, p. 19, cited in Thompson, 1996, p. 269].

Tall [1995] theorizes that when we visualize, we use not "picture-making" facilities,

but "picture-recognizing" facilities."
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I do not believe in my own case that I have things in my mind that corre-

spond to visualizations either. Despite working for many years on visual-

izations in mathematics, in which I can produce good external pictures on

the computer screen to represent mathematical concepts, the pictures I

conjure up in my mind are very different from the external representa-

tions [Tall, 1995, p 165].

The debate among mathematics education researchers concerning the issue of

whether one does or does not associate image representations with mental photographs

appears to have shifted in recent years to focus on the dynamics of mental representa-

tions and theories of understanding. von Glaserfeld identifies two meanings of the

word representation: (1) the Piagetian interpretation in which the term representation

"refers to a re-presentation (from memory) of an experience one has had at some ear-

lier moment" and (2) the sense in which Kaput uses the term representation to refer to

"graphic or symbolic structures that provide the cognizing subject with the opportu-

nity to carry out certain mental operations." A reference to the symbolic unitflx) as the

"representation of a function" evokes certain perceptual and/or conceptual operations,

as well as possibly evoking memories of earlier experiences [von Glaserfeld, 1996, p.

308].

Thompson [1994] questions whether the mental objects students construct are

functions and/or representations of functions. He also cites Kaput: "What is being rep-

resented, for a knowledgeable third party observer, is NOT what is being represented

for the person living in the representational process" [a quote by Kaput, cited by

Thompson, 1994, p. 27]. Thompson argues that the notion of "multiple representa-

tions" as currently construed is not appropriate to focus on. "The core concept of func-

tion is not represented by any of what are commonly called the multiple

representations of function, but instead our making connections among representa-

tional activities produces a subjective sense of invariance." [Thompson, 1994, p. 39].

Given the constraints of impoverished conceptual foundations, Thompson identifies

the need to give explicit attention to students' imagery and to provide instruction that

focuses explicitly on the development of flexible thinking:

...we need to pay much closer curricular and pedagogical attention to stu-

dents' per-symbolic actions, such as imagining dynamic situations so that

their images adhere consistently to systems of constraints....The impor-

tance of attending to students' conceptualizations of situations applies to
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more than physical phenomena and physical quantities. It applies when-

ever we use mathematical notation referentially [Thompson, 1994, p. 30

31] .

2.7.1 External Models of Conceptual Systems

Goldin and Kaput [1996] provide a theoretical model of representation and

counter the objections of radical constructionists who would argue that it is fundamen-

tally wrong to term internal systems "representational" because there is nothing

directly knowable that is being represented. Those who would argue that (1) because

we have direct access only to our worlds of experience, not to any "external" world

thus what is out there is not directly knowable, and that (2) internal representations

should be considered as "presentations" not representations, Goldin and Kaput reply

that theirs is a hypothetical model, a constructed model developed by an observer:

...to help explain an individual's observed behavior, or the behavior of a

population of individuals...the description of external systems of repre-

sentation...is constructed by the theorist or community of theorists, as is

any scientific model or theory. It is not assumed to exist independently of

such acts of constructions...This is the standard method of science: (a) to

create structured models that embody relations among selected observ-

ables, (b) to use these relations to help generate hypotheses that can be

tested, and (c) to explain the outcomes of observations...To us, internal

representation, like external representation, is intended to be part of a the-

oretical model explanatory of phenomena that can be observed. It is not a

requirement of a scientific theory that its every component be directly

observable, only that it have consequences that are observable...models

involving internal constructs do better in explaining our observations of

behavior than models without them" [Goldin & Kaput, 1996, pp. 406-

408].

2.7.2 Concept Maps: External Representations of Conceptual Structures

It has been argued that concept maps are external visual representations of a

student's internal conceptual structures and their organization at a given moment in

time. These maps are used to document the processes of constructing new knowledge

structures and reorganizing existing knowledge structures. The use of concept maps as

an instructional tool and as a research tool has been cited in recent years in science

education research literature [Novak, 1985, 1984; Moreira, 1979; Cliburn, 1990; Lam-

biotte and Dansereau, 1991; Wolfe and Lopez, 1993] and in mathematics education

research literature [Skemp, 1987; Laturno, 1993; Park and Travers, 1996; Lanier,
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1997; Wilcox and Lanier, 1997]. A concept map is a device for representing the con-

ceptual structure of a subject discipline in a two-dimensional form which is analogous

to a road map. In much of the literature, Novak, of Cornell University, is credited with

the development of this tool in the early 1980's, though some literature cites the earlier

work of Buzan in the late 1970's.

The use of concept maps as an instructional tool is based on Ausubel's learning

theory, which places central emphasis on the notions of advanced organizers and sub-

sumption to explain the influence of students' prior knowledge on subsequent mean-

ingful learning. According to Ausubel, the linking together of new knowledge with

existing knowledge and relevant concepts results in meaningful learning. When mean-

ingful learning occurs, it produces a series of changes in the cognitive structure, modi-

fying the existing structure and forming new linkages and connections as new

knowledge is integrated into and added onto the existing cognitive framework

[Ausubel, Novak, et al., 1978]. Concept maps serve to clarify links between new and

old knowledge and force the learner to externalize those links.

Concept mapping was originally developed as a way of "determining how

changes in conceptual understanding were occurring in students" [Novak, 1990, p.

937]. The instructional purposes for which concept maps are intended vary within two

main schools of concept mapping practice. One school of thought claims that concept

maps are useful to test students' understanding of a specific topic; with the instructor

creating an "expert" map, and grading a student's map by determining how closely the

student map matches that of the expert. Another school argues that concept maps are

useful primarily for the creator of the map as a means by which s/he can make explicit

her/his understanding of a topic. In the process of constructing a concept map, students

reflect on their recent learning, clarify their understanding of terms and definitions and

focus their attention on the linkages between concepts. Student misconceptions are

also revealed.

Mathematics, according to Skemp, is a knowledge structure with a hierarchic

nature in that certain concepts are prerequisite for the formation of other concepts. He

used the term concept map in the sense of a concept-dependency network to refer to

the process of schema construction in which order is important, with the necessary

direction being from lower to higher order concepts. Skemp envisioned concept maps
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as advanced organizers and as a means of analysis when planning lessons and used

them to plan a teaching sequence and for diagnosis. "If a learner has difficulty with a

particular concept, reference to an appropriate concept map [prepared by the instruc-

tor] may suggest that the roots of the problem lie further back, and indicates which

areas we should check" [Skemp, 1987, p. 122]. Skemp credited Tollman with the

notion of a cognitive map, which he (Skemp) used as a transitional metaphor of con-

ceptual structures. He found a cognitive map diagram a useful way of representing

knowledge structures because it could be interpreted at three levels of abstraction:

as a road map where each point represents a physical location.

as a cognitive map where each dot represents a concept, and each line

represents a connection between concepts.

as a generalized schema, representing an unspecified knowledge struc-

ture.

Claiming that "concepts represent, not isolated experiences, but regularities

abstracted from these," Skemp argued that "we can think of them [cognitive maps] as

mental models derived from certain features of the outside world" [Skemp, 1987, p.

116]. Like Davis, Skemp speaks of conceptual structures metaphorically, using a met-

aphor from photography, a lens of varifocal length, when he refers to them as cognitive

maps:

A major feature of intelligent learning is the discovery of these regulari-

ties, and the organizing of them into conceptual structures that are them-

selves orderly. These conceptual structures, or schemas, are like cognitive

maps only more so. We could think of them as cognitive atlases, of a

rather special kind....The way in which I successively access these mental

maps is...like looking at increasingly small areas of the same map under

increasing magnification....I have used a metaphor from photography, in

which we can buy a single lens of variable focal length. Looking at the

same landscape, we can use this to give a wide angle view that we see in

less detail, or by increasing the focal length we can get a larger, more

detailed image of a smaller area....knowledge is organized in schemas,

now thought of as conceptual structures in which many of the concepts

have interiority. In our schemas... we store all the detail we need for a

wide variety of purposes, and use van -focal access to scan them in the

right amount of detail for the job in hand [Skemp, 1987; pp. 116-118].

Research on the efficacy of concept maps as teacher-directed guides showed

that the use of teacher-constructed maps increased either learning and/or retention of
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science information [Cliburn, 1990; Lambiotte and Dansereau, 1991; Moreira, 1979;

Wolfe and Lopez, 1993]. Lambiotti and Dansereau also tested the efficacy of different

presentation types (text outlines, lists, concept maps) on learning between students

with differing prior amounts of prior knowledge. They found that students with low

prior knowledge learned better with teacher and/or student-constructed concept map-

pings than with the other two more linear presentations and that the richness of knowl-

edge, evidenced by the inter-connections of the concepts was increased by their use as

well in introductory science classes.

Park and Travers [1996] used concept maps to assess conceptual understanding

of two groups of students enrolled in the second semester freshman calculus course at

a major midwestern university; an experimental group taking an intensive computer

laboratory course and another group taking a standard, traditionally taught course. Stu-

dents were given lists of concepts and constructed their own concept maps. They were

encouraged to include additional terms not provided on the list and were told that cross

links carried additional credit. The student-constructed concept maps were analyzed

using two quantitative methods: the maps were first scored, using point totals on prop-

ositions, hierarchy and cross links; concepts and misconceptions. Each map was then

analyzed quantitatively, using a congruence coefficient between the instructor's map

and that of the students, to determine the extent of similarity between the student-con-

structed map and that of the instructor. The findings, all favorable to the computer-

based course, suggest an alternative way to document the effects of projects designed

to promote reform in undergraduate mathematics courses.

The use of concept maps as a research tool with community college mathemat-

ics students within a narrow range of competence was studied by Laturno [1994]. Cor-

respondence between concept maps and clinical interviews in determining concept

connectivity, and the ability of concept maps to predict academic achievement were

examined. Students from three remedial arithmetic classes and two remedial elemen-

tary algebra classes, all taught by the same instructor, constructed two concept maps

during the fifth and sixth week of the semester course. Subsequent maps were con-

structed during the fifteenth and sixteenth weeks of the semester but were not included

in the reported results. The concept maps were analyzed quantitatively, with varying

numbers of points assigned according to five categories: number of concepts repre-
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sented, quantity of valid relationships between nodes, the levels of hierarchy in the

structure, examples, and cross-links.

This method of analysis parallels that used by Novak & Gowin [1984] and by

Wallace & Mintzes [1990]. Scores for each of five categories were recorded, as well as

total points for each map. The scores for the two concept maps (week 5 and week 6)

were correlated, as well as the total concept map score with the number of units mas-

tered in the course. Students were provided with a list of ten mathematical concepts

which were assumed to be familiar to them based on prior course work which were to

be used in the construction of a concept map. Scores on the mathematical concept map

allowed placement of students into three groups: high, medium, and low. Twenty-four

students, six each from the two courses within the high and low scoring groups were

randomly selected and requested to participate in interviews during weeks 15 and 16.

There was significant agreement between the researcher's placement of students based

on the week 5 and 6 concept maps, and the course instructor's placement of students

based on task-based interviews at the end of the semester. The classroom instructors

based their placement solely on work done during the task-based interviews according

to how well the student connected ideas in mathematics during the interview. Student

generated concept map representations produced conclusions about the student's com-

plexity of knowledge connections similar to the data obtained from interviews. It was

claimed that concept maps would provide a reliable alternative to the time-consuming

clinical interview for classroom practitioners and researchers.

Wilcox and Lanier [1997] used concept maps as an instructional tool to docu-

ment changes in the nature of middle school teachers' thinking about their assessment

practices as a result of using decision-making case studies during an intensive three-

week summer session. Both the initial and final concept maps were returned to the stu-

dents so that the students/teachers could compare and contrast the two maps, analyzing

the changes in their own thinking which had occurred over time. Lanier [1997] also

reported on one middle grade teacher's use of concept maps during the year to inform

her instructional decisions and to better understand what students knew, didn't know,

and how they applied their knowledge.

Pre- and post-unit concept maps were used to as means of assessment that

allowed students to demonstrate their understanding of a topic in a non-traditional way

54



General Literature Review Current Issues on the Nature of Knowledge Acquisition

which gave them control over the situation. The post-concept map was augmented

with a set of questions which students completed and submitted with their concept

map. No in-depth qualitative analysis of concept maps was done in any of the cited

studies, nor was any evidence of qualitative analyses of concept maps found in several

searches of dissertation abstracts. Several studies did report students' comparisons of

their early and later maps to document growth over time of mathematical knowledge.

2.8 Current Issues on the Nature of Knowledge Acquisition

Identification of current issues which involve the nature of mathematical learn-

ing and characterizations of knowledge acquisition, together with historical overviews

of various theoretical positions are provided in recent volumes edited by Steffe and

Gale [1995]; Steffe, Nesher, Cobb, Goldin and Greer [1996]; Cobb and Bauersfeld

[1995] and Gavriel Salomon [1993a, 1993b]. Generally, cognitive psychologists have

continued to focus on procedural knowledge, a focus which mathematics education

researchers contend provides no clarification of issues such as what it means to have a

conceptual understanding as opposed to a procedural understanding. Differing per-

spectives between the traditional information processing (or computational view) in

cognitive psychology and those who consider knowledge distributed among various

systems still generate considerable debate. Greer [1996] points out that there has been

a noticeable effort to address the lack of social and cultural contexts, resulting is a

richer and more complex view of intellectual functioning. However, he also points out

that "there is no unifying theoretical framework visible on the horizon....current

research is characterized by methodological diversity, and a certain lack of agreed con-

ventions and systematicity in the communication of experimental findings" [Greer,

1996, p. 182].

2.8.1 Social and Individual Dimensions of Mathematical Development

Students' mathematical activity cannot be adequately accounted for solely in

terms of individualistic theories such as constructivism or information processing psy-

chology. Recognition that there is a social dimension of mathematical development is

becoming more widely-accepted among many researchers. Questions and theories

regarding the nature of individual mathematical construction are being integrated with
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questions concerning the initiation of that individual into the mathematical commu-

nity, with a growing consensus that students construct their own mathematics in a

social context. There is an emerging acceptance that knowing and doing mathematics

is an inherently social and cultural activity. Social and cultural influences are not lim-

ited to the process of learning but also extend to its productsincreasingly sophisti-

cated ways of knowing.

Theories developed in both the Vygotskian tradition and in the sociolinguistic

tradition exemplify the collectivist position and can be contrasted with individualistic

theories (neo-Piagetian) which treat mathematical learning almost exclusively as a

process of active individual construction. One of Vygotsky's main tenets was that

socio-cultural factors were essential in intellectual development. The integration and

awareness of the social perspective (Vygotskian) with the individual (Piagetian) per-

spective acknowledges the impossibility of constructing a theory of knowledge that

ignores either of these two perspective. Confrey [1993] offers a theory of intellectual

development that integrates Piaget's view of biologically developmental human beings

with the Vygotskian perspective in which human beings are viewed as productive

members of a collective enterprise. In order to avoid placing the individual in tension

with the social, she argues that the roles of nurture and reproduction need to be

included when considering human development, thus making biological evolution the

bridging construct, recognizing the importance of environmental concerns and of

diversity.

Cobb & Bauserfeld [1995] characterize the two general theoretical positions

on the relationship between social processes and psychological development as collec-

tivism and individualism and seek to transcend the apparent opposition between these

two theoretical positions. According to their interactionist perspective, individual stu-

dents' mathematical activity and the classroom microculture are reflexively related.

Collaborative activities which support conceptual and procedural developments simul-

taneously are both constrained by the group's establishment of a consensual domain

and adaptability to each other's activities. Bauserfeld and his colleagues chose as their

primary point of reference, the classroom microculture, instead of society's wider

institutionalized mathematical practices. The notion of reflexivity implies that "neither

an individual student's mathematical activity nor the classroom micro-culture can be
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adequately accounted for without considering the other" [Cobb & Bauersfeld, 1995,

pp. 9-10].

2.8.2 Technological Challenges to Current Beliefs and Practices

Recent technological developments also challenge current beliefs about the

nature of mathematics and the hierarchical cognitive models of learning mathematics.

The use of technology and collaborative group activities provide opportunities to re-

examine those beliefs and to discuss the trade-offs and risks on empirical grounds, in a

forum that does not put students in the middle of our on-going debates. The theory of

epistemological pluralism, which allows for multiple ways of thinking and knowing

[Papert and Turk le, 1992] and the theory of distributed cognitions, in which knowl-

edge is part of communities and in the interactions of persons with their tools as well

as their environment [Pea, 1993; Salomon et al, 1991; Salomon, 1993a, 1993b] offer

us a broader framework in which to work.

Papert & Turk le [1992] argue that there are different ways of knowing and that

not all persons think hierarchically. They contend that the prevailing models of cogni-

tive theory which commit us to the superiority of algorithmic and formal thinking

needs to be broadened to include a recognition that concrete thinking is as important as

abstract thinking and an object of science in its own right. Their research documents

the discrimination that has occurred in classrooms against students who wish to use

technology in a non-canonical way. In these classrooms students are expected to

change their approach to knowledge acquisition by those who teach and are committed

to a formal, rule-driven hierarchical approach to learning. Recent technological devel-

opments "have created an opening for epistemological pluralism" and recent intellec-

tual movements provide an opportunity to "break with ways of thinking that take the

abstract as the quintessential activity of intelligence." Armed with the idea of closeness

to objects (i.e., a contextual and associational style of working which does not exclude

a hierarchical style in combination with the contextual and associational), Papert and

Turk le offer a different theory: those who do so well do not have better rules, but a ten-

dency to see things in terms of relationships, rather than properties. The degree of

closeness to objects has developmental primacyit comes firstbefore the tendency

to use a concrete and negotiational style or an abstract style of thinking. This tendency
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to see things in terms of relationships is also argued by those who argue that everyday

categories are not mentally represented in terms of classical defining features, but in

prototypes, typical features, and exemplary models [Rosch, 1973, 1975; Mervis et al.,

1976; Labov, 1973; Smith and Medin, 1981; Hintzman, 1988; and Barsalou, 1992].

The belief that one's physical interactions with materials and tools are influ-

enced by social interactions is another theoretical perspective that has recently gained

wider acceptance. Based on the premise that changing the unit of analysis or changing

the context in which a phenomenon is studied may reveal a qualitatively different phe-

nomenon, Pea [1993] takes issue with the widespread popular view of intelligence as

the property solely of the mind. In his analysis of studies done by Papert, Pea believes

that Papert missed the key pointan explicit recognition of the intelligence repre-

sented and representable in design, specifically in designed artifacts that play impor-

tant roles in human activities. Pea argues that the student is not engaged in solitary

discovery in the Piagetian sense, but that s/he could be scaffolded in the achievement

of activity either explicitly by the intelligence of the teacher, or implicitly by that of

the designers, now embedded in the constraints of the artifacts with which the student

was working" [Pea, 1993, pp. 64-65].

Anyone who has closely observed the practices of cognition is struck by the

fact that the 'mind' rarely works alone. Pea rejects the fixed-quantity concept of intel-

ligence contributing to task achievement by a human-computer system. He argues that

the notion of distributed intelligence is not a theory of mind or culture, but a heuristic

framework within which theoretical and empirical questions about human thought and

symbol systems can be raised and addressed [Pea, 1993, p. 47-48]. People-in-action,

activity systems are defined to be the units of analysis for deepening our understanding

of thinking. Distributed intelligence is defined to mean that "resources in the world are

used, or come together in use, to shape and direct possible active emerging from

desire," with intelligence being accomplished rather than possessed.

Activity is enabled by intelligence, but not only intelligence contributed

to by the individual agent...While it is people who are in activity, artifacts

bring the affordances of a new artifact into the configuration of another

agent's activity, can advance that activity by shaping what are possible

and what are necessary elements of that activity [Pea, 1993, p. 50].
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Activity is perceived as something to be accomplished; achieved in meansends

adaptations which may be more or less successful.

The focus in thinking about distributed intelligence is not on intelligence

as an abstract property or quantity residing in minds, organizations, or

objects, In its primary sense here, intelligence is manifest in activity that

connects means and ends through achievements [Ibid.].

Pea suggests that "smart tools" such as jogger pulse meters, world-time clocks,

and automatic street locators literally carry intelligence in them. In other words, these

tools and practices are carriers of patterns of previous reasoning, used in ways that ren-

ders the tools invisible by a new generation with little or no awareness of what pur-

poses they were created for or of the struggles that went into their invention.

The inventions of Leibniz' calculus and Descartes's coordinate graphs

were startling achievements; today they are routine content for high

school mathematics....This encapsulation of distributed intelligence, man-

ifest in such human activities as measuring or computing, may arise

because we are extraordinarily efficient agents, always trying to make

what we have learned works usable again and again" [Pea, 1993, p.53].

Salomon [1993] raises the issue of including the individual's cognitions, repre-

sentations, and mental operations in a theoretical formulation of distributed cognition.

He argues that, since not all cognitions can be distributed, individual and distributed

cognitions must be examined in interactions. He disagrees with Pea and argues that

"not all cognitions are constantly distributed, not all of them can be distributed, and no

cognitive theory, particularly one that attempts to account for developments and

changes over time, can do without reference to individuals' mental representations"

[Salomon, 1993]. Salomon concludes that distributed cognitions and individuals' cog-

nitions need to be seen as affecting each other and that in order to account for changes

and developments in the performance of joint distributed systems, one has to consider

the role played by the individual partners [Salomon, 1993, p. 134].

Salomon and his colleagues argue that the effects of technology should be

emphasized so that autonomous intellectual performance can be achieved. They base

their choice on the fact that such tools are not sufficiently prevalent yet and thus how a

person functions away from the technology must be considered" [Salomon, et al.,

1991, p. 5]. They characterize two ways of evaluating intelligence for partnership
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between peoples and technologies: systemic (attends to the aggregate performance of

the partnership) and analytic (articulates the specific contributions made by the person

and the technology to the performance); claiming that the analytic approach is "more

oriented toward the study of human potential and toward educational concerns"

[Salomon et al., Ibid.]. Salomon and his colleagues characterize the two kinds of cog-

nitive effects of technologies on intelligence: effects with technology obtained during

intellectual partnership with the tools and effects of technology in terms of the transfer-

able cognitive residue left behind in the form of improved skills and strategies. They

characterize an intelligent technology as one which undertakes "significant cognitive

processing on behalf of the user and thus is a partner in distributed intelligence"

[Salomon, Perkins, and Globerson, 1991, p. 2]. Jones elaborated on this notion, char-

acterizing the use of graphing calculators in terms of an intelligent partnership, in

which there is a complementary division of labor:

The user plans and implements the solution, but passes the responsibility

over to the calculator at the appropriate time....A crucial aspect of the

partnership is the constant monitoring and checking of the information

generated by the calculator to make sure that the solution is consistent

with the user's knowledge and understanding of the problem at hand

[Jones, 1994, p. 213].

Despite differences, Pea, Salomon, Jones, and others believe that new technol-

ogies can support human activities by serving as experimental platforms in the evolu-

tion of intelligenceby opening up new possibilities for distributed intelligence. The

intelligences revealed through the practices of human activities reoriented from an

educational emphasis on individual, tool-free cognition to facilitating individuals'

responsive and novel uses of resources for creative and intelligent activity alone and in

collaboration are distributedacross minds, persons, and the symbolic and physical

environments, both natural and artificial.

The notion of situated-distributed cognition is gaining acceptance among other

theorists. Cobb qualifies his support of the position espoused by Salomon and insists

that "One ought to include in a theory of distributed cognitions the possibility that

joint systems require and cultivate specific individual competencies; i.e., cognitive res-

idues, which affect performance in subsequence distributed activities," a position simi-

lar to that maintained by Salomon [Cobb, 1997, p. 135] Bruner also supports the
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notion that a person's knowledge is not just in one's head, but is both situated and dis-

tributed. He wrote:

To overlook this situated -distributed nature of knowledge and knowing is

to lose sight not only of the cultural nature of knowledge but of the corre-

spondingly cultural nature of knowledge acquisition [Bruner, 1990, p.

106].

2.9 The Roles of Perception & Categorization

The roles of perception and categorization in the formation and organization of

conceptual systems are a recurrent theme in the literature. It is argued that every time

we perceive an object we classify it [Davis, 1984; Dehaene, 1997; Edelman, 1992;

Krutetskii, 1969b; Lakoff, 1987; Roth, 1996; Skemp, 1987; Tall, 1992a]. von Gla-

serfeld [1995] describes the process by means of which concepts and categories are

formed in Piagetian terms, claiming this process is always an empirical abstraction

the means by which categories are formed and generalized; an inductive process of

abstraction from sensory or motor experience. Reflective abstraction is the process of

deriving generalizations in which patterns are derived from actions or operations.

Processes by which perceptions are transformed into mental representations

(concepts) which result in categorization, recognition, and identification as distinct

from the representations themselves are a matter of convenience for discussion, rather

than a matter of precise definition. Perceived items are assumed to be assigned to cate-

gories by comparison and matched with stored representations. Krutetskii distin-

guishes between mental perception and visual perception. In capable children,

Krutetskii observed that they "seemed to have an analytic-synthetic perception of

mathematical material....in capable children, this [analytic-synthetic] comprehension

is extraordinary. It is highly original and tends to be so "curtailed" that perception and

comprehension seem simultaneous" [Krutetskii, 1969c, p. 74].

Roth [1996] claims that the ability to categorize (i.e, to form concepts) is a fun-

damental property of perception and that we also categorize remembered events and/or

objects. Skemp expressed a similar view: We classify every time we recognize an

object as one which we have seen before. Naming an object classifies it....But once it is

classified in a particular way, we are less open to other classifications" [Skemp, 1987,

pp. 100-11]. In contrasting the way in which mature mathematicians structure their
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knowledge contrasted with students, Tall points out that mature mathematicians are

not immune from cognitive conflict. They are "able to link together large portions of

knowledge into sequences of deductive argument...it seems so much easier to catego-

rize this knowledge in a logically structured way" [Tall, 1991, p. 7].

Inagaki & Sugiyama [1988] found that young children attribute unknown prop-

erties to animate objects based on similarity-based inferences, whereas older children

and adults use category-based inferences. Graham and Ferrini-Mundy [1989] reported

that students were unable to classify graphical representation as functions, when the

graph was not associated with the formula which generated the graph. Gray, Pitta, and

Tall [1997] reported that low achievers categorize images on the basis of recollections

of personal happenings and relationships; high achievers classified images by filtering

out the superficial aspects of the perceived object, concentrating on the more abstract

qualities of the items.

The notion of an initial focus of attention, together with the notion of path-

dependent logic, i.e., that the response is determined by how the object and/or action is

perceived, how context is interpreted and categorized, is regularly described in the lit-

erature to account for students' differing interpretations and responses. Gray, Pitta, and

Tall [1997] contend that "different perceptions of [the original] objects, whether men-

tal or physical, are at the heart of different cognitive styles that lead to success and fail-

ure in elementary arithmetic." Dorf ler contends that the construction of mental objects

involve more general psychological processes and states, including "attitudes, beliefs,

willingness to accept something, ascribing properties, hypothetical thinking, prepared-

ness to assume that something is the case, imagination, conviction, and focus of atten-

tion" [Dorfler, 1996, p. 475]. Mason argues that "the basic powers of sense-making

have to do with focusing attention on outer, material objects, and on inner, mental

images" [Mason, 1996, p.2].

The notion of "path-dependent logic" is discussed explicitly by Tall [1977] and

implicitly by Davis [1984], Dubinsky & Harel [1992], Hiebert and Carpenter [1992];

Greeno [1988], Kaput [1992b; 1989], Gonzales & Kohlers [1982]; and Skemp [1971].

The path of approach can be determined not only by cognitive conflict; but can also be

determined in whole, or in part, by the form of the external representation or by the

context in which it is presented. Either can trigger selection and retrieval of a specific
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cognitive unit. Students' misinterpretations of the expression y(t) to mean y times t are

indicative of the difficulties of interpreting ambiguous notation related to algebraic

structure, illustrating the path-dependent logic activated by erroneous interpretations.

2.9.1 Classification Systems: Biological Considerations

Recently reported findings of neurological research on the brain and in the

fields of categorization and perception suggest that we need to enlarge our analytic and

interpretive perspectives in order to progress in our efforts to understand students' pro-

cesses of conceptual construction and the organization of the resulting cognitive struc-

tures. Categorization plays an important role in how students' initial perceptions

activate conceptual schemas and particular concept images. Human categorization is

complex. Conceptual categories, which represent the shared characteristics by which

individually different things are mentally grouped together, serve to organize our

knowledge of the world into manageable chunks [Dehaene, 1997; Edelman, 1992;

Lakoff, 1987; Roth, 1996]. Lakoff has argued that "An understanding of how we cate-

gorize is central to any understanding of how we think and how we function" [ Lakoff,

1987, p. 6].

The research of Rosch and her colleagues linked reason to the biological brain

and culture. Rosch [1973, 1975] challenged the traditional notion that category repre-

sentation was based on defining features (classical categorization), a notion which

dates back to the time of the ancient Greeks. She and her colleagues provided convinc-

ing evidence that people do not mentally represent everyday categories in terms of

defining features, i.e., that concepts are not always represented mentally as well-

defined sets according to characteristic properties. Initially, Rosch [1973] proposed

that the conceptual representation of a given category is lodged in a prototype; a com-

posite that includes characteristics of the most typical members of the category. This

idea was subsequently refined and reformulated to include both the typical features

model and the exemplary model [Rosch, 1973; 1975; Mervis et al., 1976; Labov, 1973;

Smith and Medin, 1981; Hintzman, 1988; Barsalou, 1992].

One level, the basic level of categorization, has special properties. The notion

of a basic level emphasizes the importance of hierarchical relationships in the relation-

ship of conceptual information, with categories organized from the most general to the
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most specific. Those that are cognitively basic are in the middle of the hierarchy, mov-

ing upwards towards greater generalization and downwards towards greater specializa-

tion [Lakoff, 1987, p. 13]. Subsequent studies provided additional evidence against the

defining feature method of categorization. Labov [1973] found that context affects

how persons categorize everyday objects. Mervis and his colleagues [1976] showed

that typical category members are categorized more quickly than atypical category

members. Murphy and Wright [1984] confirmed the importance of expert knowledge

on categorization and concluded that the greater knowledge of experts may have led

them to focus on shared features, rather than on distinctive features of various psychi-

atric disorders when compared with the concepts of novices, who tended to focus on

distinctive features.

References to proto-typical categorizations and similarity-based inferences are

found in mathematics education research literature, as well as in neuro-scientific

research literature [Davis, 1984; Dorfler, 1989; Dugdale, 1993; Goldenberg, 1987;

Keller & Hirsch, 1994; Markovitz et. al., 1988, Tall & Bakar, 1990; Vinner, 1992].

Martinez-Cruz [1995] investigated the question: "What are the concept images and the

concept definition of function that students have?" The commonly reported result that

students identify graphs as functions only if they were within the students' previous

experience was supported by his findings. His report concludes with a statement char-

acterizing one student's prototypical view of functions: "for some students one single

model was more anchored in their mind than others, and they acted accordingly"

[Martinez-Cruz, 1995, p. 279].

Hatano hypothesizes that, for a coherent conception of a knowledge acquisi-

tion system, the process of knowledge acquisition requires restructuring and describes

the reorganization of conceptual structures in terms of prototypes:

Knowledge systems before and after restructuring are different in organi-

zation; for example, one piece of knowledge may become differentiated,

while other separate pieces of knowledge may become amalgam-

ated...Relationships between pieces of knowledge may also change as

restructuring takes place; for example, the same phenomenon may be

explained differently, some instances may become prototypical whereas

others may become marginal [Hatano, 1996, p. 199].
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There is evidence to support the claim that the ability to carry out categoriza-

tion is embodied in the nervous system. Reported results of recent neurological studies

utilizing magnetic resonance imaging (MIR) techniques, as well as other neurological

methods of examination, revealed that the process of comparison and matching with

stored representations is accomplished by parallel processing by an essentially sequen-

tial transformation in which information is continuously fed forward at the same time

it is being processed in the various stages [Dehaene, 1997; Edelman, 1992; Kosslyn,

1994; Roth & Bruce, 1996]. Dehaene claims that "the structure of our brain defines the

categories according to which we apprehend the world through mathematics"

[Dehaene, 1997, p. 245]. As an explanation of how, on the basis of innate categories of

their intuitions, mathematicians elaborate ever more abstract symbolic constructions,

Dehaene [1997], along with Changeux [1995], hypothesized that an evolutionary pro-

cess of construction followed by selection is at work in mathematics. They argue con-

vincingly that our brain architecture imposes strong constraints on the mental

manipulation of mathematical objects.

Edelman [1992] maintains that concepts are the products of the brain re-cate-

gorizing its own activities. He postulated the theory of neuronal group selection which

proposes that categorization always occurs in reference to internal criteria of value and

that this reference defines its appropriateness. Value criteria do not determine specific

categorizations, but do constrain the domains in which they occur [Edelman, 1992,

p.90]. Perceptual categorization is defined to be "the selective discrimination of an

object or event from other objects or events for adaptive purposes....that does not occur

by classical categorization, but rather by disjunctive sampling of properties" [Edel-

man, 1992, p. 87].

Mathematics education researchers have begun to take into account the neuro-

psychological bases of mathematics in their analyses of students' work and behavior.

The complementary roles of perception (input) and action (output) means that the cog-

nitive growth which occurs in mathematics is implicitly designed to make maximum

use of two highly contrasting features of the brain: the small focus of attention which

requires one to compress knowledge appropriately; and a large capacity for stored

experiences and concepts, according to Tall [1995]. In his early work on cognitive con-

flict, he argued that "understanding in mathematics often occurs in significant jumps"
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and that "lack of understanding...may leave the individual in a general state of confu-

sion, unable to pinpoint the difficulty." He examined these phenomena from a theoreti-

cal perspective that considered them to be a result of brain activity [Tall, 1977]. Davis

[1984] and Tall [1995] postulated the need for compression of knowledge due to the

large capacity of the brain to store information (passive memory) and the small capac-

ity of workbench memory (active memory).

Based on his observations, Krutetskii raised questions which he foresaw as the

task of future investigations, both for mathematics learning and for learning in general:

Is it possible that some people's brains, because of certain conditions,

become "oriented" toward perception of particular stimuli ("relation-

ships" and "symbols") and tend toward optimal response to these stim-

uli?"

Is it possible to indicate a kind of "partiality" of the properties of a per-

son's nervous processes (in particular, capacity) in conformity with the

nature of one or another of his activities; that the nervous system might

exhibit its properties differently according to this? [ Krutetskii, 1969c,

p. 103-104].

Krutetskii concedes that "perhaps some people's nervous systems are more sensitive to

stimuli with mathematical characteristics (relations, symbols, numbers) than to other

stimuli, and associations are formed more easily, with less effort and greater retention"

[Krutetskii, 1969c, p. 104]. Like many of those cited in this review who hold that ini-

tial perceptions and focus of attention determine the schema and/or concept image

retrieved from memory, he suggests that "basic difficulties of mastering skills or par-

ticular intellectual activities lie in the sphere of how the initial data are perceived and

not in the sphere of what operations follow this perception" [Krutetskii, 1969b, p.

106].

Krutetskii raised questions nearly thirty years ago that the research of present-

day neurobiology and neuropsychology are beginning to address. Using new brain

imaging tools, the findings of this research are currently revolutionizing our knowl-

edge of cerebral functioning and offer the possibility of a closer examination of the

neural bases of mathematics [Crick, 1994; Dehaene, 1997; Edelman, 1992, Roth &

Bruce, 1995]. It is interesting to note that Krutetskii questioned whether the strength of

neural processes takes on one characteristic in connection with mathematical activity

and another during other types of activity [Krutetskii, 1969b, p. 111]. Recent discover-
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ies by the Austrian neuropsychologist, HittmairDelazer, suggests that neuronal net-

works dedicated to more advanced mathematical abilities such as algebra exist

separate and distinct from those neuronal networks involved in mental calculation,

against all intuition [Dehaene, 1997, p. 198].

It is conjectured by Dehaene that "learning probably never creates radically

novel cerebral circuits. But, it can select, refine, and specialize preexisting circuits

until their meaning and function depart considerably from those Mother Nature

assigned them" [Dehaene, 1997, p. 203]. Many categories of wordsanimals, tools,

verbs, color words, body parts, numerals, and so onhave been found to rely on dis-

tinct sets of regions spread throughout the cortex. In each case, to determine the cate-

gory to which a word belongs, the brain seems to activate in a top-down manner the

cerebral areas that hold non-verbal information about the meaning of the word

[Dehaene, 1997, 228].

Determination of individuals' classification schemas is often extremely diffi-

cult. Lakoff [1987] describes an Australian aboriginal language, Dyirbal, which has

four classifiers, one of which precedes every noun; bayi, balan, balam, bala. The cate-

gory, balan, includes women, fire, and dangerous things, as well as birds that are not

dangerous, exceptional animals such as the platypus, bandicoot, and echidna, rivers

and swamps. This category, balan, also includes harmful fish, such as the gar fish and

the stone fish; two stinging trees, and a stinging nettle vine. Speakers of Dyirbal do not

learn category members one by one, but operate in terms of some general principles.

What appears to be an illogical classification system to a Western culture eye, is actu-

ally a principled and consistent system of classification to those who use the system

[Lakoff, 1987, p. 92-104].

If one assumes that students categorize their perceptions according to a classi-

fication system based on their own internal value system, then, it could be argued, the

system could possibly be structured according to the general principles hypothesized

by Lakoff. He offers a theory of cognitive models based on general principles which

he argues are found in systems of human categorization:

centrality (the basic members of the category)

chaining (the process of linking central members to other members)

experiential domains (basic domains of experience which may be cul-
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ture specific)

idealized models (idealized models of the world, including myths and

beliefs that can characterize the links in category chains)

specific knowledge (specific knowledge overrides general knowledge)

The Other (the "everything etse" category, with no central members,

chaining, etc.a catch-all category)

No common properties (categories not defined by common properties)

Motivation (the general principles that make sense of a system of clas-

sification but do not predict what the categories will be) [Lakoff, 1987,

p. 95 -96].

Lakoff argues that general principles are characteristic of all natural language

systems of human categorization and that, in order to understand how human beings

categorize in general, one must at least understand human categorization in the special

case of natural language. A question of interest is whether students categorize accord-

ing to systems of classification that are structured, but which appear to their mathemat-

ics instructors to be a Dyirbalian system, i.e., a relatively regular and principled way

of classifying which appears unstructured and lacking to one who is unaware of the

general principles and system used to classify objects. If Lakoff and others who hold

similar positions are correct, then it seems reasonable to conjecture that, what appears

to us to be unconnected lists of concepts and/or procedures produced by some students

are in fact, based on general principles and structured in some manner which makes

sense to the student. They are, as it were, unrecognized systems of classification

Dyirbalian systems of classification.

2.10 Summary

This chapter surveyed the literature on the nature of knowledge construction,

knowledge representation structures, and conceptual structures as instruments of cog-

nition. Notions seminal to this dissertation, such as concept image, procept, proceptual

divide, and representation were discussed. Issues of knowledge representation were

examined from a constructivist perspective. The extent to which concept maps can be

considered external representations of internal conceptual structures was also exam-

ined. Process-object theories of cognitive development which hold that intelligence is
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largely a property of the minds of individuals were reviewed and aspects of alternative

theories which take into account the social dimension of mathematical development

were summarized. The chapter continued with a discussion of technological chal-

lenges to current beliefs and practices. Various theories, including those of epistemo-

logical pluralism and distributed cognitions were reviewed. A brief discussion of the

roles of perception and categorization and biological considerations concluded the

chapter. The theoretical framework which guided the research of this study is situated

within the body of literature surveyed in this chapter and is described in the following

chapter.

Despite differences in alternative research perspectives, efforts to find points of

agreement on underlying principles of knowledge construction are being made. Evi-

dence of the desire on the part of those who hold differing epistemological positions to

consider the views of others with whom they disagree occurs in the recent literature. In

an effort to bridge the apparent impasse that the diversity of alternative epistemologies

for models of education and research has produced, Steffe proposed that those who

hold differing perspectives seek "ways of thinking that might lessen, if not neutralize,

some of the essential differences that have been identified and elaborated on" [Steffe,

1995, p. 489]. Mason argued for consideration of the views of the opposition in a

polarizing debate:

a reasonable alternative to polarized debates is to grasp both poles, to

argue that where you stand determines to some extent what you can see;

that there can never be a universal platform, a single all-embracing, all-

explaining perspective. Rather than deciding on one or another, it is usu-

ally most fruitful to grasp them both, to see both poles of a tension as

releasing energy for deepening appreciation of the situation [Mason,

1994, pp. 192-193].

This review of the literature of alternative perspectives concludes with a com-

ment by Bob Davis. Over the past several years, Davis [1996a, 1996b, 1992b] fre-

quently advocated the need to find ways to bring various theoretical perspectives

together. He argued eloquently that those who see the world (a) from a perspective of

human cognition; (b) those who view the world from the perspective of specialists in

mathematics (meaning the mathematics educators rather than those who create mathe-

matics), and (c) the various interest groups whose aims are sometimes in conflict,
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should be listening to one another more. He claimed that much is to be gained from

trying to overlap these perspectives:

When one tries to examine school or university mathematics programs

from more than one perspective, these programs begin to look very differ-

ent, and important new possibilities come to mind. Indeed I would argue

that the kinds of changes that are desperately needed in mathematics

instruction can only be made if we are able to bring these various view-

points togetherthe combination would be far more potent than the vari-

ous parts can be, acting alone [Davis, 1996a, p. 285].
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CHAPTER 3 Cognitive Units, Concept Images

and Cognitive Collages

Much as I own I owe

The travelers of the past

Because their to and fro

Has cut this road to last,

I owe them more today

Because they've gone away

And come not back with steed

And chariot to chide

My slowness with their speed

And scare me to one side.

They have found other means

For haste and other scenes.

They leave the road to me....

Frost, Closed for Good

3.1 Introduction: On the Shoulders of Giants...

There are many whose work and writings have influenced my thinking and the-

oretical perspective over the past several years. I am indeed a product of all I have sur-

veyed as a result of having stood, as Lynn Steen wrote, "on the shoulders of giants."

The primary sources and major influences on my thinking, my research, and my teach-

ing have been the works and writings of Davis, Skemp, Tall, Gray, and Krutetskii. My

own theoretical framework has been evolving as I continue to assemble bits and pieces

of knowledge gleaned from each of them to formulate my own theories, enlarge and

test my understandings. Relevant bits and pieces from other researchers' work have

contributed to the foundation of my theoretical framework, including the work of

Piaget, von Glaserfeld, Steffe, Vygotsky, Sfard, Thompson, Confrey, Salomon, and

Pea.

My own theoretical framework has been enriched by the work of many others

too numerous to mention, as well as to those already cited. It could be characterized as

an interactionist perspective which attempts to combine elements of the various episte-

mological positions, including those of constructivism and cognitive science, as well

as sociocultural perspectives such as those espoused by Vygotsky, epistemological

pluralism, and distributed cognition. Knowledge is viewed, not only as an organization

71



Cognitive Units, Concept Images and Cognitive Collages Conceptual Structures

of interiorized actions in the Piagetian sense, but also as an organization of possible

interiorized social interactions. Knowledge is both an acquisition and a process of

acquiring by the individual, shaped and modified by reflective abstraction and by

social interactions in which shared meanings and insights are generated. Knowledge is

believed to be organized, composed of various conceptual structures whose nature and

construction reflect the influences of Skemp and Davis, as well as those of Tall and

Vinner. Perceptions are categorized by selective sampling of properties based on an

individual's value criteria. The processes of construction, organization, and recon-

struction of knowledge are thought to be impacted by the brain's architecture, as well

as by the experiences and environment in which learning occurs. In the following sec-

tions of this chapter, I present this theoretical framework in greater detail.

3.2 Conceptual Structures

Robert Davis once used the term cognitive collage to describe a knowledge

representation structure: "...a frame or any other knowledge representation structure

actually is: A single piece of knowledge in the mind is, in fact the cognitive equivalent

of a collage" [Davis, 1984; p. 154]. A collage is defined as "an artistic composition of

materials and objects pasted over a surface, often with unifying lines and colours"

[American Heritage Dictionary, 1982, p. 291]. The notion of cognitive collage as a

metaphor to describe the processes of knowledge construction and the results of those

processes resonated within me. I regularly use metaphors to think with. I use meta-

phors to communicate my thoughts to others. I use metaphors in my teaching, a prac-

tice that was documented by a colleague whose dissertation focused on the use of

metaphor in the mathematics classroom [Currie, 1993]. The use of metaphor (i.e., the

mapping of one thing to another in a different domain), to think with as well as com-

municate with, is accepted by researchers in different domains [Skemp, 1987; Davis,

1984; Lakoff, 1987; Edelman, 1992; Roth, 1996].

Davis [1984] claimed that one of the most powerful tools for knowing some-

thing is the metaphor:

In order 'to think' about abstract matters we make use of our cognitive

collages. But this means that, since we use these collages, built up from

primitive origins, in order to do our thinking. these collages themselves

must nlav a major role in shaninv our thinkinv.... suite anart from shar-

72



Cognitive Units, Concept Images and Cognitive Collages Conceptual Structures

ing any ideas with anyone else, we use metaphors within out own minds

in order to be able to think [Ibid., p. 178].

He credits Lakoff and others with clarifying the true role of metaphor as an essentially

conceptual tool for knowing something. Edelman justifies the use of metaphor and

argues that the symbols of cognition must match the conceptual apparatus contained in

real brains, and that when symbols fail to match the world directly, human beings use

metaphor and metonymy to make connections, in addition to imagery and the percep-

tion of body schemes [Edelman, 1992, p. 139].

Davis' description of a cognitive collage evoked memories of an earlier time,

when I was a juried artist and taught courses in drawing and painting. The expression,

cognitive collage, recalled to mind images of the paintings of Margo Hoff, a contem-

porary and friend of Louise Nevelson, the New York sculptor. Many of Margo's later

works were large collages constructed of painted pieces of canvas assembled into

images that conveyed a sense of place and of experiences recalled to memory and

immediately recognizedarrangements of fantastic colours and shapesthat are as

vivid in my mind today as when I first saw those works nearly twenty years ago. As I

moved from collage to collage, my reactions were"Oh course!" and "Yes! That's

what it feels like!" Her paintings gave shape and substance to episodic memories of

places and experiences long-forgotten and now recalled.

I also recalled the paintings of Marty!, a Chicago area artist whose work has

been shown at the Royal British Artists Gallery, London, as well as in galleries and

museums throughout the United States. An extraordinary woman, she was the art edi-

tor for the Bulletin of Atomic Scientists, founded at the time of the first atomic bomb to

confront the social and political consequences of the work of a group of nuclear physi-

cists, one of whom was her husband, Alexander Langsdorf. When I first met her, she

was semi-retired, teaching only the Masters' Course in Painting at the Art Institute.

Despite her last minute preparations for a trip, she took time to critique my work and

to give me a tour of the marvellous house she and Alex lived in, designed by Mies Van

de Rohe, the day before she left for Greece. Her collage paintings, particularly her

series entitled "Islands," consisted of assembled painted bits and pieces of paper which

transported this viewer to places of mystery, of serenity, and of wonderment. A col-

lage, in the hands of an artist, is much more than a haphazard arrangement of photo-
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graphs commonly thought of as a "collection of pictures on the refrigerator door." It is

truly an artistic composition of bits and pieces assembled into a cohesive whole, with

unifying lines and colours that resonate with the viewer, modifying his/her experiences

consciously and in ways that one is not aware of until latersometimes much later.

The process of assembling bits and pieces into a coherent organized whole is a

wondrous thingas is the process of learning and developing understanding. The term,

cognitive collage to describe the process of constructing cognitive structures is so

aptknowledge is indeed assembled from bits and pieces, usually incrementally,

though sometimes by chunks, organized into a coherent whole that makes senseat

least to the person who constructed it. Extending the metaphor to our classrooms, each

student is a more or less capable artisteach creates his/her own cognitive collages. It

is our task as teachers and researchers to interpret and understand the external,

observed lines and colours of our students' internal assemblages of bits and pieces of

knowledgetheir cognitive collages.

3.3 Cognitive Collages, Concept Images, and Cognitive Units

The theoretical framework which guided the research reported in this disserta-

tion is itself a cognitive collage: i.e., a metaphorical characterization of a conceptual

framework of cognitive structures which includes complex networks of schemas, con-

cept images, and cognitive units, flexibly linked together by highly individual paths,

with varying hierarchical levels, degrees of compression, and flexibility. The term con-

cept image is used here to mean everything associated with the concept name, includ-

ing mental images, properties, processes, contexts of applications, etc., as defined by

Tall and Vinner [1981]. A cognitive unit consists of those bits and pieces of knowledge

chunked together that can be held in the focus of attention, (i.e., held in working mem-

ory), which acts as the cue for retrieval and selection of the schema which determine

subsequent actions or those facets of a concept image needed for the task at hand. It is

used in the present study in a modified sense of Barnard and Tall, who define it to be "a

piece of cognitive structure that can be held in the focus of attention all at one time"

[Barnard & Tall, 1997, p. 41].
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The notion of conceptual categories structured in some manner is not a new

idea in mathematics education research. A schema is a very stable, refined cognitive

collage. It can be a cognitive unit or a concept image which has been carefully shaped

and refined with use into an effective tool for organizing and retrieving stored knowl-

edge. A schema can also be used to organize and assimilate new knowledge into an

existing cognitive structure. According to Skemp, schemas are sources of the plans

that form the basis of skills, along with genetically-programmed plans of actions and

plans of actions learned as habits. He defines skill as the combination of having a plan

and being able to put it into action [Skemp, 1987, p. 126].

Different aspects or parts of these more complex cognitive structures are

evoked, depending upon the cue(s) that trigger retrieval and selection of that part of the

concept image or schema deemed relevant for the task at hand. This complex network

of schemas, concept images, and cognitive units is perceived as an increasingly com-

plex cognitive collage, uniquely and dynamically constructed over time, as new

knowledge is added onto and assimilated into an existing cognitive collage.

3.4 Path-Dependent Logic

This metaphorical characterization of a conceptual framework is consistent

with a cognitive approach that takes account of the development of knowledge struc-

tures and thinking processes of the individual student in dynamic equilibrium with his/

her environment. The notion of a conceptual framework, characterized metaphorically

as a cognitive collage, provides a means of describing and characterizing the way in

which students construct new knowledge and grow in their understanding of mathe-

matics. Cognitive units, concept images, and schemas are all cognitive collages (i.e.,

cognitive structures). Cognitive units can be compressed chunks of more complex col-

lages or a particular feature/property of the perceived object or action that is the initial

focus of attention. Concept images and schemas, which, as they grow in interiority and

become more complex, are not able to be held as a unit in working memory.

How do you interpret x? Do you say "the additive inverse of x," or "the oppo-

site of x" or "negative x"? If you read x as "the additive inverse of x" or "the opposite

of x" what comes to minda process (taking the additive inverse) or an object (nega-

tive number)? How do you think students interpret the symbol x? Is their interpreta-
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tion dependent upon the words used with the symbol(s)? What concept image do

various students have? Do they see two symbols, and x, or one symbol, x?

What students' perceive initially and the processes by which they construct

their knowledge were subjects of this study. One's initial focus of attention, i.e., the

perceived object which activates a particular cognitive unit, directs the path of catego-

rization which results in the selection and retrieval of a specific schema or concept

image. Tall argued that "As the learner restructures his mathematical schema to under-

stand these [mathematical] ideas, cognitive conflict is bound to occur. It can give rise

to path-dependent logic, in which the learner can give different answers to the same

questions depending on the path of approach to that question" [Ta11,1977, p.1]. How-

ever, this researcher believes that path-dependent logic is also dependent upon the

nature of the individual's processes of constructing and organizing knowledge which

constrain the ability to flexibly alter one's existing cognitive structures. It is argued that

one's initial focus of attention activates path-dependent logic by retrieval of conflicting

schemas without necessarily giving rise to cognitive conflict and the restructuring of

those existing schemas.

Consider students' difficulties interpreting the ambiguity of the minus symbol

when their arithmetic understanding of this symbol remains unchallenged. Where a

number is concerned, such as 3, the value is negative. Later, when numbers are

replaced by variables, e.g., x, the student's arithmetic schema needs to be restruc-

tured. Students are generally taught that "we don't like to start an algebraic expression

with a minus sign," thus when we write y = mx + c, for m = 1, we tend to write y = c

x, and avoid confronting the ambiguity directly. However, the problem really begins to

surface when students encounter quadratic functions. What is the difference between

y(x) = x2 + 1 and y(x) = 1 x2? There is a real ambiguity here, which is decided more

by intuition than by logic. Is x2 equal to (x2) or (x)2? When evaluating a quadratic

function such as y(x) = x2 + 1 for y(-3), is 32 equal to (3)2 or (-3)2? Mathemati-

cians, using the traditional power notation, interpret the algebraic expression y = x2 as

y = (x2), when given a negative number input. The graphical representation ofy = x2

is generally described as "the opposite of the graph of y =x2.

Computer scientists interpreted y = x2 as y = (x)2. However, in recent years,

the Texas Instruments graphing calculators (TI-81, TI-82, and TI-83) have been pro-
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grammed to implement the mathematician's intuitive, traditional power notation inter-

pretation in their software. These calculators include separate keys for the binary

operation of subtraction and the additive inverse. Entry of 32 yields an answer of 9,

but entry of (-3)2 results in a positive-valued answer, 9. Inclusion of both keys, with

their different functionality, places the burden of interpretation on the user, as well as

focusing attention of the need to understand the role of context and grouping symbols.

This is an example of a situation in which the use of technology requires math-

ematicians to clarify their own understandings and reexamine their assumptions, as

they integrate the use of these technological tools into their courses. Use of these

graphing calculators necessitates explicit acknowledgment of the ambiguity of the

notation, as well as a rethinking of what activities might be appropriate to create cog-

nitive dissonance which has the potential to effect reconstructions of students' inade-

quate arithmetic schemas and in their understanding of the minus symbol. The reform

curriculum includes investigations designed to create cognitive dissonance, with

explicit discussion of the ambiguity of the minus symbol, particularly when the graph-

ing calculator is introduced. The materials use the traditional mathematical interpreta-

tion in which = x2 is understood to mean (x2).

The fact that students experience no cognitive conflict when executing proce-

dures suggests that they routinize the procedures, developing mechanical skills, not

cognitively-based skills, which contributes to the lack of flexibility. This inflexibility

impacts the path of approach to the categorization, selection and retrieval of concept

images and/or schemas. Individuals build up their mental images of a concept in a way

that may not always be coherent and consistent. Consider the example of students who

have learned a process incorrectly and do not experience cognitive conflict when the

context is changed. Students frequently write t 2-4, when asked to square the binomial

(t 2)2. They generally fail to recognize that the same process of squaring a binomial is

invoked when they are given a quadratic function such as 14) = x2-3x +5, and asked to

evaluate f(t 2). They fail to execute the procedure correctly in the second context as

well as in the first instance, sometimes writing t2+4 3t +12 + 5 in the second instance,

while writing t2-4 in the first instance. Two different, incorrect answers to the same

task, the second embedded in a context different from the first, is indicative of path-

dependent logic and a compartmentalization of knowledge.
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The students experience no cognitive conflict. When interviewed, the students

expressed surprise that they were being asked to square a binomial as part of the pro-

cess of evaluating a function. They readily admitted that they had not recognized the

process of squaring a binomial embedded in the evaluation of a function. In fact, they

were unaware that they had given two different answers, both incorrect, for squaring a

binomial, until, during the interview, they examined their work and reflected on what

they had previously written. It is conceivable that students' inconsistent responses are

based on the path of approach based on their initial perception and categorization,

resulting in retrieval of different frames [Davis, 1984], or because of the schema uti-

lized [Skemp, 1987].

3.5 Concept Maps: Representations of Cognitive Collages

There are those who would argue that it is not possible to characterize a stu-

dent's internal representations by any external means and that the current discussion of

internal vs. external representations is a source of on-going debate. I tend to agree with

Rumelhart and Norman's definition of representation: "a representation is a something

that stands for something else, a kind of model of the thing represented [Rumelhart

and Norman, 1985; p.16]. Internal representation is used in the sense defined by Gol-

din and Kaput [1996] to refer to "possible mental configurations of individuals, such

as learners" [Goldin, 1996, p. 399]. Such configurations are not directly observable.

The experience of metacognitive awareness is inevitably imperfect and incomplete,

directly accessible only to the person who experiences it when describing his/her own

mental processes.

Goldin and Kaput [1996] argue that it is not a requirement of a scientific theory

that its every component be directly observable, only that it have consequences that are

observable. The external representation of a concept map is an observable representa-

tion of the student's internal cognitive collage at a given moment in time. In the proc-

ess of creating the concept map, the student is engaged in a metacognitive activity that

shapes and modifies the individual's understanding of what s/he knows as the map is

being constructed. The following student's response, written as part of her portfolio

evaluation at the end of the semester is typical:
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Concept maps have helped me see how things are connected and what

they have in common. For example, while I was doing my concept map

for FUNCTION, I remembered that from an arithmetic sequence you can

get either linear or quadratic. I never really saw it that way, because for

linear you need the 1st finite difference and for Quadratic you need the

2nd finite difference.

Student ZH

The process of constructing concept maps by students is a means of engaging

students in metacognitive activity that does indeed shape and modify the individual

student's understanding of what s/he knows. Those maps, triangulated with other data,

enhance our understanding of students' processes of knowledge construction and pro-

vide a representation of the process of construction and the structure of the resulting

cognitive structures. Hatano [1996] argues the case for the ongoing usefulness of gen-

eral accounts of aspects of cognition, notably expertise and knowledge representation.

He suggests that "some restructuring is needed in order to proceed to a more advanced

version of mathematics, and that many dropouts in mathematics are due to failure to

restructure...Students' initial understanding of a mathematical concept could be con-

siderably different from its mature, if not final form" [Hatano, 1996. p. 208]. His com-

ments lend credence to the use of student's concept maps as a means for reflection and

connection-making on the part of students.The growing body of evidence on the effi-

cacy of using concept map data suggests that the use of concept maps is a viable, alter-

native means of documenting students' growth in mathematical understanding and

their processes of knowledge construction, organization, and reconstruction.

3.6 Concept Maps: Tools for Instruction and Analysis

Though students' conceptual frameworks and their knowledge representation

structures are not directly observable, a focus of this research was to document mathe-

matical growth and understanding during a sixteen-week semester course and to pro-

vide evidence of the nature of the knowledge construction process, albeit imperfectly.

Much human activity is goal directed. This implies that if we want to understand what

people are doing "we need to go beyond the outward and easily observable aspect of

their actions and ask ourselves what is their goal....To limit a description of what was

happening to the observable behaviors, superficially very different, would be to miss

what they had in common, namely the goal state" [Skemp, 1987, p. 104]. Students'
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concept maps are considered an external means of documenting the process of assem-

bly, i.e. the construction of cognitive collages (knowledge representation structures),

particularly as this construction occurs over time. They provide visual evidence of the

processes by which students organize and integrate new concepts and procedures into

their existing conceptual frameworks and can reveal the presence of inappropriate con-

cept images and connections.

The use of concept maps as an instructional tool and as a research tool has been

cited in the literature [Skemp, 1987; Laturno, 1994; Park & Travers, 1996]. Skemp

credits Tollman with the notion of a cognitive map, which is used by Skemp as a tran-

sitional metaphor generalized into the concept of a schema, i.e., a particular knowl-

edge structure. For Skemp, schemas are "mental models which embody selected

features of the outside world" which can be represented as "cognitive maps" used as a

transitional metaphor of conceptual structures [Skemp, 1987, pp. 108-109].

Skemp used cognitive maps to clarify the process of concept formation and for

the purpose of planning instructionidentifying various skills and the sequencing of

those skills necessary for the development of a particular mathematical concept

[Skemp, 1987]. The use of concept maps in this study differs from that of Skemp, in

that it is the students who are constructing the maps, not the instructor. The purpose is

also different. In this study, concept maps were used to reveal characteristics about the

nature of students' knowledge construction processes, not for purposes of planning

instruction. Laturno used concept maps as a mean of instructional assessment. Park &

Travers used them as a comparative research tool, contrasting the maps of students

with those of an 'expert," a use of concept maps typically described in the research lit-

erature of the sciences. The studies cited, including those of Laturno [1994] and Park

& Travers [1996], used quantitative methods of analysis and assign point values to var-

ious map components.

Qualitative methods for analyzing students' concept maps were developed for

this study, in contrast to the quantitative methods of analysis used by Laturno, Park &

Travers, and those reported by researchers in the science literature. In an attempt to

more clearly identify the underlying structure of students' concept maps, schematic

diagrams of each of the three concept maps were constructed by the researcher for

each of the eight students in the two groups of extremes. Analyses of the concept maps
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and their corresponding schematic diagrams, which have the labels and the highly

idiosyncratic quality of the lines and handwriting of each student eliminated, permit

the viewer to more easily compare the maps created by an individual student in week 4

with his/her later maps of week 9 and week 15. This method of presentation clearly

reveals the underlying structure of each map for a given student, as well as document-

ing the changes in structure that have occurred over time. It also allows for a more

focused comparison of the maps of one student with those of another student.

3.7 Thesis and Research Questions

This study investigated the nature of the processes of knowledge construction,

organization, and reconstruction and the consequences of these processes for a popula-

tion of undergraduate students enrolled in a remedial algebra course, a population gen-

erally assumed to be relatively homogeneous. The strategies students employed in

their efforts to interpret and use ambiguous mathematical notation and their ability to

translate among various representational forms of functions were also subjects of

study. It is hypothesized that divergence and fragmentation of strategies occur between

students of a undergraduate population of students who have demonstrated a lack of

competence and/or failure in their previous mathematics courses. It was expected that

the divergence between those who were more successful and those who were least suc-

cessful would be observable, though the divergence would probably be less pro-

nounced than that reported by Gray & Tall [1994], given that the population of the

study generally consists of students in the 45-75% range of a typical high school grad-

uating class.

Given a population of undergraduate students who were previously unsuccess-

ful in their mathematics course(s) or who are underprepared to enroll in the subsequent

course, the main research question related to this thesis is addressed:

does divergence and fragmentation of strategies occur among under-
graduate students enrolled in a remedial algebra course who have previ-

ously been unsuccessful in mathematics?

The study investigated students' ability to think flexibly, to recognize the role of con-

text when interpreting ambiguous notation and symbols, the development of greater

confidence and a more positive attitude towards mathematics. Two other questions
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were addressed which asked whether students classified as 'less able' and/or 'reme-

dial,' could, with suitable curriculum:

demonstrate improved capabilities in dealing flexibly and consistently

with ambiguous notation and various representations of functions?

develop greater confidence and a more positive attitude towards mathe-

matics?

In order to explain why the phenomenon of divergence occurs, it is also

hypothesized that successful students construct, organize, and reconstruct their knowl-

edge in ways that are qualitatively different from those of students least successful and

that how knowledge is structured and organized determines the extent to which a stu-

dent is able to think flexibly and make appropriate connections. The inability to think

flexibly leads to the fragmentation in students' strategies and a resulting divergence

that is both quantitative and qualitative, between those who succeed and those who do

not. These processes of construction, organization, and reconstruction are constrained

by a student's initial perception(s) and the categorization of those perceptions which

cue selection and retrieval of a schema that directs subsequent actions and thoughts.

The research question related to this thesis is:

do students who are more successful construct, organize, and restruc-

ture knowledge in ways that are qualitatively different from the proc-

esses utilized by those who are least successful?

3.8 Summary

The theoretical framework, along with a statement of the two major theses and

related research questions were presented in this chapter. Both the theoretical frame-

work and theses are situated within the existing body of related research which consid-

ered the divergence that occurs in mathematics classrooms between students who

succeed and those who fail. The present study extends the existing body of research to

investigate whether students who are successful construct conceptual structures that

are qualitatively different from those constructed by students who are unsuccessful.
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CHAPTER 4 Methodology

Grant me intention, purpose, and design

That's near enough for me to the Divine.

And yet for all this help of head and brain

How happily instinctive we remain,

Our best guide upward further to the light,

Passionate preference such as love at sight.

Robert Frost, Accidentally on Purpose

4.1 A Piagetian Paradigm Extended

Skemp defines a methodology as "a collection of methods for constructing

(building and testing) theories, together with a rationale that decides whether or not a

method is sound. This includes both constructing a new theory ab initio, and improv-

ing an existing theory by extending its domain or increasing its accuracy and com-

pleteness" [Skemp, 1987, p. 130]. The collection of methods used in this study include

(a) quantitative methods of data collection used to indicate global patterns that could

be generalizable across populations to document changes in students' beliefs and to

measure improvements in their mathematical competencies; and (b) qualitative meth-

ods that add depth and detail to the quantitative studies and allows the researcher to

focus on the individual student within the broad-based context of the quantitative stud-

ies.

The research described in this thesis is an extension of the teaching experiment

based on the constructivist methodology of Steffe (as cited in Skemp, 1987, p. 136).

Extended teaching experiments have typically involved students in elementary grades

[Steffe & Cobb, 1988; Steffe, von Glaserfeld, Richards and Cobb, 1983; Skemp,

1987]; or students in grades 6-12 [Confrey, 1991, 1993; Heid, 1988a; Thompson,

1996; 1994]. One aim of this research is to extend the teaching experiment approach to

undergraduate classrooms in which students are enrolled in non-credit remedial alge-

bra courses that are prerequisite for the vast majority of college level mathematics

courses. The methodology of this study acknowledges the relations between instruc-

tion and learning. However, working from a cognitive perspective, the purpose of this

study is to make and test hypotheses about the nature of students' processes of con-
,

structing, organizing, and assimilating new knowledge into their existing cognitive
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collages of conceptual structures, seeking evidence that changes in outward behavior

index changes in internal representations. The effect the learning environment had on

the performance of individual students is considered, but was not a primary focus of

this research.

Skemp [1987] suggests that distinguishing between what has been learned with

understanding and what has just been memorised requires a combination of a teaching

situation and diagnostic interviews. It is the combination which offers opportunities

for inferences both about the states of students' schemas at various stages in their

learning and about the process by which they progress from one stage to another. To

what extent is this possible and practical for classroom instructors? As both researcher

and instructor of the course during the preliminary and main classroom-based studies,

one of my goals was to develop a plan of research, together with data collection instru-

ments which could be utilized by classroom instructors who are interested in the men-

tal processes of their students. For many teachers, the situation in which clinical

interviews are conducted with selected students is neither practical nor possible.

Opportunities to construct theory and develop curriculum provide instructors with

opportunities to develop their own theoretical understanding in close relation to their

own experience and classroom needs, using the basic tenets of constructivism as guid-

ing principles to build models of the realities of our students with whom we interact,

constructing our own understanding of our students' understanding of the mathematics

they are learning.

4.1.1 Research Design: Method and Data Collection Instruments

Sfard [1991] has pointed out, "It is easier to show what students cannot do

rather than what they think and imagine." In order to distinguish between students who

construct cognitive collages that include meaningful connections between new and

existing knowledge conceptual structures and demonstrate the ability to think flexibly

and those who do not, a modified grounded theory approach to evaluation of data and

generalization of theory arising out of the analysis of data taken from a variety of con-

texts is used. The quantitative preliminary studies included a broad-based field study

involving 237 students at 22 sites in several states and a classroom-based study at the

site where the main study was to be conducted. A preliminary qualitative study was
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also conducted at the site of the main study. Methods of data collection included (a)

pre- and post-course surveys; (b) pre- and post-course tests; (c) student work collected

throughout the semester which included, in addition to the problems assigned, stu-

dents' descriptions, explanations, and reflections on their work, (d) task-based inter-

views; and (e) student-created concept maps. Questions included in the pre- and post-

course tests used a variety of representational forms designed to test students' ability

to think flexibly and to go beyond execution of procedural rules to document charac-

teristics of higher-order student understanding, using a Krutetskiian model [ Krutetskii,

1969].

Quantitative data (the pre- and post-course self-evaluation surveys and tests,

together with student work collected during the semester) were analysed to identify

areas of focus. Qualitative methods and data (task-based interviews with individual

students twice during the semestermidterm and at the end of the semesterand stu-

dent-created concept maps) are expected to add depth and detail to the quantitative

studies where the results indicate global patterns that could be generalizable across

populations. A goal of this research is to identify some of the quantitative and qualita-

tive characteristics of students' growth in their understanding of mathematics and in

their ability to interpret and use ambiguous mathematical notation. It is predicted that

there exist both quantitative and qualitative differences in the strategies and construc-

tion processes used by undergraduate students of an undergraduate remedial popula-

tion. It is the nature of these differences that is the main focus of investigation.

Skemp's criteria of adaptability and Krutetskii's structure of mathematical

abilities were used as the models of the research design to analyze the strategies and

processes of knowledge construction used by students at the extremes of an already

stratified population. Krutetskii [1969] studied the extremes of various elementary-age

groups in their studies of students' ability to generalize, to think flexibly, and to curtail

reasoning. Students in the mid top third and mid bottom third of a population of chil-

dren ages 7-12 were studied by Gray and Tall [1994] and Gray and Pitta [1997]. They

documented qualitative differences in the strategies employed by the more able and

those less able students. This research extends this approach to examine whether

undergraduate remedial students experience a divergence as a result of using qualita-

tively different strategies.
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4.2 Triangulation

Drop-out and withdrawal rates in the developmental courses typically range

between twenty-five and fifty percent. Since it is not possible to predict with any cer-

tainty which students will still be in class and part of the study at the end of the semes-

ter, and since this study has as its focus investigating the nature of students' developing

understanding and processes of knowledge construction over time, the selection of stu-

dents to be profiled was not done until after the semester ended. In an attempt to

clearly distinguish characteristics differences between those students who succeed and

those who do not, the decision was made to analyse in depth the data of those students

categorized as more able and those categorized as less able.

Results of the pre-and post-test questionnaires, together with results of the

open-response final exam and departmental final exam were used to rank the students.

Those categorized as more able were the top fifteen percent of the ranked students and

those categorized as less able were those ranked in the bottom fifteen percent of the

class at the end of the semester. Follow-up interviews and analysis of their strategies

and concept maps are used to develop profiles of each of these two subgroups of the

class. The accumulated data is analyzed and interpreted within the theoretical frame-

work described in the preceding chapter. Profiles of two students are developed.

Gray and Tall (1994) reported on the qualitative differences in strategies used

by students aged 9-12, as did Krutetskii [1969]. A difference between these earlier

studies and the present one is that the populations of their research were assumed to be

a fairly normally-distributed population of elementary-grade students. The population

participating in this research consists of undergraduate students enrolled in undergrad-

uate remedial algebra courses who have (1) failed the course previously, either at col-

lege or in high school; (2) have taken the course previously and passedbut were

unable to pass a placement exam that qualified them to enroll in a college-level mathe-

matics course; or (3) took the course several years ago and need to review their skills,

having forgotten much of what they once knew.

Various types of triangulation were used: data triangulation, method triangula-

tion and theoretical triangulation [Bannister et al., 1996, pp. 146-148]. The need to

collect data from different participants at different stages in the activity and from dif-

ferent sites of the setting (data triangulation) is addressed by collecting data of all stu-
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dents in the classroom setting and in the interview setting at different times during the

semester. The pre- and post-course attitude surveys and curriculum materials were

used in a broad-based field study. Pre- and post-course self evaluation surveys were

used in all three studies: the field study, the preliminary classroom study, and in the

main study. Responses of the main study participants are situated within the frame-

work and analysis of the broader-based field study and compared with the preliminary

study data as well. Different methods are used to collect information (method triangu-

lation). Written surveys, pre- and post-test questionnaires, task-based interviews, stu-

dent work and concept maps are the instruments used in the collection of data. Several

questions asked on the pre- and post-test questionnaire are also included on unit

exams, and on the final exam to allow comparisons among instruments, question for-

mats and contexts, and consistency of performance and strategy by individual students

over time.

Theoretical triangulation is used in an effort to avoid the limitations that result

when explanations rely on a single theory. The theoretical framework used in the anal-

ysis of data presented in this dissertation is situated within the theories and research of

Skemp [1987]; Davis [1984; 1992, 1996]; Krutetskii [1969]; and Gray and Tall [1994].

The theoretical framework in this dissertation also draws from the work of Salomon

and Pea [1993]; Confrey [1993], and Jones [1992] as well as many others (theoretical

triangulation). The recent research on the brain, categorization, and perception by

Crick, [1994]; Dehaene [1997]; Edelman [1992]; Lakoff [1987]; Kosslyn [1994]. and

Roth [1995] offers a broader framework in which data can be analyzed and interpreted.

Efforts to integrate the quantitative and qualitative techniques used in this research and

to validate the results of each type of data collection lends confirmation to and

strengthens the thesis.

4.3 Variables to be taken into Consideration

In any research project, there are factors which should be taken into considera-

tion when examining the results. The subjects of this research have prior histories con-

sisting of a variety of experiences, not all of which can be known or discovered by the

researcher. We start with bits and pieces of a complex jigsaw puzzle, and hope to add a

few more pieces here and there. Utilizing an appropriate research design based on an
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articulated theoretical framework, maintaining persistence in the search for answers

and analysing the data to distinguish the significant from the insignificant, the

researcher hopes to contribute to the existing body of research on how students think

and the processes by which they construct knowledge to develop understanding.

4.3.1 Prior variables

Prior variables consist of factors that already exist such as students' back-

grounds, their attitudes, cognitive preferences, competencies, and concept images con-

structed appropriately and inappropriately. In this study, the prior variables are the

students enrolled in a reform developmental algebra course at a community college

that is the site of this research. These students have been described as victims of the

"proceptual divide," classified as "less able" by virtue of the fact that they are enrolled

in a remedial algebra course. Many of these students have taken the course previously

and have failed, either to complete the course or to develop sufficient competency and

understanding to successfully complete a subsequent college-level mathematics

course. Their prior experiences with mathematics have led them to believe that mathe-

matics is a collection of meaningless rules and procedures to be memorized [Davis,

1989; Keller & Hirsch, 1994; Krutetskii, 1976; Gray & Tall, 1993; Mc Gowen et al.,

1995; Tall & Razali, 1993, Vinner, 1997]. The focus has been on instruction that con-

tributes to instrumental understanding [Skemp, 1987], through the teaching of endless

skills and procedures, reinforced by the vast majority of text materials used in high

school and college classrooms today. Instructors who teach this course express amaze-

ment and frustration that so many students have completed their high school mathe-

matics courses and have entered college with so little mathematical understanding.

The prior variables of students' already formed cognitive units, concept images, and

schemas assembled into highly individual cognitive collages are a focus of investiga-

tion and examination in the main study. The broad-based preliminary studies investi-

gate some of the prior variables such as students' backgrounds, attitudes, and existing

concept images before undertaking the main study.
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4.3.2 Independent variables

The independent variables of this study include the "reform" curriculum as

described below, with the extensive use of technology. The curriculum that serves as

an independent variable is the intended curriculum. Students are required to purchase a

graphing calculator (the TI-82 or TI-83 graphing calculator) since the text integrates

use of the calculator as a tool to explore mathematics extensively. Instructor decisions

to supplement or revise the curriculum based on classroom interactions and diagnosed

needs of students relevant to this study are also described.

4.3.3 Intervening variables

Numerous intervening variables must be acknowledged. The first is the role of

the student and the role of the instructor in the classroom community. The curriculum

used in this study is based on the philosophy that students should be actively engaged

in doing mathematics rather than watching someone else (the teacher) do mathematics.

Student effort and dedication to the course is a second intervening variable. The sub-

jects participating in this study are young adults (aged 17-20) for the most part, who,

typically have varying levels of commitment to academic excellence with respect to

the study of mathematics. A majority of them are enrolled as full-time students and

work fifteen or more hours a week at an outside job. They enter college unprepared to

learn independently or to put forth the sustained effort necessary for reflective learn-

ing. The level of commitment to this course varies widely. For those who exert little

effort, the outcomes are going to be marginal at best.

A third intervening variable is the implemented curriculum. The number of

sections in the text that students actually study, the sequence in which topics are stud-

ied, and the time spent investigating various topics significantly impact the formation

of the students' concept images. Students' concept maps created throughout the

semester reveal that students tend to organize their knowledge based on the sequence

in which topics are introduced and the emphasis placed on particular topics.

What is assessed, the methods and artifacts of assessment are other intervening

variables. The instructor involved in this project believes that assessment should be a

learning experience for students as well as herself, and that the purpose of assessment

is to provide opportunities for students to demonstrate what they know and understand,
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as well as the competencies they have acquired. Efforts to reduce "test anxiety"

include giving students opportunities to demonstrate their skills and understanding in a

variety of ways. Weekly journals, take-home small group exams and oral exams are

used, in addition to individual in-class assessments. The semester grade is determined

based on the student's self-evaluation and defence of a portfolio of work personally

selected, which s/he believes demonstrates the competence and level of understanding

of the content of the course to support the grade indicated by the student in conference

with the instructor.

Students' use of the technology is another factor that impacts student learning

and understanding of concepts. The use of technology not only changes the sequence

of instruction but changes the types of skills students need to learn, as well as the

nature of the learning process. Students who are already having difficulties coping

with learning new mathematical concepts and procedures tend to view the graphing

calculator as a tool they reject since it necessitates the learning of more procedures,

together with connections to the mathematics they are already struggling to learn.

Instead, they may elect not to add to their cognitive burden and continue to depend on

rote-learned algorithms, using pencil and paper as their primary tool. As the results of

the preliminary and main studies are reported in the following chapters, it is appropri-

ate to keep these variations in mind.

4.3.4 Dependent variables

The key dependent variables are students' ability to think flexibly, recognizing

the role of context and the impact their processes of knowledge construction have on

this development. Using a non-traditional text with ready access to powerful graphing

technology, does an already stratified population of undergraduate students develop

the ability to think flexibly when confronted with ambiguous notation and symbols

such as functional notation and the minus symbol used in various contexts? These var-

iables are measured using the instruments previously cited and described in greater

detail later in this chapter.
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4.3.5 Consequent variables

Students' future success in mathematics courses, long-term changes in atti-

tudes and beliefs about mathematics and in the ability to think flexibly and to reason

quantitatively in daily life are consequent variables in this study whose investigation is

beyond the scope of this study.

4.4 Data Collection

The data collection instruments used in the main study include pre- and post-

course self-evaluation surveys; pre- and post-course tests focused on students' ability

to interpret ambiguous notation and translate among various representational forms;

student work collected throughout the semester; task-based interviews conducted

twice during the semester at mid-term and during the final week of the semester; and

student-created concept maps assigned at weeks 4, 9, and 14, with completed maps

collected the following week and retained by the researcher. Each of these instruments

and the nature of revisions to the various instruments for use in the main study are

described in the following sections.

4.4.1 Field Test Study

The field study consisted of three quantitative components: a demographic

questionnaire designed to provide some general characteristics of undergraduate stu-

dents enrolled in a remedial algebra course; pre- and post-course attitude surveys

designed to document changes in attitude that occurred during the course; and pre- and

post-course student self-evaluation surveys completed during the first and last week of

the term, designed to document changes in students' beliefs about their ability to do

mathematics. The forms were used during the 1995/96 academic year. Data collected

also included task-based interviews with field-site students and instructors, which

were video-taped and transcribed.

4.4.2 Field, Preliminary and Main Study Pre- and Post-Course Self
Evaluations

Pre- and post course self-evaluation surveys designed to document changes in

students' perceptions of their abilities to do mathematics were given to all participat-

ing students during the first and last week of a sixteen-week semester course. The pre-
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and post-course instruments had been previously tested (1994-1996) and revised dur-

ing a curriculum implementation field study of the text materials used in the present

study. Student responses documented perceived changes in their self-evaluations of

their (1) ability to interpret notation and symbols; (2) ability to analyse and interpret

data; (3) ability to solve problems not seen before; (4) willingness to attempt new

problems; and (5) belief about the usefulness of the graphic calculator to impact their

understanding of mathematical concepts and ideas.

The original field study surveys contained nineteen pre- and post-course ques-

tions. The surveys were shortened to the twelve question form used in both the prelim-

inary and main studies. Five questions dealing with students' perceptions of their

abilities listed above were analysed for this study, as they relate directly to the focus of

this research. Data collected from the other questions related to students' perceptions

of their ability to work in groups and the extent to which they perceived the course to

be more or less interesting than anticipated provide background information about stu-

dents' beliefs about the classroom environment and their interactions with peers and

the instructor in that environment. Both forms of the survey also included two ques-

tions relating to attendance and hours spent outside of class on homework.

The pre-course survey was given to students during the first week of class and

the post-course survey was administered during the last week of the sixteen-week

semester, a few days prior to the final exams. The post-course self-evaluation survey

questions are not identical to those used on the pre-course survey. The pre-course sur-

vey asked students where they were at the beginning of the semester. The post-course

survey asked students if they felt they had improved, rather than asking the question in

traditional before and after format. This format allowed students to indicate improve-

ment in their perceived abilities, even if they had high positive attitudes initially. These

survey instruments are included in the following section and in Appendix B, Data

Instruments, as distributed to the students.
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4.4.3 Pre- Course Self-Evaluation Survey

1. About how often did you attend your previous mathematics class?

less than 1 1-3 3-5 5-7 more than 7

1 2 3 4 5

2. IN ADDITION TO the time spent in class, about how many hours PER WEEK did you

spend on homework outside of class for previous math classes?

less than 1 1-3 3-5 5-7 more than 7

1 2 3 4 5

3. How would you rate your ability to interpret mathematical notation and symbols at the

BEGINNING OF THE SEMESTER?

very somewhat

poor poor

1 2

fair

3

somewhat very

good good

4 5

4. How would you rate your ability to interpret and analyze data at the BEGINNING OF

THE SEMESTER?

very somewhat

poor poor

1 2

fair

3

somewhat very

good good

4 5

5. How would you rate your willingness to attempt to solve a problem you have never seen

before at the BEGINNING OF THE SEMESTER?

very somewhat

poor poor

1 2

fair

3

somewhat very

good good

4 5

6. How would you rate your ability to solve a problem you have never seen before at the

BEGINNING OF THE SEMESTER?

very somewhat

poor poor

1 2

fair

3

somewhat very

good good

4 5

7. Do you feel that the use of the graphing calculator helps, hurts, or does not affect your

understanding of mathematical concepts and ideas?

hurt hurt did not helped helped

considerably somewhat affect somewhat considerably

1 2 3 4 5
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4.4.4 Post-Course Self-Evaluation Survey

8. About how often did you attend this mathematics class?

less than 1 1-3 3-5 5-7 more than 7

1 2 3 4 5

9. IN ADDITION TO the time spent in class, about how many hours PER WEEK did you

spend on homework outside of class for this mathematics classes?

less than 1 1-3 3-5 5-7 more than 7

1 2 3 4 5

10. To what degree do you think this course has improved your ability to interpret mathemati-

cal notation and symbols?

not at all

1

a little somewhat a good bit very much

2 3 4 5

11. To what degree do you think this course has improved your ability to interpret and analyze

data?

not at all a little somewhat a good bit very much

1 2 3 4 5

12. To what degree do you think this course has improved your willingness to attempt to solve

a problem you have never seen before?

not at all a little somewhat a good bit very much

1 2 3 4 5

13. To what degree do you think this course has improved your ability to solve a problem you

have never seen before?

not at all

1

a little somewhat a good bit very much

2 3 4 5

14. Do you feel that the use of the graphing calculator helped, hurt, or did not affect your
understanding of mathematical concepts and ideas?

hurt hurt did not helped helped

considerably somewhat affect somewhat considerably

1 2 , 3 4 5
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4.4.5 Pre- and Post-course Tests

In order to document changes that occurred during the semester in students'

ability to interpret ambiguous arithmetic (the minus symbol) and functional notation

as well as their ability to think flexibly and to translate among various representational

forms, a pre-test consisting of twelve questions was given to all students who were

enrolled in the Intermediate Algebra course and participated in the either the prelimi-

nary or main studies during the first week of the sixteen week semester. The post-test,

was given to students during the last week of class, a few days prior to the final exam.

The pre- and post tests used in the preliminary study included several questions

designed to test student's understanding of the order of operations. Using the results of

the preliminary study, the pre- and post-tests used in the main study were shortened.

Only one question on order of operations was retained. Questions designed to test stu-

dent's ability to think flexibly when required to reverse a direct process replaced more

unfocused questions of the preliminary study. The pre-test used in the main study con-

sisted of twelve questions. The same twelve questions were used on the post-test, with

four additional questions. Individual student's post-test results were shared with each

student during an end-of semester task-based interview. Responses of both the pre-

and post-test were categorized as (a) correct; (b) no attempt and (c) incorrect and ana-

lysed using a Pearson chi-square test with two degrees of freedom and a = 0.05 .

To provide a quantified ranking of class members for analysis purposes con-

sistent with their overall course grade, post-test responses were combined with the

responses to similar questions included on various assessment instruments throughout

the semester (journals, unit exams, the final open-response and departmental final

exams). The questions presented on various evaluation instruments throughout the

year were similar in structure and content, but were presented in different formats

(multiple choice, open response, contextual problem situations) and in various repre-

sentational forms (symboliceither algebraic notation or functional notation; graphic,

and numerictables). The total number of correct responses from the various data col-

lection instruments served as the basis, once the course was completed, for classifying

those students who were most successful (the top fifteen percent of the participants)

and those who were least successful (the bottom fifteen percent of the participants).

These rankings were also correlated with students' final course grades.
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4.5 Relevance to Main Study Research Questions

The related research question of whether students classified as 'less able' and/

or 'remedial,' could, with suitable curriculum develop greater confidence and a more

positive attitude towards mathematics was addressed by the pre- and post-course self

evaluation surveys which were designed to document changes in students perceptions

of their mathematical abilities. The main thesis research question, which asked

whether divergence and fragmentation of strategies occur among undergraduate stu-

dents enrolled in a remedial algebra course who have previously been unsuccessful in

mathematics, was addressed by the pre- and post-course test questions, which were

designed to document whether students demonstrated improved capabilities in dealing

flexibly and consistently with ambiguous notation and various representations of func-

tions. A goal of the research was to investigate how data based on student responses to

questions of this nature could be used to provide information that might help the class-

room instructor better understand how students are thinking. The pre- and post-course

test questions, were designed to address the main and related research questions, but

were also typical of questions students typically encounter in the subsequent course

and are generally found on departmental exams.

The twelve questions included on the pre- and post-test given participants in

this study were designed to document changes in competence to interpret ambiguous

functional notation and symbols (the minus symbol). They also provide data on stu-

dents' ability to interpret and use ambiguous notation to:

evaluate functions using various representational forms (symbolic,

graphic, and numeric) and questions stated in different contexts (open

response, multiple choice, contextual problem situations).

write an algebraic representation (a) given the graph of a linear func-

tion or (b)the graph of a quadratic function.

recognize and take into account the role of context when evaluating an

arithmetic or function expression.

The twelve categorized pre- and post-course test questions are listed, along

with the four additional questions included on the post-test main study questionnaire.

Students were instructed to (1) answer the question, (2) write down their first thoughts

when they first looked at the question, and (3) to rate their confidence that the response
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given was correct. They had the option of using graphing calculators as they deemed

appropriate. The main study pre- and post-test forms are included in Appendix B: Data

Collection Instruments.

4.5.1 Questions that test students' ability to take into account the
role of context

when evaluating an arithmetic or functional expression.

1. Evaluate 52
What first comes to mind:

15. Evaluate: 37 5 + 2 + 4 x 3

What first comes to mind:

16. Evaluate (-5)2

What first comes to mind:

17. Given a function f, what does f(x) represent?

What first comes to mind:

Confidence

1 2 3 4 5

Confidence

1 2 3 4 5

Confidence

1 2 3 4 5

Confidence

1 2 3 4 5

18. In the expression (x c), is the value of c positive, negative or neither?

What comes to mind: Confidence

1 2 3 4 5

4.1.1 Questions that test students' ability to evaluate functions
using various

representational forms.

19. Given f(x) = x2 5x + 3, findfl-3).

What comes to mind:

20. Given f(x) = x2 5x + 3, find f(t-2).

What comes to mind:

Confidence

1 2 3 4 5

Confidence

1 2 3 4 5
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Use the given the graph to answer questions 8 and 9.

A I

7-

6-

5-

4-

3-

2_

1

0
1 2 3 4 5 6 7 8 9 10>

21. Indicate what y(8) =

What comes to mind:

22. If y(x) = 2, what is x?

What comes to mind:

Confidence

1 2 3 4 5

Confidence

1 2 3 4 5

Consider the following tables for functions f and g then answer questions 10 and 11.

x f(x)

1 3

2 1

3 1

4 0

5 2

23. What is the value of f(g(1))? Why?

What comes to mind:

24. What is the value of g(f (5))? Why?

What comes to mind:

98

x g(x)

2 3

1 1

0 5

1 2

2 4

Confidence

1 2 3 4 5

Confidence

1 2 3 4 5
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4.1.2 Questions that test students' ability to write an algebraic
representation

given the graph of a linear function.

25. Write the equation of the linear function given either its table or graph.

What comes to mind:

X Y1

EWE
-3
0
3
6
9

21

Is
9
3
-3
-9

-21
15

X= -6

WINDOW
Xm in= -3
Xmax=6
Xsc1=1
Ym in= -4
Ymax=10
Ysc1=2
Xres=1

Confidence

1 2 3 4 5

4.1.3 Questions that test students' ability to recognize and take into
account the

role of context when evaluating a functional expression.

26. Given a function f, what is the meaning of flx)ftx)?

What first comes to mind: Confidence

1 2 3 4 5

27. Given a function f, what is the meaning of f(x) f(x)?

What first comes to mind: Confidence

1 2 3 4 5

4.1.4 Questions that test students' ability to write an algebraic
representation

given

The graph of

the graph of a quadratic

a quadratic function appears

function.

below.

WINDOW
Xmin=-9.4
Xmax=9.4
Xsc1=1
Ymin=-25
Ymax=20
Ysc1=5
Xres=1

28. (a) What are the zeros of this function?

What comes to mind: Confidence

1 2 3 4 5

(b) What are the factors of this function?

What comes to mind: Confidence

1 2 3 4 5

(c) Write the algebraic representation of this function.

99



Methodology Main Study Interview Question

What comes to mind:

4.1.5 Main Study Pre- and Post-Test Question Classification

Confidence

1 2 3 4 5

The pre- and post-test questions were classified and analysed using a variety of

classification schemas. The table 4.1 below describes the various classification

schemes used to categorize the pre- and post-test questions:

Table 4.1: Pre- and Post-Test Question Classification

QUESTION CATEGORY QUESTION #

Conceptual questions requiring no process 4, 5, 13, 14

Procedural questions requiring process 1-3, 6-12, 15, 16

Flexibility of thinking: reversibility of process 1,3; 8, 9; 10,11; 13,14

Interpretation of the Minus symbol: arithmetic context, process 1, 2, 3

Interpretation of the Minus symbol: functional context, process 6, 7, 13, 14

Interpretation of functional notation: table, process/conceptual 10, 11

Interpretation of functional notation: graphic, process, conceptual 8, 9, 12

4.2 Main Study Interview Question

The purpose of the following question was to establish some triangulation

between students' written responses and their verbal responses in an interview setting.

Question 16 was included on both the pre- and post test given students participating in

both the preliminary and main study. No student answered the question correctly and

only three students of the preliminary study attempted to answer the question on the

post-test. It was decided to investigate students' perceptions of this question in the

main study during end of the course task-based interviews conducted just prior to final

exams.

29. Consider the following graphs for functions f and g. The graph off is the line. The graph

of g is the parabola. Approximate the value of g(ftl)). Describe how you determined

your answer.

pjiMFORMAT

-6
Xmax=6
Xsc1=1
'Min= -5
Ymax=10
Ysc1=1

What first comes to mind: Confidence
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1 2 3 4 5

4.3 Concept Maps

The second main research question which asked whether students who are

more successful construct, organize, and restructure knowledge in ways that are quali-

tatively different from the processes utilized by those who are least successful is

addressed by analyses of students' concept maps and the corresponding schematic dia-

grams, which provide visual evidence of the processes by which students organize and

assimilate new concepts and procedures into their existing conceptual frameworks.

The use of concept maps provided a means by which mathematical growth was docu-

mented and provided evidence of the nature of the knowledge construction process.

Students were asked to construct concept maps on the topic of Function in weeks 4, 9

and 15. These maps were collected by the researcher, reviewed with each student and

retained by the researcher. Students did not have further access to their maps. It was

believed that a later concept map would more accurately reflect the student's concep-

tual structure at the time the map was constructed, if the student did not have the ear-

lier map to refer to. The concept map instructions used in the main study are included

in Appendix C: Student Concept Maps & Schematic Diagrams.

4.3.1 Evaluation of concept maps

In the preliminary study, a quantitative method of evaluation was used to ana-

lyse student concept maps using a modified schema based on the evaluation method

report by Laturno [1994] in which points for various elements were assigned as fol-

lows:

a) Number of Concepts (1 pt. each),

b) Levels: 4 maximum (5 pts. each),

c) Relationships (1 pt. each),

d) Cross-links (5 pts. each).

4.3.2 Revisions in use and evaluation of Concept Maps in Main

Study

As a result of the interview data obtained in the preliminary study, the concept

map instructions were revised prior to the main study. Students were directed to record
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the elements they planned to use on small post-it notes prior to constructing the map.

Once the elements were recorded on sticky-backed post-its, students were encouraged

to move them around on paper until the arrangement appropriately reflected groupings

and connections the student felt were appropriate. Only after this experimental, plan-

ning stage was completed, were students to draw the concept map they planned to sub-

mit. The activities of planning and constructing concept maps engaged students in

reflective practices and required them to think about appropriate linkages between and

among various elements and/or clusters of elements.

The quantitative method of evaluating concept maps used in the preliminary

study was rejected after the preliminary study was completed. A goal of this research

was to investigate whether qualitatively different strategies were used by the most suc-

cessful and the least successful students. It was decided that the quantitative method of

analysis should be abandoned and a new method of analysis designed. In the main

study, schematic diagrams of each map were drawn by the researcher. These schematic

diagrams revealed the structural properties of each concept map which was hidden in

the complexity and detail of the original maps. This qualitative method of analysis,

developed by the researcher, is discussed in greater detail in Chapter 8.

4.4 Instructional Treatment

It is not the purpose of this study to evaluate whether or not the curriculum is a

viable alternative to the present traditional curriculumrather it is described so that

student's behaviors can be examined in the context of the classroom environment. In

order to better understand students' behaviors and interpret students' concept maps it

is necessary to know the sequence of instruction and the topics on which emphasis was

placed.

The instructional treatment in the Intermediate Algebra course of this study is

based on a pedagogical approach that uses a constructivist theoretical perspective of

how mathematics is learned [Davis et al., 1990]. The concept of function is used as an

organizing lens throughout the course. Function is initially defined as "a process that

receives input and returns a unique value for output" [DeMarois, Mc Gowen, &

Whitkanack, 1996, p. 92]. Each function is based in a problem situation. Functions are

investigated numerically, graphically, and with function machines before the symbolic



Methodology Instructional Treatment

form is created. Tables, equations, graphs, function machines, verbal and written

descriptions are all used to analyse functional relationships and to explore the duality

and ambiguity of mathematical notation. Function machines are a visual tool used to

help students focus attention on the processes involved as they interpret and analyse

functions; identifying input, process and the resulting output. Small group work is an

integral component of the learning environment, both in and outside the classroom.

Students are introduced to functions and relations in the context of investiga-

tions of measures of central tendency and variability. Arithmetic and geometric

sequences, with ordered lists as inputs lead to the study of linear, exponential and

quadratic functions. Linear and exponential functions are introduced as sequences,

characterized by constant first finite differences (linear functions) and constant finite

ratios (exponential functions). Quadratic functions are subsequently introduced as

sequences characterized by constant second finite differences. Finite differences and

finite ratios were used to analyse numerical tables of data in order to determine param-

eter values of the algebraic representation that described the relationship. Given a

table of values, or given a problem situation in which they need to construct a table of

values, students analyse the data to determine whether it models a linear, an exponen-

tial or a quadratic function. After identifying the general form of the appropriate

model, they are expected to determine the parameter values and a specific algebraic

model suitable for the problem situation which they use to answer questions about the

problem situation. Rational, radical, and logarithmic functions are subsequently stud-

ied.

Skills are taught and practiced as needed in the context of the problem situa-

tion. Students are encouraged to become more independent learners, with a resulting

shift away from negative attitudes about themselves and mathematics and from expect-

ing teachers and the text to provide all of the answers. Typically, class starts with stu-

dents in small groups discussing the investigations done prior to class, followed by

whole class discussion, with clarification of the difficulties encountered as necessary.

Lectures by the instructor generally consist of introducing new topic investigations or

are directed towards focusing students on identifying the main concepts and skills,

providing them with focused opportunities to make connections. Students are expected
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to take responsibility for their own learning, to reflect upon their understandings of

mathematical concepts, and to justify their responses both verbally and in writing.

The curriculum was designed to utilize the graphing calculator (TI-82 or TI-

83) in pedagogically sound ways. It is viewed as a tool to foster mathematical thinking

using activities which generate cognitive dissonance, causing students to re-examine

existing beliefs and practices. The graphing calculator is used to investigate problem

situations using graphical and numerical representations of a given function linked to

its algebraic representation, frequently along with function machine representations.

The integration of graphing calculator technology into the curriculum resulted in a dif-

ferent sequence and choice of topics, with skills taught as needed in the investigation

of problem situations.

4.5 Summary

The research methodology and the rationale for the various data collection

instruments were described in this chapter. The data collection consisted of three

major components: a broad-based field study designed to provide data used to develop

a profile of undergraduate students enrolled in a remedial algebra course; a classroom-

based study, with both a quantitative and qualitative component; and the main class-

room-based study, which also included a quantitative and a qualitative component.

Prior variables of students' beliefs and attitudes were established by means of

demographic surveys in both the preliminary and main studies. Changes in those prior

variables were documented using pre- and post-course self-evaluation surveys. The

quantitative and qualitative components of the main study was designed to address the

two main theses. The first thesis, whether divergence and fragmentation of strategies

occur between students of a undergraduate population of students who have demon-

strated a lack of competence and/or failure in their previous mathematics courses, is

examined both quantitatively and qualitatively. Pre- and post-test questions were

designed to examine this thesis and to provide data to address the related research

questions of whether students classified as 'less able' and/or 'remedial,' could, with

suitable curriculum: (a) demonstrate improved capabilities in dealing flexibly and con-

sistently with ambiguous notation and various representations of functions and (b)

develop greater confidence and a more positive attitude towards mathematics.
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Methodology Summary

The data collected by means of these instruments were triangulated, with stu-

dents' classwork and with interview data, using data, method, and theoretical triangu-

lation. Profiles of two students, representative of the two groups of extremes, the most

successful and the least successful were developed, using the theoretical framework

described in the previous chapter. More detailed descriptions of the data collection

methods and results of the preliminary studies and main study are provided in the fol-

lowing chapters.

The second thesis, that successful students construct, organize, and reconstruct

their knowledge in ways that are qualitatively different from those of students least

successful was examined using the profiles of two students representative of the two

groups of extremes, those most successful and those least successful. Their processes

of knowledge construction and restructuring were investigated by means of student-

constructed concept maps, which documented these processes. The schematic dia-

grams of each concept map of the individual students in each group of extremes, pro-

vided a means by which the underlying structure of students' concept maps could be

revealed and the maps done over time could be compared. Efforts to develop a qualita-

tive method of concept map analysis resulted in an updated review of literature which

helped clarify the research questions used in the main study. This qualitative method is

discussed in greater detail in Chapter 8.
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CHAPTER 5 Preliminary Studies

Precipitately they retired back cage and instituted an investigation

On their part, though without the needed insight. They bit the glass and

listened for the flavor. They broke the handle and the binding off it.

...Who said it mattered what

monkeys did or didn't understand? They might not understand a

burning glass. They might not understand the sun itself It's knowing

what to do with things that counts.

Robert Frost, At Woodward's Gardens,

5.1 Introduction

Based on the methodology and methods described in the previous chapter, the

components of the quantitative and qualitative preliminary studies are described. Data

from these studies are presented, along with an analysis of the results. The qualitative

study examines students' efforts to make sense of ambiguous notation and the role of

context in interpreting notation. Results of both studies are analyzed using the theoret-

ical framework and the findings are summarized. Quantitative results indicate a statis-

tically significant positive shift in students' beliefs about their mathematical abilities.

Data from the preliminary studies provide a profile of the students that are the

subjects of this research and were used to identify areas of focus in the main study. It

was considered appropriate and reasonable to investigate some of the prior variables

such as students' backgrounds, attitudes, and existing concept images before undertak-

ing the main study. Two different preliminary studies were undertaken: a broad-based

quantitative study and a qualitative classroom-based study. The broad-based study

consisted of three components: (1) a demographic study; (2) an attitudinal study and

(3) a study of students' self-evaluation of their abilities.The purpose of these studies

was to

collect demographic data on a broad population of undergraduate stu-

dents enrolled in developmental algebra courses;

investigate whether changes occurred in students' perceptions of their

ability to (a) interpret notation, (b) interpret and analyze data, (c) to

solve a problem not seen previously; (d) their willingness to attempt a

problem not seen previously, and (e) their belief about the usefulness of

the graphing calculator in understanding mathematics.
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Within this global framework, a classroom-based study was also conducted.

Using the results of the broad-based demographic and quantitative studies, a class-

room-based study was conducted to investigate whether instances of meaningful learn-

ing occurred and to examine the processes of knowledge assimilation and

reconstruction. The use of concept maps as a means of collecting data and as an instru-

ment of analysis was also investigated. The preliminary studies and the results of each

study are described and discussed in this chapter.

5.2 Field Study

The field study consisted of three quantitative components: a demographic

questionnaire designed to provide some general characteristics of undergraduate

developmental students; pre- and post-course attitude surveys designed to document

changes in attitudes that occurred during the course; and pre- and post-course student

self-evaluation surveys completed during the first and last week of the term, designed

to document changes in students' beliefs about their ability to do mathematics. Data

was collected using task-based interviews with field-site students and instructors,

which were video-taped and transcribed. Students participating in this study com-

pleted a Intermediate Algebra course using a reform curriculum during the 1995-1996

academic year.

Students enrolled in the Intermediate Algebra course at twelve colleges and

universities who participated in the study numbered more than two hundred and fifty.

Because of withdrawals and students failing to complete all forms, the number of par-

ticipants in each of the categories of this study will vary. Rather than deal with many

missing cases, only those pre- and post-course surveys and questionnaires with com-

plete files were used for the study. Differences on the attitude surveys were assessed

using the two large independent sample z-test for comparing means. Only those tests

that had significant findings at the a = 0.05 level of significance (p < 0.05) are

reported.

5.2.1 Results of the Field Study: A Demographic Profile

A total of 237 students completed the field study demographic questionnaire. A

student profile was developed, based on this self-reported data. The statistics reveal
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some of the intervening variables of student effort and motivation: sixty percent of the

students considered themselves fair or disastrous mathematics students; four out of

five were taking twelve or more hours of courses per week; more than half the students

worked fifteen or more hours on an outside job; and only one of every four students

spent five or more hours per week outside of class on homework.

Statistics on attendance, time spent on academic work, and reflections on their

expectations of the course reported by students at the end of the term are summarized

in Table 5.1. When interpreting these statistics, note the interesting statistics on time

spent on the course and hours spent outside of class on homework. Nearly fifty percent

of the students reported spending more or much more time on homework for the

reform Intermediate Algebra course compared with previous mathematics courses, yet

only 1 in 4 students reported spending five or more hours per week outside of class on

homework. It should be noted that the developmental Intermediate Algebra course at

most colleges and universities is a 4- semester credit hour course. Percentages are sub-

ject to a margin of error of 1%, with ninety-five percent confidence.

Table 5.1: Field Study: Student Profile (n = 237)

Students who completed the course indicate they
Interco
n = 237

attended almost always or always 82%

spent more or much more time on this course 46%

spent 5 hours/week or more on homework 25%

found the graphing calculator difficult to use 16%

found the course more interesting than expected 34%

found the course somewhat harder or much harder 55%

The demographic profile was used to compare general characteristics of the

students who participated in the local preliminary and main studies with students who

participated in the broad-based field study. All students who participated in the main

study (n = 26) were twenty-years old or younger, as were all but three of the eighteen

students in the preliminary study. Several students exhibited the characteristic attitudes

about resistance to change and mathematics reported in the field study data. They
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lacked study and organizational skills which were occasionally the source of tension

among the older members of the preliminary study and the younger students. On more

than one occasion, older students were observed telling younger members of their

groups to either come to class prepared to work, with their homework done or to leave

the group. Data from the field study attitude surveys established some of the prior var-

iables such as attitudes and beliefs that students bring to the remedial class. These

prior variables were included in the student profile and are summarized in Table 5.2.

Table 5.2: Field Study: Demographic Profile (n = 237)

Inter
Students who

n=237

considered themselves fair/disastrous 60%

were full-time students 81%

were enrolled for 12 or more hours 81%

worked more than 12 hours outside 68%

took math the previous term 65%

took math one or more than one year ago 35%

were between 17 and 20 years old 76%

were twenty-six years old or older 9%

used a graphing calculator in school 47%

used a scientific calculator inside of school 68%

used a graphing calculator outside of school 26%

used a four-function calculator outside of school 70%

had never used any calculator 5%

were female 57%

Observations reported by field study instructors support these statistics. In gen-

eral, the younger students (age 17-20) lack study and organizational skills; appear ill-

equipped to handle the demands of a full-time academic program and the competing

demands of jobs and social obligations; and are very resistant to changes in the didac-

tic contract (i.e., what the teacher's role is; what the student's role is, and what it

means to learn mathematics) that occur as a result of using a reform algebra curricu-

lum [McGowen and Bernett, 1996].
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5.2.2 Results of Field Study Pre- and Post-Course Attitude
Responses

Pre-and post-course attitude surveys were completed and returned by 237

Intermediate Algebra students who participated in the field study. Analysis of the data

indicates that after using the reform materials, significant shifts in attitude occurred

during the term. Pre- and post differences on the attitude surveys were assessed using

the two large independent sample z-test for comparing means. Students had more disa-

greement with the statements: (a) mathematics is mostly facts and procedures that

have to be memorized; (b) learning to do mathematics means just learning the proce-

dures; and (c) the time spent using a graphing calculator could be better spent practis-

ing skills. There was also a shift indicating more students felt less confusion when

trying to read x- and y-values from a graph. Though the shift in responses of these

questions is significant, it must be noted that the shifts were from agreement with the

statement initially to a neutral "no opinion" response by the end of the semester.

Intermediate Algebra students generally agreed with the statement, "I have

trouble keeping up in mathematics class." There was no significant attitude change in

their belief that a math class in which the teacher lectures most of the time is the way

mathematics is supposed to be taught. This result is supported by the findings of the

pre- and post-course self evaluation, as well as field-testers' observations that students

enrolled in the Intermediate Algebra course were resistant to changing the didactic

contract. The statistics suggest that the NCTM Curriculum and Evaluation Standards

[1989] have not yet impacted many students to the extent one could hope, nearly a dec-

ade after publication. Many students continue to experience mathematics taught

instrumentally. They remain convinced that mathematics is a collection of procedures

to be memorized; that getting "the right answer" is what learning mathematics is all

about, even though the pre- and post-course responses of the participants of this study

indicated a significant shift towards more disagreement with the statement: The best

way to do mathematics is to memorize all formulas. [Note: The NCTM Curriculum

and Evaluation Standards set forth a vision of what the K-12 mathematics curriculum

should include in terms of content priority and emphasis in a document designed to

establish a broad framework to guide reform in school mathematics.]
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5.2.3 Results of Field Study Students' Self Evaluation of Abilities

Prior variables related to students' beliefs about their ability to do mathematics

were also investigated before undertaking the main study. To establish the prior varia-

bles of students' beliefs about their mathematical abilities, students were asked to rate

their (1) ability to interpret notation and symbols; (2) ability to analyze and interpret

data; (3) ability to solve problems not seen before; (4) their willingness to attempt a

new problem not seen previously during the first week of the term; and (5) the extent

to which use of the graphing calculator helps understanding of mathematical concepts.

During the last week of the term, students were asked to evaluate the extent to which

the course had improved their ability in each of the five categories. Pre-course differ-

ences in the responses of students who participated in the field study were compared

with those of the preliminary study, as well as post-course differences for both groups.

Since the pre- and post-course self-evaluation surveys did not use identical

questions, statistical tests were not used to compare pre- and post-course survey

results. The pre-course survey documents the initial state of students' beliefs at the

beginning of the course and are used to establish the prior variables of the various

studies. The post-course survey questions asked students to rate their improvement in

abilities, thus documenting a changed state. Results of both surveys were used to pro-

vide some triangulation of the data collected from the field, preliminary, and main

studies about prior variables and the changed state of those variables at the end of the

course.

Pre- and post-course self evaluation surveys were completed and returned by

237 students who participate in the field study. Results indicate that at the beginning of

the course, three-fifths of the 237 students rated their ability to interpret mathematical

notation and symbols as very poor (1), or somewhat poor (2), as well as their ability to

analyze and interpret data [Mc Gowen and Bernett, 1966]. This finding validates the

student profile statistic in which the participants characterized themselves as fair or

disastrous mathematics students. Despite beliefs that their ability to solve a problem

not seen previously had improved, their willingness to attempt to solve a problem was

not impacted to the same degree. This is not as inconsistent as it might appear when

considered in the context of intermediate algebra students' belief that mathematics is a

collection of procedures to be memorized and their preference that someone give them
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the solution to a problem rather than work out the answer for themselves when faced

with a problem they could not solve quickly. It provides additional documentation of

the observation that the younger students (aged 17-20) resist changing the unwritten

social contract.

5.3 Preliminary Study

Prior variables related to students' beliefs about their ability to do mathematics

before undertaking the main study were investigated and analyzed within the context

of the broader-based study. The pre-course survey documents the initial state of stu-

dents' beliefs at the beginning of the course.The data are used to establish the prior

variables of the local preliminary study. The post-course survey documents the

changed state of those beliefs. The same questionnaire used in the field survey was

used in the classroom-based preliminary study. Twenty-three students were initially

enrolled in the Intermediate Algebra course participating in the preliminary study.

Eighteen of those students completed the course (78%), somewhat better than the fig-

ure reported nationally for students in the traditional course [Hil lel, et al., 1992]. Six-

teen students completed the pre- and post-course surveys and only those responses are

reported and analyzed. As the pre-course survey documented students' initial percep-

tions and the post-survey documented the changed stated of students' beliefs, students'

pre- and post-course responses were not analyzed using statistical tests.

5.3.1 Preliminary Study Self-evaluation Survey Results

A majority of the students who participated in the local preliminary study

reported they lacked self-confidence and had a negative attitude towards mathematics,

with high math and test anxiety. Six of the sixteen students who completed the pre-

course survey rated themselves as somewhat good (4) or very good (5) in their ability

to interpret mathematical notation and in their ability to analyze and interpret data and

three of the sixteen students rated themselves somewhat good or very good in their

ability to solve a problem never seen before. These responses are consistent with the

student profile data in which the participants characterized themselves as fair or disas-

trous mathematics students. Seven of the sixteen students in the classroom-based study

considered themselves willing to attempt a problem not seen previously. Less than
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one-third of the participants believed that use of the graphing calculator helps them

understand mathematical concepts, a percentage that is slightly lower than that

reported in the initial field survey.

The post-course mean responses of the preliminary classroom study suggest

that changes in the state of students' beliefs about their mathematical abilities occurred

during the semester. No improved state of willingness to attempt a problem not seen

previously was documented in the local study, paralleling a similar finding in the larger

field study. Given field-testers' reports of students' resistance to change, as well as the

observed resistance on the part of some students at the local site, together with the fact

that nearly half (44%) of the students in the local study initially believed themselves

willing to attempt a new problem on the pre-course survey, it is not surprising there

was no documented change in state.

5.3.2 Field & Preliminary Studies: Triangulation of Data About
Prior Variables

Results of the preliminary study survey of students' beliefs about their mathe-

matical abilities were compared with the corresponding results of the field study sur-

vey in order to provide some triangulation of the data collected from the field and

preliminary studies about prior variables and the changed state of those variables at the

end of the course. The pre-course responses of the field and preliminary study students

are summarized in Table 5.3.

Table 5.3: Field &Preliminary Studies: Initial States
Comparison of Pre-Course Self Evaluation of Abilities

Students who rated themselves as somewhat Field
Pre li

good (4) or very good (5) at the beginning of n=237

the semester in: Pre
n=16

Pre

1. Ability to interpret notation & symbols 30% 38%

2. Ability to analyze and interpret data 25% 38%

3. Ability to solve problem not seen before 29% 19%

4. Willing to attempt a problem not seen before 36% 44%

5. Use of graphing calculator helps understand mathematics 39% 31%
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Pre- course mean responses of the students participating in the classroom study

were also compared with the pre-course mean responses of the field study to examine

similarities and differences in the responses of the two groups. The initial mean

responses of the students in the field study are somewhat more negative than the initial

mean responses of the preliminary study survey, with one exception: students in the

local preliminary study believed they were less able to solve a problem not seen previ-

ously that were the students in the field study. The bar charts in Figure 5.1 provide a

visual comparison of the initial states of students' beliefs. The vertical scale indicates

the Likert scale mean response for each question indicated on the horizontal axis by its

corresponding table number. The mean response of the pre-course question of the field

study is to the left of the mean response of the preliminary study.

FIGURE 5.1. Field &Preliminary Studies: Initial States
Comparison of Pre-Course Self Evaluation of Abilities

Mean

Response

Field

1:1 Pre

Prelim
Pre

1

Question Number: 1 2 3 4 5

Post-course mean responses of the two studies were also compared. A sum-

mary of the mean responses of both groups are reported in Table 5.4.
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Table 5.4: Field &Preliminary Studies: Changed States
Comparison of Post-Course Self Evaluation of

Abilities

Students who rated themselves as
somewhat good (4) or very good (5) at the
end of the semester in:

Field
n=237

Post

Pre li

m
n=16

Post

1. Ability to interpret notation & symbols 39% 56%

2. Ability to analyze and interpret data 51% 56%

3. Ability to solve problem not seen before 40% 50%

4. Willing to attempt a problem not seen before 42% 44%

5. Use of graphing calculator helps understand mathematics 81% 94%

The bar charts in Figure 5.2 provide a visual comparison of the changed states of stu-

dents' beliefs. The mean response for each post-course question of the field study is to

the left of the mean response of the preliminary study.

FIGURE 5.2. Field &Preliminary Studies: Changed States
Comparison of Post-Course Self Evaluation of Abilities

Mean
5

Response

4

Field

0 Post
3

Prelim
Post

2

1

Question Number:1 2 3 4 5

Analyses of the mean responses of the pre- and post-course surveys of the field

and preliminary studies for each of the five questions indicate that the prior variables

for both groups are similar, as are the changed states of both groups at the end of the

course. Students of both groups initially had a more negative attitude in response to the

pre-course question on ability to solve a problem not seen before compared with their
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responses to any of the other questions. Neither group had a noticeable change in their

willingness to attempt a problem not seen previously. The field and preliminary studies

pre-course mean responses together with their respective post-course mean responses

are summarized in Table 5.5.

Table 5.5: Field & Preliminary Studies: Self-evaluation
Comparison of Means

Group
Surve

Y

Q1 Q2 Q3 Q4 Q5.

FIELD (n=237) Pre: 2.97 2.80 2.80 3.00 3.30

PRELIM (n=16) Pre: 3.13 3.13 2.44 3.25 2.88

FIELD (n=237) Post: 3.20 3.40 3.50 3.10 4.15

PRELIM (n=16) Post: 3.63 3.81 3.50 3.50 4.25

The bar charts in Figure 5.3 provide a visual comparison of field and prelimi-

nary studies pre-course mean responses together with their respective post-course

mean responses for each question. The mean response of the field study is displayed to

the left of the mean response of the preliminary study, followed by the post-course

mean responses displayed in the same order, for each of the five questions.

FIGURE 5.3. Field (F) &Preliminary (P) Studies: Initial
&Changed States

Comparison of Pre-Course/Post-Course Evaluation of
Abilities

Mean
5

Response

4

D Pre F

aPre P
3

a Post F

Post P 2

1
1 1 1

Question Number: 1 2 3 4 5
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5.4 Classroom-based Qualitative Studies

Students in the field study, as well as students in courses using the reform cur-

riculum at the community college in classes taught by the researcher previously, expe-

rienced great difficulty interpreting mathematical notation and forming connections

between concepts and processes. In addition to testing the null hypotheses that there

would be no differences in means of student responses on the attitude surveys or on the

self-evaluation of abilities in the quantitative studies, research questions were formu-

lated that were expected to provide opportunities for students to reveal their thinking

as well as the products of their thinking. It was conjectured that students' lack of

understanding of order of operations, as well as inflexibility in interpreting notation,

underlay many of the difficulties students were experiencing with notation. Pre- and

post-test questionnaires were utilized to elicit information about the nature of the diffi-

culties students were experiencing. In order to document growth in the understanding

of mathematical concepts and students' evolving ability to deal flexibly with mathe-

matical notation, concept maps were used to (a) promote reflective activity and review

by students, (b) to provide diagnostic information to the instructor, and (c) as a data

collection instrument which would provide additional insights about students' growth

in understanding of mathematical concepts and the making of meaningful connections.

5.4.1 Background and Problem Statement

Students in developmental algebra courses experience great difficulty interpret-

ing mathematical notation. They have not learned to distinguish the subtle differences

symbols play in the context of various mathematical expressions [Gray & Tall, 1991;

Kuchemann, 1981]. The ability of undergraduates enrolled in a remedial algebra

course to interpret function notation and the minus symbol was a focus of the prelimi-

nary study. What do students think about when they encounter function notation, the

minus symbol, or other ambiguous mathematical notation? What are they prepared to

notice? The study examined the extent to which students were successful in their

efforts to make sense of mathematical notation, together with the processes by which

they reconstructed their existing inappropriate concept images.

Since the concept of function was used as an organizing lens throughout the

course, a pre-test and post-test was designed to provide information about students'
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ability to interpret function notation and the minus symbol in various contexts, evalu-

ate functions, and translate among representations. Students' difficulties in interpreting

and using the "" symbol were indicated on the pre-test given to twenty-three students,

during the first week of class. They were asked to evaluate 32 and (-3)2. Only five of

twenty-three students correctly evaluated both, indicating an ability to distinguish

between the process of finding the additive inverse of a number squared, i.e.,x2, com-

monly interpreted in the U.S. as "finding the opposite of x squared," and squaring a

negative number, (x)2. Students were also asked to evaluate a quadratic function for a

negative-valued numerical input and an algebraic input. They were assigned the fol-

lowing problem and asked to show the process by which they arrived at their answer:

Math Problem: If f (x) = x2 3x + 5

Find f(-3). Show all work and explain what you did.

Initially, ten of the twenty-three students wrote:

f(-3) = 32 3(-3) + 5
= 9 + 9+ 5 = 23.

Though these ten students did not use grouping symbols to indicate they were

squaring a negative number, they interpreted 32 as (-3)2, though they used parenthe-

ses when substituting 3 for x in the linear term. Nine other students showed the same

work initially, but evaluated 32 as 9, with f(-3) = 5. Three students used correct

notation, writing f(-3) = (-3)(-3) 3(-3) + 5, then completed the evaluation correctly.

One student interpreted j( -3) as a multiplication and proceeded to divide both sides by

3. Based on their written work, the majority of errors were initially attributed to (a) a

failure on the part of students to use grouping symbols consistently or (b) a lack of

understanding about the algebraic order of operations.

Students were asked to investigate problem situations designed to produce cog-

nitive dissonance and result in more appropriate understanding of the order of opera-

tions and about arithmetic operations such as unary or binary operations. The graphing

calculator and iconic function machine representations were used to investigate the

role order of operations and grouping symbols play in the two processes: squaring a

negative number (-3)2 and with finding the additive inverse of a number squared 32.

The notion of function was used as an organizing lens together with the graphing cal-
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culator to analyze both processes. Figure 5.4 illustrates the use of the function machine

for these investigations.

FIGURE 5.4. Function Machine Representations: Binary & Unary
Processes

Binary Function Two inputs Unary Function - One Input
Input 1Input 1 Input 2

111

Function process

iii
Function process

iii
Output Output

The visual representation of a function machine and the graphing calculator

offer students tools for visualization and analysis of the processes of finding the oppo-

site of a number squared and squaring a negative number. Each operation has its own

key on the TI-82 and TI-83 graphing calculators. Since these calculators are them-

selves function machines, they automatically supply the missing input when the binary

operation of subtraction is selected and only one input is entered. The graphing calcu-

lator displays what the student enters (input) as well as the result of the computation

(output). The calculator displays of three investigations using the minus symbols are

shown in Figure 5.5.

FIGURE 5.5. TI-83 View Screen of Binary and Unary Operations

1 2 3Ans-3
-6

-3
-3

I

-32

C-3)2
-9

9

Students were asked to (1) subtract three, (2) find the additive inverse of three;

and to enter 32. The sequence of keystrokes corresponding to the entry as display for

each investigation was: (1) L . In (2), the additive inverse key, corn-
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monly referred to in the U.S. as the "opposite" key, was used instead of the subtract

operator:

was:

C( ) followed by

display the result.

Explicit discussion focused on the input-output process conception of function.

The need for consistency in the use of notation and the role of context were also topics

of class discussion. Students analyzed other arithmetic and algebraic operations using

an input-output representation (a function machine), characterizing various operations

as either binary or unary functions. Reconceptualizing arithmetic operations as unary

or binary functions provided students with a framework within which they could clar-

ify their understanding of the difference between the operations of subtraction and

finding the additive inverse of a number. The arithmetic investigations were followed

by investigations evaluating symbolic representations such as f(x) = x2 for f(-3). Stu-

dents were asked to submit a written reflection about their investigations as a home-

work assignment. In the reflection they were to complete three sentences: (1) "I used

to think...(2) Now I realize... and 3) I've changed my mind about...."

and in (3), the first sequence of keystrokes

; the second sequence was:

. After each sequence, the MDER

11116L,11

key was pressed to

5.4.2 Results of the Teaching Intervention

Six of the eighteen students were able to evaluate both arithmetic expressions

correctly a week later on the first unit exam. By the end of the sixteen-week term, in

the context of evaluating a quadratic function for a negative-valued numerical input,

ten of the eighteen students consistently evaluated the function correctly. Four students

who evaluated 32 incorrectly during the classroom investigation, wrote on their

reflections that they had made a careless sign error and understood the problem. One

student wrote that she knew her answer was correct (it was actually incorrect) because

the other members of her group agreed with her. None of these students consistently

evaluated either the numerical expression or a quadratic function with a negative-val-

ued input correctly throughout the remaining twelve weeks of the semester.

A comment about 'correct' vs. 'incorrect' evaluations seems appropriate, as

the interpretation of this symbol pattern often depends upon conventional precedence.

For example, a software developer has the sometimes difficult task of transforming
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ambiguous mathematical notation into unambiguous programming code when design-

ing routines which are supposed to reflect accepted mathematical practice. The general

computer programming convention for the notation 32 is that the number includes its

sign, thus 3^2 is thought of as meaning (-3)2, i.e., negative three squared. On the TI-

82 and TI-83 graphing calculators, 32 is interpreted to mean find the additive inverse

of three squared. This interpretation of the notation parallels the familiar mathematical

interpretation of y = x2, whose graph is a parabola opening downwards.

5.4.3 Analysis of the Results

Based on students' written reflections, together with students' interviews, use

of the graphing calculator and a function machine representation to reconceptualize

arithmetic operations as functions resulted in modifications of students' existing con-

cept images. For several students, meaningful learning occurred. Using criteria pro-

posed by David Clark et al. [1996], learning in which "students are actively involved

in integrating, or linking, new concepts and skills into an already existing conceptual

framework, not simply accumulating isolated facts and procedures," is characterized

by evidence that indicates the student:

claims to have learned something new;

can articulate what it is they think they have learned, with some degree

of clarity and accuracy;

can demonstrate formation of links with an existing framework that the

student already possesses.

The reconstruction of their existing concept images documented in the written

comments and student interviews provide insights into the nature of the reconstruction

process. Students who successfully reconstructed their existing cognitive structures

focused on qualitatively different features of the processes than did those students,

who reconstructed their existing concept images inappropriately. The following state-

ments illustrate some of these differences. A comment typical of the student who was

successful in reconstructing existing concept images is that of Student BF:

I realized that the problem was looking for the opposite of 32...but I didn't

understand the rationale. When I see the sign () it is a change for me to

know that it means "the opposite of." I always though it meant a negative
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number or, (x) a positive x. The reflection assignment enhanced my

understanding of the opposite of a square by looking at it as two func-

tions, and then order of operations would have exponents first, then the

opposite of the value. I didn't know what the order of operations was in

relation to exponents and oppositing...I do know this now. Exponentiation

takes precedence over oppositing in the absence of grouping symbols.

Student BF

Her comment suggests that BF has achieved understanding, as defined by

Skemp [1987, p. 112]. She has made connections with an existing schema which

resulted in a changed mental state that gives her a degree of control over the situation

not previously had. The articulate response of this student suggests that she has assim-

ilated her newly-acquired knowledge, reconceptualizing the two processes of squaring

a negative number and taking the opposite of a number squared as functional proc-

esses. Her response also indicates a change from insecurity to confidence.

Other students' responses reveal the complexity of interpreting ambiguous

notation and the difficulties inherent in trying to re-construct one's understanding of a

concept or process as a result of cognitive conflict. Tall and Vinner [1981, p. 152] have

pointed out that: "Only when conflicting aspects are evoked simultaneously need there

by any actual sense of conflict or confusion." One can almost hear the confusion and

effort as these students describe their experiences:

I learned that without parentheses you cannot make 32 = 9. The change

of thinking I've had since this assignment is drastic! I began to realize

how crucial parentheses are. The parentheses show that there is only one

operation being done. Without parentheses, two operations are being

taken. Ex: 32 = 9 means take the opposite and square; (-3)2, just square

3. I find this a bit hard getting used to!

Student MH

Any two negative numbers that are multiplied by each other must result in

a positive answer. After discussing the assignment I felt that even though I

may not have been able to find the correct answer, I still learned that I

have to go about a few different ways to try to find an answer and by dis-

cussing with someone else I am able to check my answers...sometimes

my old ways of thinking like to butt in and I have a hard time saying no

and to keep on trying the problem.

Student JA

If one accepts Skemp's claim that "assimilation to an existing schema gives a

feeling of mastery and is nsally enjoyed" 1-Skemn 1987. n 7R1 then neither of these
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students has yet assimilated the new knowledge into their existing schemas. How stu-

dents build new cognitive collages depends upon their prior experiences and previ-

ously-constructed cognitive collages, how the problem is represented, how they

represent relevant knowledge, what their attention focuses on based on the visual cues

they pick up from scanning the written symbols. Their implicit beliefs, true in a given

context, can subsequently lead to cognitive conflict in another context. Contrast the

responses of student (BF) who reconstructed more appropriate concept images which

remained stable throughout the semester with the responses of students who recon-

structed their concept images inappropriately.

Now I know that when you square a 3 it stays negative. 32 is always

negative.

Student CB

I didn't understand that when you multiply 32 that it is (-3)(3) which

will give you the answer 9. I always though it was (-3)(-3) regardless of

parentheses. Now I realize that was wrong.

Student KP

One student cited her use of the mnemonic, My Dear Aunt Sally, for the order

of operations; i.e., multiplication, division, addition and subtraction [MDAS], which is

taught in some traditional U.S. classrooms. In Britain, the mnemonic for order of oper-

ations taught in traditional classrooms is Brackets, Of, Division, Multiplication, Addi-

tion and Subtraction [BODMAS]. It should be noted that there had been no reference

in class to "my dear Aunt Sally." Student CP's comment is evidence of the retrieval of

a prior schema which was cued by discussion of order of operations.

I think I have a better understanding of negative vs. opposite especially

after mention of my dear Aunt Sally.

Student CP

All three of these students, given 32, focused on the fact that the answer must

be negative and ignored what it means to square a number. They attempted to resolve

the cognitive conflict they had experienced by focusing on getting the correct answer

despite knowing the other procedure. Apparently, these students were only able to

focus on one aspect of the problem at a timeeither the process of squaring or the fact

that the answer must be negative. This is an example of the difficulty of size and posi-

tion described by Skemp [1987]. He attributes students' difficulty to having to deal
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with two schemas: the symbol system, and the structure of mathematical concepts. In

these instances, the students' responses suggest that it is the symbol system that domi-

nates the conceptual structure and mathematics is nothing more than the manipulation

of symbols. Cognitive conflict is not resolved appropriately.

Davis [1984] provides some additional insight. He explains this phenomenon

claiming that a frame (schema), once judged acceptable, is used for all subsequent

processing and that the original data is thereafter ignored. "People do not typically dis-

tinguish between the information contained in the primitive data source, and the infor-

mation contained in the instantiated frame. This information has been obtained by

combining information from the actual input and from the frame, and so subsequent

processing makes no distinction" [Davis, 1984, pp. 65-66]. The comments of these

three students suggest that this phenomenon has occurred: the need to consider context

when interpreting the minus symbol does not fit into the students' retrieved schemas,

thus making the assimilation of new ideas investigated in class much more difficult.

Students' efforts to interpret ambiguous notation demonstrate how very differ-

ently individual students assemble bits and pieces of knowledge into their existing

cognitive collages and demonstrate the bifurcation that occurs as a consequence of the

qualitatively different ways of thinking and constructing knowledge. As Sfard reminds

us: "Algebraic symbols do not speak for themselves. What one actually sees in them

depends on the requirements of the problem to which they are applied. Not less impor-

tant, it depends on what one is able to perceive and prepared to notice" [Sfard, 1991,

p. 17]. According to Skemp, "We classify every time we recognize an object as one

which we have seen before...once it is classified in a particular way, we are less open to

other classifications" [Skemp, 1987, pp. 10 -11]. Edelman argues that the ability to

carry out categorization is embodied in the nervous system and that perceptual catego-

rization is "the selective discrimination of an object or event from other objects or

events for adaptive purposes....that does not occur by classical categorization, but

rather by disjunctive sampling of properties" [Edelman, 1992, p. 87].

An analysis of students' comments supports these claims. The focus of atten-

tion for one student, CB, is the exponent and the squaring process, which causes con-

flict as she reconstructs her knowledge, now that she is aware that the minus symbol

denotes a negative answer in this context. Two students focused their attention on the
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presence/absence of parentheses; one appropriately, MH, and one inappropriately. KP,

like CB, disjunctively samples multiple cues (squaring indicated by the exponent, the

minus symbol indicating a negative number, and the minus symbol indicating the

answer should be negative), combining them inappropriately. Student BF focuses on

the two processes, comparing and contrasting them, combining the visual cues of

parentheses, exponents, and minus symbols into a coherent, appropriate reconstruction

of her knowledge and growing awareness of the role of context.

Interview data typical of students who reconstructed their knowledge not only

reveal something of their prior understandings, but also provide clues about the initial

focus of attention. Student KK appears to have focused initially on "doing some-

thing"squaring a number. The role of context has become a focus of attention, as indi-

cated by her observation that she had never thought about the order of operations.

Student LZ appears to focus on the arrangement of symbols, comparing his previous

interpretation with his reconstructed interpretation.

I never thought about the order of operations when I was supposed to

square three first then put in the opposite.

Student KK

I was confused because before whenever a variable was to be substituted

for a particular number it was expressed like this: x = 1, not f(-1). I used

to think that 32 = 9. Now I realize that the answer is 9. I used to think f

times (-1). Now I realize what the problem asks for. I used to think the

substitution was correct. Now I realize that the parentheses are missing

and my notation is incorrect.

Student LZ

5.5 Use of Concept Maps

Misconceptions were not only revealed in students' reflection writings but

were also documented in the concept maps they did throughout the semester. The first

concept map of the student WC, shown in Figure 5.6, was drawn in the fourth week of

the semester. It indicates she has incorrectly associated y(x) = x2 with a graphical rep-

resentation of a parabola opening upwards and y(x) = x2 with the graphical image of a

parabola opening downward. WC's misconceptions are indicated in Figure 5.6 by

arrows in the lower left corner of the concept map.
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FIGURE 5.6. WC: Concept Map Week 4: Inappropriate
Connections

She maintained that the graph of y(x) = x2 opened downward and that the graph

of y(x) = x2 opened upward. Challenged by the members of her group during a small

group discussion in class subsequent to turning in her concept map, WC and the mem-

bers of her group decided to test her assumptions. They entered both functions on the

graphing calculator and examined the graphs, as well as the input/output table values

of the two functions. Even though these investigations demonstrated that her initial

assumptions were incorrect, WC needed to explore additional quadratic functions in

which the quadratic term was preceeded by a minus sign before she was able to aban-

don her incorrect beliefs. Once reconstructed, WC's concept image remained stable

throughout the semester. The reconstructed portion of her concept image is outlined

and marked by an arrow in the portion of the final concept map completed in week 15

displayed in Figure 5.7.
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FIGURE 5.7. WC: Concept Map Week 15: Reconstructed Concept
Image

It is conjectured that the ability to reconstruct inappropriate concept images is

less difficult if inappropriate concept images are identified before they have been

assimilated into more complex existing concept images which have been tightly inte-

grated into cognitive collages or schemes that are very refined and stable. Despite the

teaching intervention, and the investigations on calculator and with function machine,

this student continued to interpret x as a negative number and (x) as a positive

value. Her concept image of the minus symbol was much more deeply embedded into

an existing conceptual schema, and was not impacted during the semester.

5.6 Summary of Findings

In this chapter, based on the methodology described in Chapter 4, data from the

quantitative and qualitative preliminary classroom studies were presented and ana-

lyzed. Results from the field and preliminary studies indicate that the research ques-

tions designed to provide data about students' ability to think flexibly and to recognize

the role of context when interpreting ambiguous notation and symbols were reasona-

ble. The preliminary study investigated the questions of whether students classified as

`less able' and/or 'remedial'

demonstrate improved capabilities in dealing flexibly and consistently
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with ambiguous notation and various representations of functions?

develop greater confidence and a more positive attitude towards mathe-

matics?

It was felt that the design of the instruments was fundamentally sound. The pre- and

post-course attitude surveys of the field study identified prior variables which were

used to develop a profile of the students of this already stratified population. The stu-

dents of the preliminary classroom-based survey, though they constituted a small sam-

ple (n = 16), are shown to be representative of the students based on the field study

profile. Students who enroll in the undergraduate remedial Intermediate Algebra

course are generally recent high school graduates who are unused to sustained aca-

demic efforts; resistant to renegotiating the unwritten didactic contract; want to get on

with their lives; and view mathematics as something that blocks their way. Convinced

they are not good in mathematics, many believe that mathematics consists of "getting

the right answer" and that the teacher should "show me how to do it."

Results of the data collection for the quantitative field and preliminary studies

were analyzed using the theoretical framework. The quantitative results indicate posi-

tive changed states of students' beliefs about their mathematical abilities for students

of the broad-based field study and for the students of the local preliminary study. The

only exception was that the students of neither study changed their beliefs about their

willingness to attempt a problem not seen previously. As the initial responses were

nearly neutral, this result is not unexpected, given they have as their goal "just get

through this class so I can go on with my life." Whatever it is that they feel passion-

ately about, it generally isn't mathematics.

The use of concept maps appeared to be a viable means for documenting stu-

dents' processes of knowledge construction. However, when students were inter-

viewed after turning in their maps, the need to triangulate the concept map data with

other data became apparent. These interviews led to the realization that interpretations

of student concept maps as visual re-presentations of their conceptual structures are

constrained by (a) the amount of time a student is able to spend on the task of con-

structing the map; (b) the amount of information and the number of connections

between and among elements a student is able to record on a two-dimensional, finite-

sized sheet of paper; and, most importantly, (c) by the student's ability to categorize,
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organize, and reflect upon his/her perceptions, actions, and schemas employed. Any or

all of these constraints can distort the visual representation of one's cognitive collage.

Even though the interviews are conducted one or two weeks after the actual map con-

struction, these follow-up discussions were yet another reflective activity in which stu-

dents were able to interpret, explain, clarify, and reflect upon their processes and

thinking as they constructed their maps. The interviews frequently resulted in revised

interpretations of the student's knowledge construction processes and provided addi-

tional information about the nature of the student's thinking and understanding.

Instructions for creating a concept map were revised. In order to minimize con-

cepts and processes being omitted from a map because of lack of space on the map,

instructions for creating a concept map were revised. In the main study, an intermedi-

ate step was introduced between the initial brainstorming and the actual map construc-

tion. New directions included the recommendation to write all terms on small post-its

which could then be arranged and rearranged as additional elements were included in

the map. The final concept map drawing done was to be done only after the arrange-

ment reflected an organization and connections the student felt was appropriate. It was

assumed that subsequent maps would more closely reflect students' thinking and cog-

nitive structures at the time a new map was created, if the earlier maps were retained

by the investigator/instructor and unavailable for reference. Each individual student

would receive timely feedback during interviews scheduled the week after the

assigned concept map was turned in. The same topic, Function, would be assigned as

the subject of each map, rather than different subjects assigned for each new map in

order to collect data on students' developing concept images and schemas of a given

concept.

5.7 Conclusions

Errors initially attributed to misunderstandings about order of operations

masked other underlying causes of student difficulties, particularly the lack of flexibil-

ity in interpreting ambiguous notation. As the result of a teaching intervention

designed to address students' lack of understanding about order of operations, miscon-

ceptions associated with the minus symbol were revealed. As a result of this experi-

ence, students voiced their confusionidentifying and describing their struggles to
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determine which interpretation of the minus symbol was appropriate in a given con-

text. One student voiced the difficulty many in the class expressed: "How do I know

what the negative sign means in a given problem? Which way do I think about it?"

The conceptual requirements for understanding ambiguous expressions, both

arithmetic and functional, appear to be far more formidable in their complexity than

has generally been recognized. Reflective investigations, along with use of function

machine representations and the graphing calculator, generated cognitive dissonance

that challenged most students to reconceptualize previous understandings after reflect-

ing on what they had done and thought. The qualitative and qualitative preliminary

studies document the complexity of the task and the cognitive demands on students as

they attempt to make sense of ambiguous mathematical notation.

Preliminary findings focused the investigator's attention on the need for further

research in order to better understand what it is that students' understand when they

see ambiguous notation and to more closely examine why it was that students recon-

structed their prior knowledge in so very many different ways. Questions about the sta-

bility of students' reconstructed concept images and schemas were raised and the need

to modify the data collection methods of the main study to include documentation of

stability or the lack thereof over time was identified. The quantitative method of ana-

lyzing the concept maps did not prove to be satisfactory and the need to develop a

qualitative method of analysis was recognized.
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CHAPTER 6 Divergence and Fragmentation

Two roads diverged in a wood, and I

I took the one less traveled by,

And that has made all the difference.

Robert Frost, The Road Not Taken

6.1 Overview of Main Study Quantitative Investigations

The main study consists of quantitative and qualitative components, similar to

those used in the preliminary studies. In this chapter, results of the quantitative studies

will be reported, analyzed, and the findings interpreted using the theoretical frame-

work described in Chapter 3. The pre-course demographic survey used in previous

studies was used in the main study to establish a student profile of the students who

were subjects of the main study. Prior variables which impacted these students previ-

ously were identified using the pre-course student self-evaluation surveys, which were

given students during the first week of class. Both the main study student profile and

prior variables data are triangulated with the results of the field and preliminary stud-

ies. Post-course self-evaluation surveys given students during the final week of class,

were used to document improved states of students' beliefs about their mathematical

abilities.

Pre- and post-course self-evaluation survey questions used in the main study

were those used in preliminary studies and described in Chapter 5. Responses from the

five questions relevant to this study are reported and analyzed. Post-course self-evalua-

tion survey questions were not identical to those used on the pre-course survey. Pre-

course questions asked students to rate their abilities initially. The post-course ques-

tions asked them to evaluate their improvement at the end of the semester. This format

allowed students to indicate improvement in their perceived abilities, even if they had

high positive attitudes initially. No pre- and post-survey statistical comparisons were

made, since the pre- and post-course self-evaluation questions were not identical.

It was hypothesized that divergence and fragmentation of strategies occur

between students of a undergraduate population of students who have demonstrated a

lack of competence and/or failure in their previous mathematics courses. In this chap-
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ter we report the results of the studies designed to address the main research question:

Does divergence and fragmentation of strategies occur among
undergraduate students enrolled in a remedial algebra course who
have previously been unsuccessful in mathematics?

and the related questions: Do students classified as "less able" and/or "remedial," with

suitable curriculum:

demonstrate improved capabilities in dealing flexibly and consistently

with ambiguous notation and various representations of functions?

develop greater confidence and a more positive attitude towards mathe-
matics?

The divergence that occurred between two groups of extremes of the students

who participated in the main study; i.e., the most successful and the least successful,

was examined using pre- and post-test results, student work, and interviews. In partic-

ular, this study sought to determine the nature and extent of changes in students' math-

ematical abilities to think flexibly to interpret ambiguous notation and translate among

various functional representations. Questions were designed to test students' ability to

(1) curtail reasoning, (2) reverse a direct process, and (3) to translate between various

representations. The stability of their responses over time was also examined. The

responses are interpreted using the theoretical framework described in Chapter 3.

6.2 Modifications to the Preliminary Studies Instruments

Data collection instruments and/or their instructions were described in Chapter

4 and modifications to the various instruments prior to the preliminary studies were

reported in Chapter 5. Changes to these instruments are reviewed when the study

which utilized the instrument is described.

6.3 A Student Profile

The subjects of this study were undergraduate students who completed a devel-

opmental Intermediate Algebra course at a large suburban community college located

northwest of Chicago, IL. Twenty-six students of the thirty-three [78%1 who initially

enrolled completed the course. The dropout rate of 22 percent of the initial enrollment
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was lower than the 50 percent reported nationally in the traditional developmental

courses [Hillel, et al., 1992]. Twenty-three of the twenty-six students who completed

the course are included in the study, having completed the pre- and post-course

responses and participated in the interviews conducted throughout the semester. Only

paired responses are reported and analyzed.

Demographic survey responses of the main study are consistent with those

used to develop the student profiles of the earlier studies. All but two of the main study

students were enrolled full-time (12 or more semester hours). Except for one student,

they all worked at jobs outside of school, averaging more than 20 hours per week of

outside employment. Students were twenty years of age or younger, either recent high

school graduates, or students who had attended the community college the previous

year. Six students were taking the course for the second time. One of the six students

was attempting the course for the third time, having attempted the course twice previ-

ously and having dropped the course both times.

6.4 Prior Variables: Results of Student Self-Evaluation Surveys

A comparison of pre-course survey responses indicates that the prior variables

of attitudes about their mathematical abilities is roughly the same for students of the

field, preliminary, and main studies. Not surprisingly, students' responses indicated

they lacked self-confidence and had a negative attitude towards mathematics at the

beginning of the semester. Interviews with each student during the first two weeks of

the semester confirmed these findings. Feelings of high math and test anxiety were

also noted during these interviews. Students in the field, preliminary and main studies

indicated that they have difficulty interpreting notation and symbols; analyzing and

interpreting data; and solving a problem never seen before. Less than half of the stu-

dents were willing to attempt a problem not seen previously.

Based on the post-course surveys, comparisons of the responses of students

who believed their abilities had improved by the end of the term indicate that students

of all three studies showed positive improvement from their initial negative attitudes.

The pre-course initial state comparisons are presented in Table. 6.1.
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Table 6.1: Field, Preliminary & Main Studies: Initial States:
Comparison of Pre-Course Self Evaluation of Abilities

Students who rated themselves as somewhat good
(4) or very good (5) at the beginning of the semester

Field
n=237

Pre

Prelim
n=16
Pre

Main
n=23
Pre

1. Ability to interpret notation & symbols 30% 38% 22%

2. Ability to analyze and interpret data 25% 38% 35%

3. Ability to solve problem not seen before 29% 19% 22%

4. Willing to attempt a problem not seen before 36% 44% 35%

5. Use of graphing calculator to understand mathematics 39% 31% 57%

The post-course improved state comparisons for all three studies are shown in Table

6.2.

Table 6.2: Field, Preliminary & Main Studies: Improved States:
Comparison of Post-Course Self Evaluation of Abilities

Students who rated themselves as somewhat Field Prelim Main

good (4) or very good (5) at the end of the n=237 n=16 n=23

semester Post Post Post

6. Ability to interpret notation & symbols 39% 56%* 74%*

7. Ability to analyze and interpret data 51% 56% 61%

8. Ability to solve problem not seen before 40% 50% 61%

9. Willing to attempt a problem not seen before 42% 44% 61%

10. Use of graphing calculator to understand math 81% 94% 83%

* indicates significant improvement in state compared

with field study post-course responses

The improvements in state were not as uniform across all three studies as the

percentages reflecting students' initial state of beliefs. Post-test improvements in state

of students' beliefs in the main and preliminary studies in their ability to interpret

notation and symbols at the end of the term compared with students of the field study

suggests that explicit investigation and discussion of ambiguous notation impacted

students' beliefs about their ability to interpret notation and symbols. This was partic-

ularly evident in the main study, in which interpretation of ambiguous notation was

investigated and discussed explicitly throughout the semester.
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The triangulation of main study data with that of the field and preliminary stud-

ies establishes the validity of the main study demographic student profile and prior

variables within the framework and analysis of the earlier studies. The triangulated

data indicate a consistency in the data reported in all three studies across classes and

semesters of some of the prior variables undergraduate students bring with their entry

into the remedial Intermediate Algebra course. Comparisons of the pre-course mean

responses of the main, preliminary and field study surveys, along with a comparison of

the post-course mean response data for all three studies, are given in Table 6.3.

Table 6.3: Main, Preliminary & Field Studies:
Self-evaluation of Mathematical Abilities - Comparison of Means

Group
1 Notation 2 Data 3 Solve 4 Willing 5 Graphing

Calculator

PRE-COURSE

Field (n=237) 2.97 2.80 2.80 3.00 3.30

Preliminary (n=16) 3.13 3.13 2.44 3.25 2.88

Main (n = 23) 2.96 3.13 2.78 3.04 3.61

POST-COURSE

Field (n=237) 3.20 3.40 3.50 3.10 4.15

Preliminary(n=16) 3.63 3.81 3.50 3.50 4.25

Main (n = 23) 3.91 3.65 3.57 3.70 4.21

The bar charts in Figure 6.1 provide a visual comparison of the pre-course

mean responses of all three studies. Field, preliminary, and main study survey mean

responses are displayed, from left to right: field responses [left], preliminary study

responses [middle], and main study responses [right] for each question. The post-

course mean responses for all three studies are displayed in Figure 6.2, using the same

order. Question numbers which correspond to the listing of questions in Tables 6.1 and

6.2 are displayed below the horizontal axis. The vertical scale indicates the mean

response for each question. A gray-scale key, designating the field, preliminary, and

main study responses is also included.
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FIGURE 6.1. Field, Preliminary, and Main Study Comparison:
Pre-course Self-evaluation Survey Mean Responses

FIGURE 6.2. Field, Preliminary, and Main Study Comparison:
Post-course Self-evaluation Survey Mean Responses

Though nearly eighty percent of the main study students rated themselves very

poor mathematically at the beginning of the semester, the mean responses of the self

evaluation pre-course surveys [Figure 6.1] suggest a somewhat different picturethat

overall, the students' beliefs about their mathematical ability was more neutral than

negative. However, an examination of the mean responses of the extremes of the class,

i.e., the most successful and the least successful students, displayed in Table 6.4, sug-

gests yet another possibility: students who were most successful in the course actually

had more negative attitudes at the beginning of the term than did the students who

were the least successful during the semester. The most successful students also expe-

rienced greater improvement in state during the semester.
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Table 6.4: Main Study: Most and Least Successful Mean Responses:
Pre- Course, Post Course Self Evaluation of Abilities

Students who rated themselves as somewhat good Most Least Most Least
(4) or very good (5) at the beginning, improved at

the end of the semester Pre Pre Post Post

1. Ability to interpret notation & symbols 2.75 3.25 4.25 3.25

2. Ability to analyze and interpret data 3.25 3.50 4.00 3.75

3. Ability to solve problem not seen before 2.50 3.75 3.75 4.00

4. Willing to attempt a problem not seen before 2.25 3.50 4.25 3.50

5. Use of graphing calculator to understand math 3.25 3.75 4.50 4.25

A visual comparison of the pre-course mean responses of the most and least

successful students is displayed in Figure 6.3. The pre-course mean response of the

most successful students for each question is displayed to the left of the mean response

of the least successful students.

FIGURE 6.3. Main Study: Most and Least Successful Mean Responses:
Pre- Course Self Evaluation of AbilitiesInitial State

4

Most Success
o Pre

3
Least Success

Pre

Initially, the most successful students underestimated their mathematical abili-

ties compared with the estimates of the least successful, who tended to rate their abili-

ties and confidence in their responses higher than their performance on the pre-test

warranted. Initially, more negative beliefs about their mathematical abilities were held

by those students who were most successful during the semester.

The post-course mean response of the most successful students for each ques-
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tion is displayed to the left of the mean response of the least successful students in Fig-

ure 6.4.

FIGURE 6.4. Main Study: Most and Least Successful Mean Responses:
Post- Course Self Evaluation of AbilitiesImproved State

4

Most Success

o Post

Least Succes
D Post

The initial states of the beliefs about their mathematical abilities of both groups of

extremes and the changed states of those beliefs are shown in Figure 6.5. Initial state

paired responses for Question 1 are displayed to the left of the final state paired

responses for the same Question. In all paired responses, the mean response of the

most successful students (M) is displayed to the left of the mean response of those

least successful (L).

FIGURE 6.5. Most (M) & Least (L) Successful Initial State and Improved State
Paired Mean Responses of Self-evaluation Surveys
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6.5 Students' Ability to Interpret Ambiguous Notation

The preliminary studies established a student profile and identified prior varia-

bles which provide background and context for interpreting results of the main study.

Results of the preliminary studies indicated that students' have great difficulty inter-

preting ambiguous notation and that the process of reconstruction of an inappropriate

concept image which includes interpretation and use of the minus symbol appears very

difficult for some students, seemingly impossible for others. Pre- and post-tests pro-

vided information about students' ability to interpret function notation and the minus

symbol in various contexts; to evaluate functions; and to translate between representa-

tions. The preliminary version consisted of twenty questions. For the main study, the

number of pre-test questions was reduced to twelve questions, focused on students'

ability to think flexibly to interpret notation and to translate among various representa-

tions. The main study post-test consisted of sixteen questions; the twelve pre-test

questions and four additional questions. Both instruments, in their final form, are

included in appendix B: Data Collection Instruments. They are discussed in more

detail in a previous chapter [Chapter 4]. The pre- and post-tests tested the null hypoth-

esis that there would be no demonstrated differences in competence in interpreting

ambiguous notation and translating among various functional representations.

6.5.1 Main Study Pre- and Post-Test Results

The pre-test was given to students during the first week of class. Responses of

the pre-test were similar to those reported in the preliminary study [Chapter 5]. They

indicated that less than fifty percent of the students were able, except for the arithmetic

computation of squaring a negative number, to correctly answer even one of the

remaining eleven questions at the beginning of the semester. Five of the twenty-six

students of the main study correctly evaluated the function f(x) for a negative-valued

input, f(-2), given f(x) = x2 5x + 3. Three of the twenty-three students of the prelimi-

nary study answered this question correctly. Only one student in the main study was

able to evaluate the function correctly when asked to find an algebraic input, f(h-1). It

should be noted that all students had satisfied the prerequisite for this course (i.e., a

grade of C or better in Introductory Algebra or entry based on a placement test score).

Recall that six of these students were repeating the course; two for the second time.
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One of the six students was attempting the course for the third time, having dropped

the course on each of his two previous attempts.

The results of the pre-test are summarized in the chart in Figure 6.6. The

twelve pre-test questions are indicated in the left-most column. Each column, num-

bered from 1-26 (indicated at the top of the display), contains the responses of an indi-

vidual student. The column numbers reflect the students' end-of course ranking,

determined by the combined total numbers of correct responses on the post-test, the

departmental final open response, and multiple choice exams. Correct responses are

indicated by the black cells and incorrect responses by the striped cells. Cells left

blank (white) indicate the student made no attempt to answer the question. Questions

referenced in the preceding discussion are indicated by the arrows on the left. The row

numbers on the right edge of the summary indicate the total number of correct

responses for that question and the total number of correct responses for each of the

questions discussed is highlighted by a small dark square. The numbers along the bot-

tom of the chart indicate the number of correct pre-test responses for a given student.

FIGURE 6.6. Main Study: Pre-test: Students' Ability to Interpret Notation
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Based on the results of the preliminary study and the main study pre-test, stu-

dents' ability to interpret and use ambiguous notation was a focus of investigation and

explicit discussion throughout the semester. The need to recognize the role of context

and to use notation and substitution consistently was also emphasized. During the first

140



Divergence and Fragmentation Students' Ability to Interpret Ambiguous Notation

two weeks, students were introduced to a process notion of function, in which an

informal process definition of function is introduced: A function represents a process

that receives input and returns exactly one output for a given input [DeMarois, Mc Go-

wen & Whitkanack, 1998]. Investigations and explicit discussion of function notation

were a regular part of classroom discourse. Explorations, with questions similar to

those tested in the preliminary study teaching experiment were assigned. Function

evaluation with numerical and algebraic inputs was also a subject of investigation, as

students attempted to make sense of the notation. Students' answers which included

inconsistent and/or inappropriate use of notation were considered incorrect.

A journal problem assigned at the beginning of the third week of the course

provided additional data about students' ability to interpret ambiguous in the context

of evaluating a quadratic function.

If f (x) = x2 3 x + 5

a. find f (t 2) . Show all work and explain what you did.

b. find f(-3).

Eleven of the 26 students used consistent, correct notation. They wrote

A-3) = (-3)(-3)-3(-3) + 5

and completed the evaluation correctly. Fifteen students wrote:

f(-3) = 32 3(-3) + 5

Eight of those students interpreted 32 as (-3)(-3) = 9 and proceeded to complete eval-

uation of the function: f(-3) = 23. Though none of these students used grouping sym-

bols to indicate they were squaring a negative number, they all used parentheses when

substituting 3 for x in the linear term, illustrating their inconsistent use of notation.

Subsequent interviews with the fifteen students revealed their lack of awareness of

using notation inconsistently or that what they wrote indicated the use of two different

values for x: 3 in the quadratic term and 3 in the linear term. Six of the fifteen stu-

dents showed the same work initially, but evaluated 32 as 9, which resulted in an

incorrect answer. Seven students wrote 9 + 9 + 5 = 5; two students wrote (-3)(3)

(3)(- 3) + 5 = 5.
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A post-test was administered during the 15th week of the semester. The pre-

test responses and post-test responses are summarized in Figures 6.7 and 6.8 respec-

tively and are interpreted in the same manner as the results displayed in Figure 6.6.

FIGURE 6.7. Main Study: Pre- test Responses
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FIGURE 6.8. Main Study: Post-test Responses
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Analysis of the results indicates that there was a significant difference in the

number of correct post-test responses compared with the pre-test responses, indicating

growth in students' ability to interpret ambiguous notation and translate among repre-
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sentations. A Pearson Chi-square test confirms that the number of correct responses on

the post-test Questions 1-12 differs significantly from the number of correct responses

of the pre-test Questions 1-12, with more correct responses on the post-test than pre-

dicted (z2 = 86.176, and two degrees of freedom, p < 0.0001).

Not only did the total number of correct responses increase significantly on the

post-test compared with the pre-test, but the number of problems not attempted was

reduced significantly as well. The overall change in the number of incorrect responses,

though decreased, was not significant. These differences are shown in Figure 6.9.

FIGURE 6.9. Main Study: Analysis of Pre- and Post-Test Responses
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6.6 Divergent Paths-Results of the Quantitative Studies

When the pre- and post-test responses of the extremes of the class are ana-

lyzed, the results indicate the divergence of performance that has occurred during the

semester between the most and least successful students. On the pre-test, the number

of correct responses of each group was approximately the same, suggesting a similar

initial level of competence. The divergence that occurred is shown in Figure 6.10.
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FIGURE 6.10. Comparison of Most/Least Successful Pre- & Post-test Responses
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Both groups demonstrate approximately the same level of competence at the

beginning of the semester. A noticeably improved level of performance on the post test

at the end of the semester is indicated for the most successful students. Almost no

improvement occurred for those students who were least successful. The significant

improvement of the most successful students compared with the minimal improve-

ment of the least successful and the divergence of performance that occurred during

the sixteen week course is clearly indicated in the bar charts of Figure 6.11.

FIGURE 6.11. Analysis of Pre- & Post-test Responses: Most/Least Successful

Pre-Test Responses Post-test Responses
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A closer examination of the pre- and post-test responses of each group of

extremes suggests that the significant change in the overall class responses is due pri-

marily to differences in the pre- and post-test responses of the most successful stu-

dents. Pre- and post-test responses for each group of extremes are displayed in the bar

charts in Figure 6.12. The number of correct post-test responses of the most successful

students in the bar chart on the left indicates a significant difference compared with the

pre-test responses (x2 = 86.176, with two degrees of freedom, p < 0.0001). By con-

trast, the bar chart on the right in Figure 6.12 reveals how slight the improvement in

performance is for the least successful students. The difference in the number of cor-

rect post-test responses compared with the number of correct pre-test responses was

not significant.

FIGURE 6.12. Comparison: Pre & Post-test Responses by Each Extreme Group
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6.7 Qualitative Divergence

Among the aptitudes essential for mastery of mathematics, Krutetskii [1969]

identified the ability to curtail reasoning [the ability to drop the intermediate (connect-

ing) system of substantiation from the reasoning process and to connect the first link

directly with the last as it applies to a series of mathematical operations] and the ability

to switch over from a direct to a reverse train of thought; i.e., reversibility. His research

with elementary school children (grades 5-8) challenges the prevailing assumption

that repeated exercises on problems of a single type is a necessary condition for the

transition from 'detailed' to 'curtailed' reasoning.
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His data suggests that curtailment begins immediately after the method of solu-

tion has been generalized for the most capable students. For capable pupils, the curtail-

ment process develops swiftly after solving the first problem of a type that is new to

them. This characteristic is not typical of all students. The extent to which this condi-

tion is typical varies for capable, average, and less capable pupils. Average pupils usu-

ally cannot proceed with solutions if even one step is left out of the reasoning process.

They apparently do not develop the ability for 'curtailment' until later stages of mas-

tery, after they have had the benefit of repeated exercises. Less capable pupils have

even greater difficulty and do not begin to curtail reasoning until after they have had

lengthy exercises, if they are able to curtail reasoning at all [Krutetskii, 1969d, pp. 41-

50]. Additional studies .on divergent performance of more able and less able students

and the characteristic components of mathematical abilities of students in grades 2-4

were conducted by Dubrovina [1992]. Studies of the process of curtailment of students

in grades 9 and 10 were conducted by Shapiro [1992]. Their findings support

Krutetskii's results, documenting the qualitative divergence that occurs as a conse-

quence of the presence or lack thereof of the various components of mathematical abil-

ities identified by Krutetskii.

6.7.1 Stability of Students' Responses

Investigations, assignments, small-group work, and class discussions during

the semester provided students with opportunities for reflective practice. Problems

structured similarly to those students had difficulty with at the beginning of the semes-

ter were included on assignments, as well as on various forms of evaluation. Student

work over time was analyzed to determine whether the phenomena of curtailment and

reversibility of thought occurred in a population of remedial undergraduate students.

The stability of students' responses in the main study on similarly structured problems

assigned throughout the semester supports the findings of Krutetskii [1969] and Sha-

piro [1992] on curtailment. A comparison of responses for the tasks of evaluating a

quadratic function using a negative-valued input and using an algebraic input docu-

ment the process of curtailment which occurred at various times throughout the semes-

ter experienced by the most and least successful students. Baseline information was

established with the Pre-test Questions 6 and 7 responses. None of the students who
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were characterized as those most successful upon completion of the course, nor those

who were eventually characterized as least successful, answered Pre-test Questions 6

or 7 correctly, though all students in both groups of extremes attempted these problems

on the post test. Similarly structured problems were included on a weekly journal

assignment [week 3]; the first unit exam [week 6]; the post-test Questions 6 and 7

[week 15] and on the open-response final exam [week 16]. Student responses for the

two tasks, given similarly structured problems at different points during the semester,

are summarized in Figure 6.13. As in the charts presented previously, dark cells indi-

cate correct responses, striped cells represent incorrect responses and cells left blank

indicate no attempt was made to answer the question.

FIGURE 6.13. Reconstruction of Schemas and Curtailment of Reasoning
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Responses for each of the two questions indicate there were three distinct time

periods during which curtailment and/or reconstruction of inappropriate schemas

occurred for most, if not all the students within the groups: most successful, average,

and least successful. These time periods, together with the responses of students who

were able to demonstrate a consistency of performance [indicated by the dotted rectan-

gles] are shown in Figure 6.13. The dotted rectangles enclose the responses of students

who were able to curtail their reasoning by the time indicated in the column headings,

given in weeks. Reading the chart by rows, left to right, the left edge of the dotted rec-

tangle indicates the earliest time by which most students in a group demonstrated con-

sistency. This is an indication that successful and relatively stable reconstructions of

inappropriate schemas and curtailed reasoning have occurred with respect to the evalu-

ation of quadratic functions using a negative-valued input and the process of squaring

a binomial. Each row represents the responses of one student, ranked from the most

successful [1] to the least successful [26], top to bottom.

The chart on the left in Figure 6.13 summarizes the responses of students for

the evaluation of a quadratic function with a negative-valued numerical input. These

responses of the most successful are contrasted with those of students who were able

to curtail their reasoning by week 6, [students 5-21] and with the responses of those

who were still struggling in week 16 [students 22-26]. The most successful students

[1-4] required almost no practice and very little time [week 3] in which to construct a

more appropriate schema which remained stable throughout the semester. The data

suggests that average students [5-21] usually needed additional practice and experi-

ence. Most were successful by week 6. The least successful students [22-26], despite

an entire semester of experience and practice, still struggled and were inconsistent at

the end of the semester.

The right-hand chart in Figure 6.13, summarizes students' responses for the

problem which asked them to square a binomial as part of the overall process of evalu-

ating a quadratic function. The most successful students [1-3] again managed to con-

struct an appropriate schema which remained stable throughout the semester by week

3. Several students, with additional experience, reflection, and practice, developed

consistent performances by week 6. The least successful [students 22-26] were, for the

most part, unable to develop proficiency by week 16.
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The pre- and post-test responses for the two squaring process in the context of

evaluating a quadratic function are compared in Figure 6.14.

FIGURE 6.14. Pre- and Post-test Results: Arithmetic & Algebraic Squaring
Processes Evaluating a Quadratic Function
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Students who were eventually categorized as those most successful, at the

beginning of the semester demonstrated the same level of competence as did those

who were eventually classified as least successful. The post-test results for students

characterized as most successful when compared with the results of the least success-

ful illustrates the divergence that occurred during the semester. Note that Students 24

and 26 answered P7 correctly, though their responses to P6 were incorrect on both pre-

and post-tests. Neither student was able to answer the arithmetic questions, P1 and P3,

correctly, suggesting that difficulties interpreting the minus symbol are an underlying

cause of the difficulties they experienced in answering P6.

A comparison of the stability of responses of the most successful with those of

the least successful in Figure 6.15 illustrates the differences in ability to reconstruct

schemas and curtail reasoning even more starkly.

FIGURE 6.15. Reconstruction and Curtailment: Most/Least Successful
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Reading the chart row by row, from left to right, it is noted that all of the most success-

ful students were able to correctly evaluate a quadratic function given a negative-val-

ued input by the third week. Note that both students 24 and 26 correctly answer P6 and

P7 on the final exam, the post-test question they answered incorrectly the week previ-

ously. Two facts should be taken into account in trying to interpret these changed

results. First, both students, in interviews following the post-test and prior to the final

exam, investigated similarly structured problems and reflected on their incorrect post-

test responses. Second, the final exam was a multiple choice examthe post-test was

an open response format. It remains an open question as to whether these students

have restructured their schemas into a more appropriate, stable cognitive collage, or

whether their responses are the result of being retained in memory for a brief period of

time.

6.7.2 Flexibility of Thought: Ability to Reverse a Direct Process

Students' ability to switch their train of thought and reverse a direct process

was also a subject of investigationanother indicator of flexible thinking. The ability

to evaluate a function for a given input, together with the ability to find the input given

a specific output is considered a two-way association. A student who is able to make

the transition from being able to evaluate a function for a given input and is also able to

find the input, given a specific output, regardless of starting point, who recognizes that

these are two different processes, would be considered to have demonstrated flexible

thinking.

Pre- and post-test responses provide some indication of the ability of students

in each group of extremes to think flexibly and to switch one's train of thought from a

direct process to its reverse process. Four direct processes were examined, together

with their reverse processes. Baseline data indicative of students' abilities to reverse a

process, using various representations, were provided by the pre- and post-test ques-

tion pairs, P3 and P1 [arithmetic]; P8 and P9 [graphical]; P10 and P11 [numerical-

table]; and P13 and P14 [functional symbolic]. P13 and P14 were used on the post-test

only. The pre-test responses of each group of extremes for the paired reverse process

questions are shown in Figure 6.16 on the left. The post-test responses are shown on

the right.
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FIGURE 6.16. Pre- and Post-test Results: Reversal of a Direct Process

Pretest ( 2 Questions) I Post Test (12 Questions)

Most Success Least Success
I Most Success I Least Success

1 2 3 4 22 23 24 26 1 2 3 4 22 23 24 26

14. Meaning of f( x) r
4

'',V

413. Meaning of -f(x)

11. Tables: find g(f(2)) I

1

V %

/ / Ad 1
10. Tables: find f(g(2))

1 1 r

9. Graph: find x if y(x) = 8 or7
PVA A

74ril IIIIVA
8. Graph: find y(3)

1. -(n squared) VA / / //A V
1,1 a r A-

3. Square of a negative n

A comparison of the pre-test responses in Figure 6.16 indicate that both groups

of extremes demonstrated a similar lack of competence to reverse a process at the

beginning of the semester, even at the computational level [P3 and P1]. Responses to

post-test and final exam questions related to reversing a direct process, similarly struc-

tured but using different formats (post-open response; final exam, multiple choice) and

various representations, are shown in Figure 6.17.

FIGURE 6.17. Post-test & Final Exam: Reversal of a Direct Process
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The post-test responses [Figure 6.17] reveal that the divergence occurred between the

two groups, based on their responses to questions in arithmetic, as well as in symbolic

contexts, using various representations (graphs, tables, arithmetic computations). By

the end of the semester, the most successful students demonstrated that given the graph

of a function, they were able to evaluate a function and to reverse thinking to solve for

a specified value. They were able to extend their knowledge about function evaluation.

They could evaluate a composition of a function using tables and were able to reverse

their train of thought, first using the output of a function, g, as input in another func-

tion, f, then using the output of f as input into the function, g. Having successfully

reconstructed their inappropriate cognitive collages of quadratic processes, they were

able to square a negative number as well as find the additive inverse of a number

squared. The most successful students were also able to describe the direct process and

its reversal, distinguishing them as distinct processes.

The post-test responses in Figure 6.17 of least successful students, on the other

hand, when compared with their pre-test responses, indicate that no improvement in

their abilities to reverse a process occurred during the semester. The inflexibility of

their thinking extends even to arithmetic computational processes. The ability to

reverse their train of thought appeared frozen, regardless of which representation was

used. When one recalls that these are undergraduate students in a class where graphing

calculators were an integral component of the course which they were encouraged to

use, not only in class but on all assessments, these results are even more discouraging.

Reversal questions that were conceptual, i.e., they involved no procedure in

order to determine the answer, such as Post-test Questions 10 and 11; 13 and 14,

proved more difficult, even for the most successful students. Perhaps it is because con-

ceptual reversal questions frequently require two types of flexible thinking: the ability

to reverse one's train of thought and the ability to think proceptually; recognizing

when the symbol or expression indicates a to do procedure and when the notation

requires no procedure, but is an object to think about and with. All four of the most

successful students were able to correctly reverse the direction of their thinking, when

confronted with procedural questions. They were able to recognize the reverse proc-

esses of finding output given an input and finding an input given an output, when asked

what the expressions f(x) andf(-x) meant to them. Each student saw.gx) as the output
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and x as the input. The difficulty lay, not in their ability to switch their train of thought,

but in their ability to interpret notation flexiblyto interpret the minus symbol and

what it means in the given context, taking into consideration what values are included

in the domain and range. Despite their overall improvement, two of the four most suc-

cessful students continued to interpret a minus sign in front of a variable to mean that

the "value of the output is negative" in the first instance, and that the "value of the

input is negative" in the second instance, even at the end of the semester. Each of the

least successful students interpreted the minus sign in front of a variable to mean that

the value was a negative number.

6.8 Reconstruction of a Cognitive Collage: One Student's Efforts

Skemp defines a symbol as "a sound, or something visible, mentally connected

to an idea" [Skemp, 1971, p. 69]. What is the idea, or ideas, to which the minus symbol

is attached for students? What meaning does it have? The quantitative data contribute

bits and pieces of knowledge to our understanding of students' difficulty interpreting

ambiguous notation, but do not address the cognitive aspects of the student's behav-

iour. What does the student perceive? What meaning does the symbol(s) have? What

makes reconstruction of the limiting cognitive collage and/or cognitive units which

include notions about the minus symbol so difficult for so many students? Mathemati-

cian colleagues dismiss the difficulties students experience in interpreting this symbol.

It is so obvious and trivial to them, that it does not appear to be a difficulty even wor-

thy of examination. The introduction and growing use of technological tools which

seek to implement the mathematician's intuitive understanding of the minus symbol

with the computer scientists' traditional programming practices challenge us to rethink

our own understandings, as well as our instructional practices. Before examining other

aspects of flexible thinking, let us consider the processes of reconstruction of one stu-

dent's existing cognitive collage in which her schemas for dealing with the minus sym-

bol were well-established and refined.

The following excerpt is a portion of a transcript of an interview with MD, a

student in the most successful group who, on the post-test, when asked the meaning of

f(x) [P13], responded "negative output" and when asked "What first comes to mind

when you see f(x)," [P14], answered "negative input." However, in her response to
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P5, she stated that the value of c was neither positive nor negative: "x is some number;

c is some number; subtraction is between them. " Her response suggests that this stu-

dent does, on occasion, take into consideration the context in which the symbol is

given and that she recognizes that a variable can take on a range of values; that it is not

"just a place-holder for a missing number."

The interview began with questions about the arithmetic processes of squaring

a negative number and finding the additive inverse [ "taking the opposite "].

What does it mean "to square" a number?

MD: Squaring...multiplying a number times itself, like -5 times -5.

What is negative five squared?

MD: Twenty-five. [She responds quickly and confidently.]

[showing student post test problem: 52] What comes to mind?

MD: Square negative five.

How did you get the answer 25?

MD: Oh! On the calculator. I just entered the problem exactly as written.

You told me a few minutes ago that "to square" means multiplying a number times itself.

MD: Yes.

...and that squaring negative five gives an answer.

MD: of 25. Yes.

If you square a negative number, what is the sign of the answer?

MD: (very quickly) Positive! It's always positive.

Then what process was used by the calculator to produce an answer of 25?

MD: Oh! Square five, then take the opposite of the answer.

What does it mean "to take the opposite

MD: Change the sign of the number or answer.

Both her confidence and the quickness of her responses suggests that MD has a rela-

tional understanding of what it meant to square a number and an understanding of the

process of finding the additive inverse of a number. The interview continued and MD

was asked to interpret symbolic notation preceded by a minus sign.

How do you interpret this? [writes down flx)].

MD: negative output. The answer is negative.

and [writes down f(x)]?

MD: The input is negative.

How do you know the answer is negative? [Interviewer points at f(x)].

MD: I don'tI just assumed it was negative. The minus sign is in front off

And inf(-x)?
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MD: Negative, the input is negative.

I: How do you know

MD: I just assumed it would be negative because the minus sign is in front of x.

I: [writes down 5 and x.] as she asks MD: Does it make a difference if the minus sign is in

front of a number or in front of a variable?

MD: Being in front of a variable, it would be a negative answer. And negative five is just that, neg-

ative five.

MD's concept image of the minus symbol appears to be very stable and refined, part of

a schema, well used and unquestioned. The interview continued:

I: You wrote that c in the expression (x c) was neither positive nor negativethat it could be

positive, negative, or zero. How is the minus symbol in the expression (xc) different from

f(x) or f(x)?

MD: Because they [points at fix) andf(x)] are by themselves.

It was decided to try an intervention during which, it was hoped, MD would experi-

ence cognitive dissonance while investigating instances in which the minus symbol

precedes a variable. MD was requested to take out her graphing calculator and was

asked:

I: Use the Yi = key and enter [writes down: 3x, avoiding stating a verbal interpretation].

MD [enters 3x, using the opposite () key, not the subtract operator key on the TI-83 calculator.

I: If you substitute 2 for x, what answer would the calculator display?

MD: (answering quickly) "negative six," as she substitutes the value 2 for x and displays the

answer.

I: And if you substitute negative one for x?

MD: (quickly) three, again verifying her answer by substituting the value for x in the expression.

I: And if you substituted zero?

MD: Zero.

I: How did you get the answer negative six?

MD: I multiplied 2 by negative 3.

I: And the answer 3?

MD: I multiplied negative one by negative 3.

I: MD, would you review your answers displayed on the calculator? MD, reviewing your sub-

stitutions and the results, was the answer for 3x always negative?

MD: No, only if x was a positive numberOh! The minus sign doesn't always mean a negative

answer!

The physical arrangement of the minus symbol preceding a variable appears to

be perceived initially as a cognitive unit for MD, as well as for many of the other stu-

dents interviewed. This symbol pattern apparently activates a path of selection and

155



Divergence and Fragmentation Reconstruction of a Cognitive Collage: One Student's Efforts

retrieval based on an arithmetic conceptualization of a negative numberan object,

not a process, which cues the retrieval of a schema that includes a concept image of the

minus symbol as always indicating a negative number. This concept image is so

refined and stable, it's selection and retrieval is automatic. The inability to interpret

this symbol pattern flexibly contributes to students' difficulties, particularly when they

encounter quadratics. Recall the efforts of the student described in the Preliminary

Study who struggled to overcome the association of y = f(x) with the graph of a

parabola opening upwards, and y = f(x) with the graph of a parabola opening down-

ward.

6.8.1 Flexibility of Thought: Translating Between Various Representations

Students' efforts to translate among representational forms were also docu-

mented. They were asked to determine the algebraic representations of linear and

quadratic functions from graphs, to evaluate linear and quadratic functions using

tables, graphs and algebraic representations, and to interpret the minus symbol in both

arithmetic and functional contexts. Pre-test, post-test, and final exam responses in Fig-

ure 6.18 provide a means of comparing students' abilities to translate among symbolic,

graphical and numerical representations in different contexts and formats, for simi-

larly-structured questions. The pre-test was administered during the first week of the

semester; the open response post test in Week 15; and the multiple choice format Final

Exam in Week 16.

FIGURE 6.18. Flexibility: Use of Various Representations and Contexts
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The charts in Figure 6.18 provide additional documentation of the divergent

performance of students in the two groups of extremes. It is interesting to note the

strengths and weakness of the individual students of a group, as well as the overall

strength and weakness of the groups. Usually, the students who were least successful

were able to answer procedural questions involving a reversal of process and func-

tional notation using a graph (P8 and P9) to a greater extent than they were able to

answer questions using a table or questions that did not require a procedure in order to

answer the question (P10 and P11; P13 and P14). Procedural questions which involved

looking up a value in a table to evaluate a function without its rule included proved to

be the most difficult for these students, a finding that confirms the findings of earlier

research which describes students inability to deal with functions if the function rule is

not given [Cuoco, 1994; DeMarois & Mc Gowen, 1996; Dreyfus & Vinner, 1989' Dug-

dale, 1993; Heid, 1988; Keller & Hirsch, 1994; Kieran, 1993].

The most successful students demonstrated flexibility of thinking in their abil-

ity to use various representations, alternative procedures, and the graphing calculator

effectively in intelligent partnerships. They demonstrated the ability to translate among

representations, switching from pencil and paper to the graphing calculator and back

to pencil and paper freely and comfortably. The least successful students usually

selected and used only one representational form to investigate and solve a problem

even when an alternative procedure would have been more efficient or appropriate.

Their choice was invariably the more familiar symbolic procedurean indication of,

and reaction to, cognitive stress. It was as if they were saying "I can't deal with all of

this! I'll deal only with this piece!" when they were already struggling to master new

material.

This response suggests that the student is able to focus on only small bits at a

time, an ability which fits in with the SOLO (Structure of the Observed Learning Out-

comes) taxonomy of Biggs and Collis [1982]. They proposed a hierarchy of "pre-

structural, unistructural, multistructural, relational, extended abstract "levels to evalu-

ate the quality of learning in many subject areas [Biggs & Collis, 1982, p. 25]. The

response, "I can't deal with all of this, I'll only deal with this piece" suggests that this

student might be classified at the unistructural or, possibly, the (unconnected) multi-

structural level, according to the SOLO taxonomy.
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The study also examined students' responses to various traditional algebraic

tasks, using graphs, tables, and symbolic representations. Post-test and final exam

responses of the most and least successful students are summarized in Figure 6.19.

FIGURE 6.19. Ability to Translate between Representational Forms
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Students who were most successful showed a consistency of performance in

interpreting functional notation and in translating among representational forms on

procedural tasks involving linear and quadratic functions. Their performance in

answering questions which required knowledge of mathematical terms (i.e., x-inter-

cepts, zeros of the function, and factors) was also consistent, even when the questions

were presented in different formats (open response, multiple choice) and contexts (tra-

ditional algebraic, functional). The least successful students performed best on ques-

tions that involved procedural tasks such as the evaluation of linear functions or

determining algebraic representations of linear functions from graphs in a multiple

choice format. They demonstrated no consistency of performance across different for-
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mats, contexts or on procedural activities in which the function rule was not stated,

such as evaluating compositions of functions. They were unable to translate among

representations. Their weakest performance was on tasks using algebraic representa-

tions of quadratic functions and/or graphs to determine x-intercepts, zeros of the func-

tion, and factors. These students have formed cognitive collages in which their limited

understanding of mathematics terms; the fabric of words and expressions by which we

communicate, shape, and modify our understandings in order to construct new col-

lages, is too delicate, like lace or open cutwork, too fragile to hold the various bits and

pieces together.

6.8.2 Flexibility of Thought: Procedural vs. Conceptual Thinking

Responses of students in the two groups of extremes to questions that involved

the use of a procedure were compared with their responses to questions that involved

interpreting ambiguous notation which required conceptual thinking, but no process.

These responses are summarized in Figure 6.20.

FIGURE 6.20. Interpreting Ambiguous Notation: Procedural vs. Conceptual
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A lack of consistency in the responses of the both groups of students is observed. Not

surprisingly, the most successful students experienced some difficulties with concep-

tual questions that involved interpretation of the minus symbol. The inconsistency of

responses of those least successful is within and between all categories of questions.

At their best, the least successful were able to answer slightly more than fifty percent

of the traditional procedural questions and only one-third of the procedural questions

that involved translating among representations. One student of the four least success-

ful students was able to answer one conceptual question.

The ability to interpret ambiguous notation and use various representational

forms of functions are considered indicators of the ability to think flexibly; a charac-

teristic of proceptual thinking identified by Gray and Tall [1994]. Krutetskii [1969],

[Dubrovina, 1992], Shapiro [1992], Gray and Tall [1994] and others argue that flexible

thinking is necessary for success in mathematics. The ability to think flexibly has been

characterized to mean different things. Krutetskii [1969b] and Shapiro [1992] charac-

terize flexible thinking as reversibility, i.e., the establishment of two-way relationships

indicated by an ability to "make the transition from a 'direct' association to its corre-

sponding 'reverse' association [ Krutetskii, 1969d, p. 50]. Gray and Tall [1994] charac-

terize flexible thinking in terms of the ability to think proceptually, i.e., to move

flexibly between interpreting notation as a process to do something [procedural] and as

an object to think with and to think about [conceptual], depending upon the context.

In this study, flexibility of thought encompasses both the Krutetskiian and Gray

and Tall notions, each of which is a facet of a characterization that encompasses both

meanings. The data presented here are considered examples of flexible thinking in the

Krutetskiian sense, demonstrating the ability to make the transition from a direct to its

reverse association, as well as in the proceptual sense of Gray and Tall. In attempting

to classify the questions as procedural or proceptual, the distinction between what is

meant by conceptual and proceptual needed to be clarified. Many of the questions

appeared to be both proceptual, i.e., requiring an ability to flexibly interpret symbols

which represent both a process and an object of thought, and conceptual, used to refer

to all the connections between representations. Questions in which various representa-

tions (tables, graphs, and symbols) are combined were classified as conceptual, rather

than proceptual, as these questions involved a fluency to interpret not only symbols but
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features of the other representations as well. In this sense, the inability to use symbols

flexibly causes the proceptual divide, which is actually part of a bigger conceptual

divide, in which the inability to use symbols flexibly is compounded by the inability to

use and translate among various representational forms flexibly.

6.9 Summary and Conclusions

It was hypothesized that divergence and fragmentation of strategies occur

between students of a undergraduate population of students who have demonstrated a

lack of competence and/or failure in their previous mathematics courses. In order to

explain why this phenomenon occurs, it was also hypothesized that (ii) successful stu-

dents construct, organize, and reconstruct their knowledge in ways that are qualita-

tively different from those of students least successful and that how knowledge is

structured and organized determines the extent to which a student is able to think flex-

ibly and make appropriate connections. In this chapter, quantitative and qualitative

components of this study documented the divergence that occurred during the semes-

ter between students who were ultimately most successful and those who were least

successful. Analyses of student's efforts to distinguish between squaring a negative

number and finding the additive inverse of a number squared and in interpreting

ambiguous notation reveal the complexity and difficulty in reconstructing prior knowl-

edge and schemas. Divergence in students' processes of reconstruction of inappropri-

ate schemas was also noted.

The main thesis question of whether divergence and fragmentation of strategies

occur among undergraduate students enrolled in a remedial algebra course who have

previously been unsuccessful in mathematics was addressed. The evidence, in the form

of data and the analyses of those data, supports the thesis that such divergence does

indeed occur, and that, even in a population assumed to be relatively homogeneous, the

divergence leads not only to a proceptual divide, but a conceptual divide. The contrast

between successful students' curtailment of the procedures in a relatively short time

period and the lack of curtailment by those least successful over sixteen weeks is strik-

ing. Two groups of students enter a course with approximately the same level of com-

petence and skill, yet, in a relatively short period of time, divergence sets in.

Successful students developed mastery of the two procedures involving quadratic
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functions by the third week of the semester, and maintained a consistency in their

responses throughout the semester. The least successful students not only were unable

to develop mastery, but, despite many opportunities for reflective practice, were unable

to develop any degree of proficiency on material they had seen in previous mathemat-

ics courses by the end of a sixteen week semester.

Though the most successful students demonstrated significant growth in their

mathematical abilities over the semester, their improvement in ability to deal flexibly

with conceptual questions was not as great as their improvement in the ability to deal

flexibly with ambiguous notation in procedural questions. Students at the other

extreme, the least successful, were somewhat more able to deal flexibly with proce-

dural questions involving ambiguous functional notation than they were with tradition-

ally formatted questions. Results of the study indicate that the least successful

demonstrated almost no growth. What little growth did occur was very inconsistent,

for individual students, as well as among members of the group. Students who are una-

ble to flexibly interpret and use ambiguous notation and to translate among representa-

tions, are bound up in ever-increasing webs of cognitive overload. These students

collect bits and pieces of knowledge, assembling them using the fragile fabric of their

language and understandings, until the weight of the assembled pieces causes the

structure to tear apart, leaving connected fragments of knowledge lying around. Some

pieces will eventually be picked up, dusted off, and used. Other fragments fall into the

cracks of memory, where they are forgotten.

The related questions of whether students classified as 'less able' and/or 'reme-

dial,' could, with suitable curriculum (a) demonstrate improved capabilities in dealing

flexibly and consistently with ambiguous notation and various representations of func-

tions and (b) develop greater confidence and a more positive attitude towards mathe-

matics were also addressed. The findings of this study would argue for a qualified

response: for some students the answer is "Most definitely!" For other students, the

search for activities that will break down the barriers of inflexible thinking and nega-

tive attitudes, which generate cognitive dissonance yet reduce the cognitive stress to a

level that is manageable continues.

This study, recognizing the inadequacy of using only results of the analyses of

quantitative data to explain the behaviours observed in students will support the find-
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ings presented here with results of additional qualitative data analyses in the next

chapter. The difficulties undergraduate students experience in their mathematics

classes as a result of inflexible ways of thinking, their difficulties interpreting ambigu-

ous notation and recognizing the role of context, with the resulting fragmentation of

strategies will be examined qualitatively to provide further data triangulation and to

enrich the final analyses of the data. The fragmentation of strategies that occurs as a

result of the initial perceptions, categorization, and retrieval of schemas that leads to

the divergence of performance is also documented as are students' processes of knowl-

edge construction, organization, and reconstruction.
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CHAPTER 7 A Tale of Two students

Our knowledge is a torch of smoky pine

That lights the pathway but one step ahead

Across a void of mystery and dread.

George Santana,

0 World, Thou Choosest Not the Better Parts

7.1 Introduction

The phenomenon of divergence occurs in classrooms of undergraduate stu-

dents enrolled in remedial mathematics courses, as well as in the classrooms of ele-

mentary age students and students in the middle grades. In order to better understand

this repeating pattern which results in success for some and failure for others, it is not

enough to document the existence of the phenomenon, but to examine possible causes

of the divergence. It was hypothesized that successful students construct, organize, and

reconstruct their knowledge in qualitatively different ways than do students who are

least successful. These processes are constrained by a student's initial perception(s)

and the categorization of those perceptions which cue selection and retrieval of a

schema that directs subsequent actions and thoughts. How knowledge is structured and

organized determines the extent to which a student is able to think flexibly. The inabil-

ity to think flexibly leads to the fragmentation in students' strategies and the resulting

divergence of performance, both quantitatively and qualitatively, between those who

succeed and those whose who do not. This divergence of performance has been docu-

mented in the preceding chapter.

The focus now shifts to examine more closely the strategies used by students

who think flexibly and those who do not. To address the main research question of

whether students who are most successful construct, organize, and restructure their

knowledge in ways that are qualitatively different from those who are least successful,

two students' processes of constructing their cognitive collages of conceptual struc-

tures are examined. Two students who are representative of the extremes of the stu-

dents who participated in the study are profiled. These students represent subjects from

the top 15% and the bottom 15% of the class, based on their responses on the post-

course test and the final exams (multiple choice and open response). A brief descrip-
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tion of each student's background is followed by an analysis of each student's mathe-

matical growth during the semester, based on the data of their pre- and post-tests, their

work during the semester, and interviews. The qualitatively different strategies used by

each student are described within the theoretical framework. The second main thesis

question is addressed: "Do successful students construct, organize, and reconstruct

their knowledge in ways that are qualitatively different from the processes utilized by

those least successful?" The results of the main study presented in this chapter are

interpreted using the theoretical framework set forth in Chapter 3. Data are triangu-

lated with other data collected during the semester and are further analyzed in the next

chapter, using students' concept maps and schematic diagrams of those concept maps.

7.2 Perceptions and Strategies

Let me summarize the bits and pieces of knowledge that have been assembled

for two students: MC (S2), a student in the most successful group and SK (S23), a stu-

dent in the group of least successful students. Gradually, as more and more bits and

pieces of knowledge are presented, the initial cognitive collages of these students are

restructured into more refined, stable cognitive collages which are used as evidence in

support of the thesis and to address the main research question: Do students who are

more successful construct, organize, and restructure knowledge in ways that are quali-

tatively different from those least successful?

MC's ambition is to be an illustrator and is planning to major in graphic

design. He has a look of curiosity about him as he enters class, warily during the first

few weeks, with cautious optimism by mid-term, and with genuine pleasure by the end

of the semester. His natural inclination to put himself wholeheartedly into whatever

task he has set for himself is contagious and becomes more evident as his confidence

in his ability to do mathematics grows. Students who work with MC develop a com-

radeship and support each other's efforts to succeed. MC had three years of mathemat-

ics in high school: Algebra I, Geometry, and Algebra II. He took no mathematics

course his senior year. After graduating from high school, he enrolled at the commu-

nity college which was the site of this research. MC tested into an Arithmetic class. He

completed that individualized course, followed by the individualized, self-paced three-

part Introductory Algebra course in the Math Lab. He completed all three components
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of the Introductory Algebra course successfully and was now enrolled in the regular

sixteen-week Intermediate Algebra course. MC maintains that the arithmetic and

Introductory Algebra courses were a review of mathematics he had learned previously

in high schoolmost of which he readily admits he was unable to remember. The

Intermediate Algebra course was the first course in which he used the graphing calcu-

lator. He had never experienced mathematics taught using non-traditional materials

and reform instructional practices. On the pre-course attitude survey, he reported that

he attended the previous mathematics course regularly, and that he had spent one to

three hours per week outside of class on homework. He felt that his ability to interpret

notation was somewhat good; his ability to interpret and analyze data fair; his willing-

ness to attempt a problem somewhat poor; and his ability to solve a problem very poor.

He believed mathematics was mostly facts and procedures to be memorized.

SK wants to be an elementary grade school teacher (K-3). She is a recent high

school graduate and also had three years of mathematics in high school, taking the

Algebra II course her senior year. She tested into the Introductory Algebra course and

elected to take the individualized three-component, self-paced Introductory Algebra

course in the Math Lab, rather than the one-semester classroom-based course. Having

successfully completed the three Introductory Algebra components during the previ-

ous semester, she was now enrolled in Intermediate Algebra. Like MC, SK reported

she had never used the graphing calculator before this class, except for adding, sub-

tracting, etc. On her pre-course student information survey, she indicated that she had

attended her previous mathematics class regularly; generally spent three to five hours

per week outside of class on homework in her previous class; and rated her ability to

interpret mathematical notation and symbols somewhat poor. She considered her abil-

ity to interpret and analyze data, her willingness to attempt to solve a problem not seen

before, and her ability to solve a problem not seen previously was also somewhat poor.

SK was firmly convinced that "there was only one way to learn and teach math" and

that "math was about doing a lot of the same problems in order to have an understand-

ing of what you were learning." She thought that "this work was tedious and boring."
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7.2.1 MC and SK: Ability to Interpret Ambiguous Notation

The performances of both students on the pre-test suggests that MC is more

flexible in his thinking initially. He demonstrates an ability to reverse his train of

thought [P3 and P1] when given an arithmetic context and is able to find the output for

a function using a graph when no rule is stated [P8]. SK is able to square a negative

number. By the end of the semester, MC is able to answer all but the two conceptual

questions involving the minus symbol. SK correctly answers four of fourteen post-

course questions, three of which are questions involving arithmetic computations.

Even with the aid of the calculator, SK is not fully confident in her answers when

asked to square a negative number [P3] and to find the additive inverse of a number

squared [P1]. Figure 7.1 summarizes the pre- and post-test responses for both students.

FIGURE 7.1. MC(S2) and SK(S23): Pre- and Post-test Responses

MC SK MC SK
Pre & Post Test Question Pre Pre Post Post

14. Meaning of f(-x)

13. Meaning of -f(x)

11. Tables: find g(f(2))

1710. Tables: find f(g(2))

12. Graph: (linear) find eq

9. Graph: find x if y(x) = 8

5. Sign of c in (x - c)

4. Meaning of f(x)

7. Given f, find f(h-1)

6. Given f, find f(-2)

2. Order of operations

1. -( n squared)

3 1 1

8. Graph: find y(3)

3. Square of a negative n

Correct responses 1 1 2 1 4 1

A closer examination of their actual written responses, together with interview

data reveals qualitative differences in their thinking and strategies. MC demonstrates

some ability to think flexibly at the beginning of the semester as he recognizes the

direct and reverse processes in P1 and P3 and acknowledges them as two distinctly dif-

ferent processes. On the pre-test, MC is asked what comes to mind when he is to eval-

uate 32 (P1) and to evaluate (-3)2 (P3). His response for P 1 :

"1.'1 T TPPA fill; 7P that _'12 1110.11C tha ATITIAC1tP of '12 and prmale _Q
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In response to P3, MC writes:

This problem is different than problem #1 because of the parentheses.

This is solved by squaring 3; 3. -3 = 9

He rates his confidence in the correctness of his answers to each question as 5, on a

scale of 1 (I can't answer the question) to 5 (very confident in my answer). SK on the

same two questions writes:

Pl: 3 .-3 = 9 and for P3: (-3)(-3) = 9

SK indicates her confidence in the answer for P1 is 3 (somewhat confident in

my answer) and for P3 she rates the answer 4 (fairly confident in my answer). There is

no indication that she sees any distinction in the process used in P1 and that used in P3.

Her replies suggest that she retrieves and implements two different schemas to answer

P1. She perceives 3 as a unit and squares the unit, but maintains the minus symbol in

front of her answer. She does not seem to have recognized another rule that is in con-

flict with her operational rule "a number times itself," namely that a negative times a

negative is a positive and that a value squared, unless it is zero, is always positive. On

P3, she appears to use the same operational rulesquaring means a number times

itself. Her use of parentheses suggests that she uses them because they are given in the

original problem but that they have no other significance for her.

7.2.2 MC and SK: Ability to Think Flexibly to Reverse a Direct Process

The pre- and post-test responses of the two students for the two pairs of ques-

tions, designed to test students' ability to reverse a direct process given a table or a

graph of one or more functions and no stated rule, were compared. Pre- and post-test

questions, P8 and P9, consisted of a graph of a piece-wise linear function with no

stated rule. Students were asked to use the graph to answer Questions 8 and 9.

A
7

6

5

4

3

7-

1

0
1 2 3 4 5 6 7 8 9 1
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8. Indicate what y(8) = What comes to mind:

9. If y(x) = 2, what is x? What comes to mind:

On the pre-test, MC attempted an answer for P8. He labelled both the x- and y-axis and

circled the number 3 on the x-axis and 2 on the y-axis. He wrote for P8: I think of

y being 2 since x is 3. For P9, MC described what came to mind:

P9: I think that x can be any number. I would plug it in and try to solve for

y if x were given.

MC's response indicates he is able to deal with the direct process of evaluating

a function using a graph but is unable to see P9 as a reversal of the direct process of

evaluating a function, given the input. His description also suggests he has a prototyp-

ical concept image of variable: "When I see the variable, x, I'm going to solve for the

missing variable." Though he answered pre-test Question 8 correctly, he indicated he

was not confident in his answer, selecting a rating of 1 (I don't know how to answer

the question). His initial confidence rating for Question 9 was a 2 (not very confident

in my answer).

SK labels the x- and y-axis, but makes no attempt to answer either Question 8

or Question 9 on the pre-test. She also gives no response to the question: What comes

to mind? and rates her confidence at level 1 (I can't do this problem). Her responses to

the same two questions on the post-test demonstrate almost no improvement in her

ability to think flexibly or in her competence, even on procedural questions. Confi-

dence ratings for both problems remains at level 1 (I don't know how to answer the

question). For P8, her response confirms that the confidence rating is valid and that,

when in doubt, she falls back on something she knows how to do: Given a graph, label

the axes. SK wrote:

P8: Label x and y [which she has done on the graph].

She answers P9 with two questions of her own.

P9: Is all y(x) equal 2? Does only x equal 2?

By the end of the semester MC demonstrates improvement in his ability to

think flexibly to reverse a process (P8 and P9; P10 and 11). His response for post-test

P8 was succinct and confident:
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P8: I assume that x = 8 and found the y value; y(8) = 4

He circles the point on the graph corresponding to 8 on the x-axis and rates his confi-

dence in the answer as a 4 (fairly confident in my answer). On P9 on the post-test, his

confidence rating is again 4 (fairly confident in my answer) and his answer again suc-

cinct:

P9: Scale the y axis to 2 and scale down x to find value; x = 3.

MC's improved flexibility in thinking to reverse a process was also docu-

mented in his responses to Questions 10 and 11 on the post-test, using a table repre-

sentation to evaluate a composition of two functions,f and g, without a stated rule for

either function on the post-test. Pre- and post-test Questions 10 and 11 were as fol-

lows:

Consider the following tables for functionsf and g then answer
Questions 10 and 11.

x f(x)

1 3

2 -1

3 1

4 0

5 -2

x g(x)

-2 3

-1 1

0 5

1 2

2 4

10. What is the value off(g(1))? Why?

11. What is the value of g(f(5))? Why?

Though he is unable to answer either question on the pre-test, he nevertheless wrote

what thoughts came to mind for each question:

P10: I'm really not sure how these two tables relate to one another other

than they're in the same format. 1 comes to mind because it's oppo-

site of 2.

P11: 1 comes to mind because its opposite of 2 on the table of functions

forf

His answers on the post test to both questions [P10 and P11] indicate he has

begun to think proceptually. His confidence in the correctness of his answers has

increased from a 1 for both questions on the pre-test (I don't know how to do this prob-

lem) to a 5 for both questions on the post-test (Very confident in my answer). MC's
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responses to post-test P10 and P11 are shown in Figure 7.2. His explanation suggests

that he is able to think of f(g(1)) as an object that is equivalent to f(2) in Question 10.

He appears confident evaluating a composition of two functions even when no rule is

stated. MC refers to "the output g(-2) = 3"; he is able to think of f(5) as 2; and writes

thatf(g(1)) is equal tof(2); Look at table values f(2) = -1 so f(g(1) = 1."

FIGURE 7.2. MC Post-Test P10 & P11: Ability to Think Flexibly

Consider the following tables for (Unctions/ and g:

A)
3

0

1 0 . What is the value Why

What comes to mind:

11. What is the value of g(f(5)? Why?

What comes to mind:

(D-')
Ca- I

-C7s ), 2--

c-; 44-c /-4 SC-. ) 3
(.s ) i s -

1-4 --/S ot deo

Confidence
2 3 46

ii lot. kJ %.lohc AA

Confidence
1 2 3 4C2....

MC's work suggests that his initial focus of attention is the notation f(g(1)),

which acts as a cognitive unit used to retrieve a schema, which he subsequently

unparses. He maintains an awareness of his objective to determine the value off(g(1)).

An examination of the work of SK reveals a very different initial focus of attention, the

cognitive unit f(2), which appears to cue a schema constrained by her procedural,

inflexible thinking. Her work is displayed in Figure 7.3.

FIGURE 7.3. SK Post-test P10 & P11: Ability to Think Flexibly

10. What is the value offig(1))? Why?

What comes to mind: I 44-)In o4 30) t-feowny u' )Confidence

-e (2) . X Ls 0+ 2 uinoc. IS 9 Q) 2 3 4 5

11.What Is the value of (ft5))? Why?

What comes to mind: Vfiloc iS y-wneN Confidence

tat, S 0 2 3 4 5
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A comparison of the pre- and post-test responses of MC and SK to conceptual

questions[P4, P5, P13, P14] that require no process provides still other examples of

answers which are typical of the students in each of the two extremes. These responses

of MC and SK are summarized in Table 7.1.

Table 7.1: MC and SK: Flexible ThinkingInterpreting Ambiguous Notation

Question # RESPONSE

MC pre 4: g(x) g represents a number that is being multiplied by x 3

SK pre 4: g(x) multiplication 1

MC post 4: f(x) function notation; f(x) represents the output of the function; 5

((input) = output

SK post 4: f(x) function; function machine; when given this you must plug in the 3

values you are given for x.

MC pre 5: (xc) The value for c is negative because of the sign in front of c. c 5

will subtract from any number that comes before the symbol.

SK pre 5: (xc) rewrite as (x+ -c) 4

MC post 5: (xc) The value of c is neither because it may be positive or negative. If 5

c were positive it would become negative and if it were negative it

would become positive.

SK post 5: (xc) subtract, change to x+ -c; c is negative 3

MC post 13: .fix) f(x) means multiply the output by 1; 4

SK post 13: fix) f of the function is negative. 2

MC post 14: f(x) f(x) means multiply the input by 1 4

SK post 14: f(x) x is negative in that function. 2

Growth in students' ability to think flexibly and recognize the role of context in

interpreting the ambiguity of the minus symbol was not as noticeable as the growth in

the ability to deal flexibly with function notation, both procedurally and conceptually.

Both MC and SK initially interpret g(x) procedurally, interpreting the notation to mean

multiplication of g times x. By the end of the semester, MC has developed a more flex-

ible way of thinking about the notation f(x) while SK remains at a procedural level of

interpretation: "plug in the values you are given for x." MC focuses on the notation and

the input/output process: function notation>output of a function; SK initially thinks

function>function machine>plug in values. MC interprets the minus symbol in
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front of f(x) as multiplying the output by 1. His response suggests he perceives the

answer as being the opposite of the output value and similarly for the input, given the

notation f(x). SK's concept image of the output is of a negative value, not of some-

thing that has its sign changed, saying that "x is negative in that function."

Both students use two different schemas simultaneously. With no cognitive dis-

sonance or conscious awareness that they are doing so, they mentally use the symbol

twicefirst to indicate that c is negative, followed by use of the minus symbol as the

subtraction operator: "c will subtract from any number that comes before the sym-

bol." MC's response to post-test Question 5 provides some additional evidence that he

has developed a more flexible way of thinking about variables and has grown in his

ability to interpret ambiguous notation. On the pre-test, he perceived (xc) as indicat-

ing that "the value for c is negative because of the sign in frofit of c. However, he

adds, "c will subtract from any number that comes before the symbol," illustrating

the confusion that results when two concept images are retrieved, along with two dis-

tinct schemas for interpretation and use of the minus symbol. SK retrieved a different

concept image and schemawhen you see a minus symbol in front of a letter, change

signs and add. Note that she does not answer the question, which suggests once again,

that when confronted with a question she can't answer, she retrieve a default schema

that she knows how to implement.

The post-test response of MC to P5 is consistent with his other post-course

interpretations of the minus symbol in conceptual questions and provides triangulated

evidence of the development of his ability to think more flexibly: "the value of c is nei-

ther because it may be positive or negative. If c were positive it would become nega-

tive and if it were negative it would become positive." SK repeats the rule she was

taught when subtracting algebraically: subtractchange signs and add; a view that has

remained unchanged throughout the semester. She still uses the minus symbol twice;

once to subtract and as the sign of c, indicating a negative-valued number.

7.3 Shaping and Refining the Cognitive Collages of MC and SK

Are two different concept images of MC (S2) and SK (23) beginning to emerge

from the bits and pieces of knowledge presented thus far? It should be mentioned that

both MC and SK are conscientious students who attended class regularly and worked
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very hard to keep up with their assignments. Both were quiet students, yet strong-

willed and fiercely determined to complete the course successfully so that they could

get on with their lives. An examination of the summarized competency profiles of

these two representative students of the extremes is shown in Figure 7.4. Each row rep-

resents a category of six questions. The rows are arranged from A, easiest (bottom) to

H, hardest (top). The questions in each group are numbered (1-6) and arranged from

left, easiest (1) to right, hardest (6). Both category and question orderings are based on

the total number of correct responses of the most successful group of students for each

category. Observe that the strengths SK demonstrates appear to be of skills associated

with quadratic functions [Row E] and of solving systems of equations [Row F]. MC

appears to have approximately the same competencies. This area of strength for both

MC and SK, indicated in Figure 7.4 by the white rectangle, is examined in greater

detail in the following section.

FIGURE 7.4. MC and SK: Competency Summary Profiles

Category of Questions MC (41i
1 I I 1 1 SKM I 1 I I

1 1

I

1 2

I

3

I

1 4 1

1 I

5 1

1

6 1
112 3 1 4 1 5 1 6

H Interpreting Ambiguous Notation

MC Final: Solving Equations

H

G

F

E

H

A

/
/74'

G G

FF Solving Systems

MC Final: Quadratics: SkillsE E

DD GR: Given a Quadratic Function D

C Using Graphs C

B

1

C

A

4e;B Using Tables

A Quad f: Interpretation & Use A

I

7.3.1 Perceptions, Cognitive Units, Concept Images, Retrieval of Schemas

A closer analysis of work which indicates MC's and SK's understanding of

quadratic functions and of linear systems at the time of the final exam provides us with

additional bits and pieces of knowledge to assimilate into the growing cognitive col-

lages of both students, which are typical of students in the two groups of extremes they

represent. The divergence in performance was hypothesized to be a consequence of

qualitative differences in the strategies students use, the way in which they categorize

their initial perceptions, and in the way they structure their knowledge. The theoretical

framework elaborated in Chapter 3 is used to interpret both two students' work.
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On the open-response final exam, students were asked to solve a problem typi-

cally given students in traditional sections of the Intermediate Algebra and/or the sub-

sequent College Algebra course. They were asked to determine an algebraic model of

the parabolic path of a projectile and to determine at what time the projectile would hit

the ground. The version of the problem used on the final open response exam is:

A toy rocket is projected into the air at an angle. After 6 seconds, the

rocket is 87 feet high. After 10 seconds, the rocket is 123 feet high.

After one-half minute, the rocket is 63 feet high.

a. The model for the rocket's motion is h = at2 + bt + c where h is the

height in feet of the rocket after t seconds. Using the given informa-

tion, find the values for a, b, and c so the function models the situa-

tion. Briefly explain what you did.

b. Approximate how long it will take for the rocket to hit the ground.

Why? Explain how you arrived at your answer.

c. What representation did you choose to investigate this problem?
Why?

d. Describe the process you used to find the answers to part a and to
part b.

During the semester, problems which required students to determine the

parameter values in order to establish an algebraic model for a problem situation, and

then to use the model to answer other questions about the situation were a focus of

investigation and discussion. The final exam problem was not typical of problems

investigated during the semester. During the semester, students were given a set of data

and asked to determine the algebraic model. Though they had also studied systems of

equations, they had only seen one problem prior to the final exam in which they were

asked to solve a system in order to determine parameters. In this instance, students had

only the written description of the problem.

Students had several alternative ways in which they could determine the

parameter values of a model appropriate for a given situation. They could set up a sys-

tem of three linear equations in three unknowns and solve the system using matrices

on the graphing calculator, or solve the 3 x 3 system algebraically. (three students

selected this method). Still other students, having used regression models with actual

real world messy data, had realized that traditional textbook problems could be solved

simply by entering the ordered pairs into lists, selecting the appropriate regression
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model which calculates parameter values appropriate for the problem, enter and graph

the algebraic representation, and either use the ROOT [or ZERO] option to find the

solution, if y = 0.

Once the parameters and the algebraic representation of the problem situation

were determined, students had several options for determining when the projectile

would hit the ground. They could graph the equation and examine the graph to find the

x-intercept or they could display table values for input and output, or they could use

the TRACE command and approximate the answer. They could also solve the equation

algebraically, using the quadratic formula. This problem was rich with options and it

was believed that the options individual students selected would reveal something

about their thinking.

7.3.2 Two paths diverge... the path taken by MC

The work of MC and SK on this problem is compared. Their work was typical

of the approach and strategies employed by the other students in their respective

groups. MC's initial focus of attention appears to have been the general algebraic

model, which he has circled. This focus of attention is consistent with what he claimed

to notice on various post-test questions. An examination of his work suggests that

MC's initial focus of attention cued retrieval of a concept image of quadratic function

that includes a notion of the general quadratic equation form, a recognition that a spe-

cific model appropriate for the problem conditions is needed and connections to an

appropriate schema, having identified that the task was to determine parameter values.

He perceives the time/height relationship and records the time and height values as

ordered pairs; which he enters in two lists .on the calculator. MC's work is shown in

Figure 7.5.
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FIGURE 7.5. Student MC: Final Exam Open Response

2. A toy rocket is projected into the air at an angle. After 6 seconds, the rocket is 87 feet high.

After 10 seconds, the rocket is 123 feet high. After one-half minute, the rocket is 63 feet high.

a. The model for the rocket's motion i )414-C here his the height in feet of the

rocket after t seconds. Using the given information, find the values for a, b, and c so the

function models the situation. Briefly explain what you did.
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His work and explanations indicate that MC has formed an intelligent partner-

ship with his technology (i.e., he passes control to his tool for certain tasks, then takes

back control when it is appropriate, always testing his work against that done by the

technology) as described by Jones [1994]. MC graphs the discrete points and examines

the resulting plot, having established an appropriate view window. Using the informa-

tion provided by the plot, MC then selects the quadratic regression option to determine

parameter values. He enters his algebraic model and tests it graphically against the plot

of the discrete points, saying: "The line falls directly on the ordered pairs." It should be

noted that the number of decimal places used for the parameter values in the model

compared to those he initially recorded, [.5, 17, and 3] was in line with a convention

students had used throughout the semester when working on problems which included

real world data. The class had agreed to use regression model parameters rounded to

three decimal places unless the problem included directions which differed from this

convention. MC used the convention consistently, though he occasionally included an

additional decimal, as in this problem [-0.5000].
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MC demonstrates his ability to interpret the problem, clearly describe his proc-

ess, and interpret the results of his calculations in a mathematically meaningful way,

moving efficiently and appropriately towards his overall objective. He acknowledges

his awareness of alternative strategies that might be used in this problem and rejects

the algebraic alternative; explaining that he "didn't feel confident trying to investigate

algebraically." Despite this lack of confidence in his algebraic skills, MC selects an

appropriate alternative strategy, using the list, graphing, and table features of the calcu-

lator to find an appropriate quadratic regression model and to visualize the time/height

relationship. His ability to translate among representations is documented and his

work suggests that he has formed mental connections linking the notions of zeros of

the function, x-intercepts, general quadratic form and the specific algebraic model

appropriate to the problem situation.

An interview with MC at mid-term, together with his written self evaluation

submitted in his portfolio provides triangulation of his developing ability to interpret

and use ambiguous notation, as well as his growth toward proceptual understanding.

MC comments:

I'm learning how these algebraic models are set up and what the variables

that they contain represent. I'm no longer just blindly solving for x, but

rather understanding where x (input) came from and how it was found

from the data given. Through this kind of learning I have developed an

understanding for the use of function notation [f(x) = output] and how it

replaces the dependent variable, y.

He attempts to relate new knowledge to his previously acquired knowledge, claiming:

I have been able to utilize mathematical knowledge that I have gained

from previous courses. An example of this is taking my previous skill

such as finding slope and applying it to rates of change and from this have

moved on to comprehend arithmetic and geometric sequences and then

have moved forward even further to understanding linear, exponential,

and quadratic models. It's a good feeling to see things connecting
together as I move further along in the text. As I go from investigation to

investigation I really see connections in material that are clear and that

help establish a solid body of knowledge.

In his final interview of the semester, MC speaks of his understanding of function

notation:
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I think the most memorable information from this class would be the use

and understanding of function notation. A lot of emphasis was put on

input and output which really helped me comprehend some algebraic pro-

cesses such as solving for x.

The process of connecting new knowledge to prior knowledge is a goal of his learning.

He describes his use of the graphing calculator as a tool for understanding and visual-

izing mathematics and connection-making:

Another process that was very helpful in understanding algebra (specifi-

cally factoring) was using a graph to find the x-intercepts to find the zeros

of an equation. This is a procedure I had never seen before, but I was able

to connect it to my prior knowledge. I found [the graphing calculator]

very useful to graph equations to find the number of solutions (finding

zeros), and also to find equations when they are unknown (using the

graphing calculator as a data process machine).

7.3.3 Two paths diverged...the path taken by SK

The path taken by SK is very different from that taken by MC. An examination

of her work on the same final exam problem contributes shape and substance to the

cognitive collage of SK. Using the lines and colours of her words, actions, and writ-

ings, the picture that emerges presents a stark contrast to the cognitive collage that rep-

resents MC. SK's response to the final exam question is displayed in Figure 7.6.

FIGURE 7.6. Student SK: Final Exam Open Response
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Initially, SK focuses on the three time values which she has circled: 6 seconds;

10 seconds; and 30 seconds [a conversion of one-half minute] and notices that she is

dealing with a quadratic equation. She ignores the corresponding height values. It is

possible that she has some sense of a time/height relationship, but her notion of a time-

height relationship appears unconnected with any notion that there is a functional rela-

tionship in which time and height values are perceived as ordered pairs and/or input/

output values. SK's cognitive collage possibly includes a concept image of parameter

at this point in time, though there is no evidence to support this belief, given her work

on this problem. She writes, "I choose these numbers because h equals the height in

feet at t seconds. The numbers in front of t equal the seconds." It seems that, if she has

a concept image of parameter, it is a fragmentary collage of bits and pieces of knowl-

edge, organized ineffectively and lacking in interiority. The selection of time values as

coefficients of the quadratic equation suggests a compartmentalized cognitive collage

in which cognitive dissonances seldom, if ever, arise.

Her initial focus of attention on the three time values, together with the realiza-

tion that she is dealing with a quadratic equation, h = at2 +bt + c, sets up an inappropri-

ate path-dependent logic characterized by SK's focus on "getting the answer." This

results in the selection and retrieval of a very different schema from that of MC.

Focused on solving a quadratic equation, SK retrieves a schema characterized by her

demonstrated tendency to "plug the numbers"into the equation; into the discrimi-

nant; and into the quadratic formula. Her work suggests SK has a very sparse concept

image of quadratic function with few connections from the procedures she links to

quadratic equations to other cognitive units or concept images, and which is con-

strained by her inflexible thinking and strategies.

SK's initial perception of the problem task could be interpreted to indicate that

she has an understanding of the problem requirements and a schema by which she can

determine the answer. It could be argued that she has recognized the need to create the

algebraic model for this problem situation, which requires her to find values for a, b,

and c; and that once she has the equation, she solves it to answer the question in part b.

However, upon reflection one wonders to what extent she really understands the prob-

lem, or whether, uncertain of what to do, she has reverted to using a schema learned

previously. Davis [1984] describes the situation in which a student fails to match his

180



A Tale of Two students Shaping and Refining the Cognitive Collages of MC and SK

initial perceptions with a cognitive unit that cues the retrieval of an appropriate

schema. This description seems to describe SK:

If no appropriate input can be obtained from the present 'primitive' input

source, a frame [schema] will typically make a default evaluation...Once

an instantiated frame [schema] is judged acceptable, nearly all subse-

quent information processes used this instantiated frame as a data base.

The original primitive data is thereafter ignored. [Davis, 1984, p. 65]

Davis' description offers an explanation of SK's behaviour in this instance. Not

knowing what to do to find the values of a, b, and c, it seem likely that SK has

retrieved a schema she is comfortable usingher cognitive collage of quadratic equa-

tions, which consists primarily of memorized procedures (finding the discriminant; use

the discriminant value in the quadratic formula to "solve" the equation). One can sur-

mise that this cognitive collage, very refined and very stable, is a schema which is

flawed and incomplete, based on the work which documents her failure to take into

account that (a) there are no real solutions if the value under the radical is negative; (b)

that the quadratic formula is used to determine the values of the independent variable,

not the dependent variable; and that (c) the division bar is a grouping symbol indicat-

ing that the numerator sum or difference is divided by the denominator, not just the

radical.

SK does indeed ignore the original data which does not fit her retrieved

schema. Even after sixteen weeks of class investigations and homework assignments

which focused on functional relationships and alternative methods of finding parame-

ters using various representations of functions, SK ignores information which provide

the data necessary to determine the parameters: the three input/output (time, height)

ordered pairs. Her assignment of the time values as coefficients, a, b, and c suggests

she does not yet have a firm understanding of parameters. She demonstrates profi-

ciency in her attention to some details, recognizing the need to have consistent units,

changing one-half minute into 30 seconds, and that the model is quadratic. Other

details, including the three height values are ignored. Her ability to recall memorized

procedures she has associated with quadratic equations is accurate, as is her under-

standing that the discriminant can be used to simplify quadratic formula computations.

However, the execution of those procedures is flawed. She calculates the discri-

minant correctly. using incorrect narameter values and fails to internret the result cor-
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rectly. She does not interpret the final result in the context of the problem, choosing

instead to state two solutions. Both solution values determined by SK using the quad-

ratic formula are inaccurate, due to her failure to divide correctly. Though aware that

the quadratic formula is used to find solutions to a quadratic equation, SK is confused

about what variable she is solving for. Once the default quadratic equation schema has

been retrieved and actions based on that schema initiated, SK focuses on "getting the

answer." Noticeably lacking is the strategy of checking one's work against the con-

straints of the problem, interpreting the results in light of the original problem situa-

tion, testing her answers to determine if they make any sense. The connections SK

appears to have formed are procedural connections necessary to "get the answer"

between the process of finding solutions using the quadratic formula and use of the

discriminant to make that process easier. Both procedures are linked to the notion of

quadratic equations which includes knowledge that there are, generally, two solutions

to a quadratic equation.

Based on her work, one might assume that SK does not know how to solve lin-

ear systems using the matrix and/or regression features of the graphing calculator. In

fact, of the five problems on the final exam, SK correctly answered four of them. She

was able to solve a 2 x 2 inconsistent linear system and a 3 x 3 system, using the

matrix features of the graphing calculator. It should be noted, however, that none of the

problems she solved correctly were contextual problems. All were written in tradi-

tional symbolic form of textbook exercises and all but the 2 x 2 consistent linear sys-

tem were multiple choice format questions. None of the other final exam linear system

problems required more than procedural knowledge. This is another indication of the

compartmentalization of SK's knowledge, in which procedures are linked to a particu-

lar concept, in this instance, the use of matrices to solve linear systems, used only

when her perception cues the cognitive unit which retrieves the linear systems schema.

It seems obvious from her work and explanations that SK did not perceive the toy

rocket problem as a system problem. Her original perceptions were classified under

the category dealing with quadratic equations, thus failing to recognize that the origi-

nal information required the retrieval of a strategy for determining parameters based

on solving a linear system.
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Her initial focus of attention, coupled with her flawed and incomplete con-

struction of her cognitive collages of quadratic equations and systems of equations are

underlying causes of her lack of success in this instance. It appears that SK has assem-

bled some bits and pieces of knowledge appropriately, but she is missing other basic

pieces. How she has assembled those bits and pieces constrains her ability to construct

concept images and cognitive collages that have interiority and which permit meaning-

ful connections. Lacking rich concept images and locked into inflexible thinking,

when confronted with situations in which she is unclear what to do, SK retreats to the

familiar and defaults to using those procedures she knows.

SK views the graphing calculator as a tool for verifying her calculations. It is

used only when she is uncertain which of two calculation procedures to use. In that

instance, she just enters what she sees and accepts the calculator answer. Midway

through the semester, SK described her feelings about the graphing calculator:

I find the graphing calculator to be very confusing. I feel as if everything

is thrown at me at once. I have never used the graphing calculator before

this class, and now I find it difficult to adopt to using it. The only thing I

can do without too much difficulty is put a table into the calculator. After

that I don't know what to do. A change that would help to improve my

learning in this class would be a slower and more thorough explanation of

the graphing calculator.

Her growing frustration with the class and with herself increased as the semes-

ter passed. She actively resisted assuming responsibility for figuring things out on her

own. Provided with handouts that included step by step directions for each procedure

introduced during the first eight weeks of the semesterwhich included views of the

screen displaysshe never used them. For a student such as SK, learning the calcula-

tor procedures in addition to the mathematics she was already struggling with intro-

duced too much cognitive load to cope with. By the end of the semester her feelings

were unchanged. In an interview, she said, "Personally I am still overwhelmed by the

calculator." This student remains firmly convinced that

I need that type of concrete repetitious work. In my past math classes I

was given a book where there were definitions and formulas to follow.

With any type of problem I need to have a step by step process to follow.

I have trouble deciding what kind of function it is, or what should go

where. For example, I still cannot tell the difference between a linear,

quadratic. and exponential model.
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She was adamant that there was only one way she could learn mathher way.

Perhaps SK was right, though the fact that if that method really worked, she wouldn't

be taking remedial mathematics courses escaped her. Despite the inadequacies of the

instructional methods she had experienced previously, and her great efforts and time

commitment, she was unwilling to change her beliefs or to try alternatives. Her resist-

ance grew more pronounced during the semester. When the end of the course evalua-

tions were compared with the pre-course responses, SK was one of only two students,

both in the low group of extremes, who, not surprisingly, had a more negative attitude

that when she enrolled in the course.

7.4 And they will differ...as syllable from sound

The cognitive collages of the two students who are representative of the

extremes, the most successful and the least successful, provide detailed evidence of the

divergence that occurs over a sixteen week semester. This divergence is much starker

than imagined and is portrayed, not in the nuances of soft pastel colours indicative of

slight shadings of differences, but in the contrast of brilliant, bold colours of brightness

and darkness. In the classroom one sees divergence of performancean examination

of the grades of students at the end of the term usually confirms this, particularly in

undergraduate remedial classes. The divergence reported in this dissertation is far

greater than that measured by the ability to get the correct answer. It is evidenced in

students' ability to think flexiblyto reverse a direct process; to interpret ambiguous

notation; in what they perceive initially and how they categorize their initial percep-

tions; in the strategies they select; in their abilities to make connections; in the cogni-

tive collages of concept images and schemas they construct and retrieve; and in the

confidence they develop in the correctness of their answers or the uncertainty that

overwhelms them, leaving them unwilling or unable to take risks in a learning environ-

ment different from that they are accustomed to or to renegotiate the didactic contract.

Some students, despite previous experiences which encouraged instrumental

learning [Skemp, 1971], are able to develop improved capabilities and deal flexibly

and consistently with various representational forms of functions. They develop

greater confidence in their ability to do mathematics and acquire confidence and a

more positive attitude. Other students are victims of the proceptual divide as Gray and
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Tall [1994] have so aptly described themconstrained by their inflexible thinking and

strategiesdoomed to fail yet again and again and again.

What is it that students are willing and disposed to attend to or to expose? Why

is it students enrolled in the same class, with the same instructor and instructional

treatment, during the same time period, initially at approximately the same level of

competency at the beginning of the semester, take such divergent paths which lead to

success or to failure? Why are some students able to think flexibly and others remain

inflexible and unchanged? In the next chapter we continue to develop our cognitive

collages of MC and SK. The nature of the processes by which they construct knowl-

edge is scrutinized more closely, as we seek answers to these questions.
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CHAPTER 8 Visual Representations of

Cognitive Collages:

The brain is just the wright of God,

For lift them, pound for pound,

And they will differ, if they do,

As syllable from sound.

Emily Dickinson, The Brain is Wider than the Sky

8.1 A look back and an overview of what is yet to come

Two theses are the subject of this study. The first thesis divergence and frag-

mentation of strategies occur between students of a undergraduate population of stu-

dents who have demonstrated a lack of competence and/or failure in their previous

mathematics courseswas investigated in Chapter 6 and the main research questions

related to this thesis were addressed. Using their responses to pre- and post-test ques-

tions, the work of two groups of students, those most successful and those least suc-

cessful, was described and interpreted within the theoretical framework outlined in

Chapter 3. Evidence which support the thesis was presented. Chapter 7 continued the

examination of this thesis, contrasting the responses and strategies of two students rep-

resentative of each group of extremes. It was argued that the construction, organiza-

tion, and reconstruction processes are constrained by a student's initial perception(s)

and the categorization of those perceptions, which cue selection and retrieval of a

schema that directs subsequent actions and thoughts.

In this chapter the second thesis is examinedsuccessful students construct,

organize, and reconstruct their knowledge in ways that are qualitatively different from

those of students who are least successful. Evidence drawn from analyses of student-

constructed concept maps, triangulated within the framework of the cognitive collages

of students in the extremes of a remedial undergraduate population will be presented in

defence of this thesis. It is argued that, though students' cognitive collages of knowl-

edge representation structures are not directly knowable, it is possible to document the

qualitatively different ways in which students construct and organize new knowledge,

and restructure their existing cognitive structures, using student-constructed concept

maps done at different points in time during the semester. Each map is a discrete repre-

sentation at a particular moment in time, with maps on the same subject done at differ-
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ent points in time during the semester. The longitudinal nature of the data collected by

this means provides a means by which the processes of construction, organization, and

restructuring that occurred are analyzed. When triangulated with the data already pre-

sented, the concept map analyses provide documentation of these processes of con-

struction.

The responses and strategies of two students, one from each group of extremes

were reported and analyzed in Chapter 7. The study of these two students continues in

this chapter, which begins with an examination of their concept maps, constructed dur-

ing week 4 and week 9 of the semester. The underlying structure of each map is

revealed and analyzed, using schematic diagrams of each map. Careful study of the

structure of the maps of MC (S2) and SK (S23), suggests radically different routes to

success and failure, routes which are also found in the maps of other students in each

group. An analysis of the development of classification schemas for all eight stu-

dentsthe four most successful and the four least successful is presented. The chapter

concludes with a review of the evidence that supports the second thesis, based on the

data provided by students' concept maps and the researcher's schematic diagrams of

those maps. This evidence is triangulated and the classification schemes of the two

profiled students are examined within the broader context of the classification schemes

of the eight students of the two groups of extremes, those most and least successful.

Students were assigned concept maps on Function three times during the

semester; during weeks 4, 9 and 15. Each map was collected a week after its assign-

ment and retained as part of the data collection, though it was reviewed with the indi-

vidual student in order to clarify his/her intent and rationale for the connections

indicated on the map. Students did not have access to the completed maps during the

semester once these discussions had occurred. The maps of two students, MC (S2) and

SK (S23), are presented and analyzed. Their maps, like their work analyzed in the pre-

vious chapters, are typical of those created by the other students in their respective

groups. Even on first impression, the maps support the thesis that students organize

their knowledge in qualitatively different ways. More convincing evidence is provided

by the schematic diagrams which correspond to each student's maps, which reveal the

underlying structure of the corresponding maps, and are indicative of the student's

knowledge construction, organization, and reconstruction processes.
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8.2 The Cognitive Collages of MC and SK

The concept maps of MC (Student 2), the student who started his college math-

ematics career in the self-paced arithmetic course in the Math Lab are examined first.

The maps created during week 4 and week 9 respectively are shown in Figure 8.1 and

8.2 on the following page. His final concept map, created during week 15, was drawn

on a very large piece of posterboard, which was not able to be scanned. Copies of his

week 4 and week 9 concept maps, with the rough draft of his week 15 concept map are

included in Appendix C. MC's concept maps of Function are representations of his

cognitive collages on Function at given moments in time. They convey, albeit imper-

fectly, the nature of knowledge construction that has occurred over time. MC has visu-

alized his notion of Function. in a way that reflects his unique way of thinking and

organizing his knowledge about Function.

The words along the outer edges of the Week 4 central image of Function as a

function machine is changing [left edge] and quantities [right edge] as you view the map.

By week 9, MC appears to have enriched his concept images of representations and

equations and added to his cognitive collage a new cognitive unit, finite differences.

Though the shape of the central figure has been modified, his second map resembles

the first, and the basic features of the first map are retained. Concept images of the

notions measures of central tendency and measures of variability remain virtually

unchanged from week 4. As these topics were used to introduce the notion of function

and not revisited, it is not surprising that no new knowledge of these topics has been

included on the week 9 map. The topics included on the maps by MC appear to follow

the sequence of instruction, though the organization of those topics and the connec-

tions shown are uniquely his own. In his final interview, MC commented on the con-

struction of his week 15 concept map:

While creating my [final] concept map on function, I was making strong

connections in the area of representations. Specifically between algebraic

models and the graphs they produce. I noticed how both can be used to

determine the parameters, such as slope and the y-intercept. I also found a

clear connection between the points on a graph and how they can be sub-

stituted into a general form to find a specific equation. Using the calcula-

tor to find an equation which best fits the graph is helpful in visualizing

the connection between the two representations. I think it's interesting

how we learned to find finite differences and finite ratios early on and
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then expanded on that knowledge to understand how to find appropriate

algebraic models.

FIGURE 8.1. MC: Concept Map of Function Week 4

FIGURE 8.2. MC: Concept Map of Function Week 9
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The maps in Figure 8.3 and Figure 8.4 were completed and submitted during week 4

and week 9 by SK.

FIGURE 8.3. SK: Concept Map of Function Week 4

FIGURE 8.4. SK: Concept Map of Function Week 9
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The sparse maps of SK provide a sharp contrast to those of MC. There is no

interiority to any of the concepts identified on SK's maps of week 4 and of week 9.

The week 4 map includes definitions, evidence of her belief discussed in the preceding

chapter that she needs to know the definitions before she can learn about a concept.

The week 9 map consists only of names of concepts, a bare skeleton of a cognitive col-

lage, with no definitions included. One wonders what SK has associated with the

labels she has included on her mapswhat the nature of the connections she has indi-

cated might be. Her final map [week 15] in Figure 8.5 contains fewer concepts branch-

ing from the main topic of the map, Function. The basic functions studied in the

course, linear, quadratic, and exponential, together with procedures associated with

each of these function types, have been incorporated under the main heading, parame-

ters on her map.

FIGURE 8.5. SK: Concept Map of Function Week 15

This final concept map, completed in the week just prior to the final exam, pro-

vides additional information about what SK did or did not know about parameters on

the day of the final exam. This question arose in the preceding chapter when her work

on the rocket problem was analyzed. The concept map completed in week 15 suggests
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that SK has constructed a concept image of parameters which consists of an associa-

tion with the general form of each type of function; a recognition that the letters a, b,

and c are called parameters; and procedures by which the parameters are calculated

for linear and exponential functions. The map does not include any procedure for cal-

culating the parameters of a quadratic function. Given the fact that SK has included

step-by-step procedures for determining the parameters of a linear function and of an

exponential function, the absence of a procedure associated with quadratic functions,

supports the conclusion that SK has no schema for determining the parameters of a

quadratic function. Her final map once again includes definitions of terms like simplify

(to get the lowest form); evaluate (when you're looking for output); and solve (when

you are looking for input). The lack of definitions on the week 9 concept map is per-

haps, an indication that by week 9 SK had not yet clarified her understanding of these

terms. The inclusion of definitions on the week 15 map reinforces the notion that she

remains convinced of the importance of having a definition first. SK identified her

strengths and weaknesses based on her final map. The procedural nature of her learn-

ing is confirmed during the interview:

The one operation I feel the strongest about is solving mathematical state-

ments. When given an equation or an inequality I can solve for X. When

solving an equation you have the output and are looking for the input. You

must get one of the variables alone on one side of the equal sign. Once

you have isolated one of the variables you must simplify to solve the

problem. This type of solving is done algebraically. When evaluating a

function you must know the input and use it to get the output. When given

the input you need to substitute that into the equation to receive your

answer.

Note SK's use of the word concept when referring to these processes of solving an

equation and evaluating a function:

These concepts are clearly labeled on my concept map.

It should be noted that her concept images of solve and of evaluate on the con-

cept map are the reverse of what she said a week later in this interview. It was pointed

out to SK during the interview that she had indicated a different interpretation of these

two processes on her final map. Her surprise, when she subsequently examined her

map, indicated that she was unaware she had formed two separate concept images for
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these processes and that, at different times under different circumstances, she retrieved

one or the other. Sk's greatest weakness, which she described during her interview

was:

My greatest weakness on my concept map is understanding linear, qua-

dratic, and exponential functions. After using my notes and the book I

was able to put together some of the pieces of my confusion. I can get the

formulas but when I have a specific problem I don't know which formula

to choose to complete the problem.

8.2.1 Goals of Learning: MC and SK

One of MC's goals of learning was to connect new knowledge to his prior

knowledge and to build connections between and among concepts. Recall his inter-

view comments at the end of the semester cited previously:

I have been able to utilize mathematical knowledge that I have gained

from previous courses. It's a good feeling to see things connecting
together as I move further along in the text. As I go from investigation to

investigation I really see connections in material that are clear and that

help establish a solid body of knowledge. Another process that was very

helpful in understanding algebra (specifically factoring) was using a

graph to find the x-intercepts to find the zeros of an equation. This is a

procedure I had never seen before, but I was able to connect it to my prior

knowledge.

SK also expressed the desire to relate new knowledge to her prior learning. When

describing her weaknesses as she perceived them based on constructing her final map,

she said:

Also, when looking at a graph I can't tell if it is linear, quadratic, or expo-

nential. This was the first time I have worked with these functions and I

think that may have been part of the problem because I had no prior

knowledge to build on.

There are other areas that I feel that I have a strong understanding about

as well. I choose mathematical statements because I was able to use my

past knowledge and the new knowledge I have obtained this semester to

have a better understanding.

Both students indicate they have the same overall goal of learning: the connec-

tion of new knowledge to prior knowledge. They are in the same classroom environ-

ment, both attend class regularly, and both work at learning mathematics, highly
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motivated to succeed. In terms of competency, MC and SK appeared to have similar

strengths and weaknesses at the beginning of the semester, based on their pre-test

responses. They even had similar prior experiences in learning mathematics and their

beliefs were conditioned by these experiences. Yet, even with a similar foundation,

their performances diverged during the sixteen weeks, a divergence also reflected in

their attitudes and beliefs. MC described his prior experiences and beliefs early in the

semester in an interview:

When I started this course I had the misconception that all of the alge-

braic formulas would be given to us, and we would just have to follow a

process to solve for them.

He recognized the need to take responsibility for his own learning. At mid-term, after

receiving back an exam on which he was disappointed with his performance compared

with a group exam done shortly before the individual exam, he said:

I've never been very good at taking math exams, I find that a lot of what I

know slips away when it's time to show and prove. To be honest, I wasn't

as prepared as I could have been. After receiving a score of nearly profi-

cient on the test I took it upon myself to go back to Section 1.4 in the

book and review everything from that point on in order to fully under-

stand the material. I did that because I realize that math is a very progres-

sive subject, and if I were to continue forward with minimal

understanding of the previous sections, I would surely have minimal

understanding of the rest of the sections.

SK, on the other hand, though she describes similar prior experiences and the beliefs

that were shaped by those experiences, sees the responsibility for learning in a differ-

ent light. In her first interview, SK described her beliefs about mathematics:

I thought math was about doing a lot of the same problems in order to

have an understanding of what you were learning. I have always thought

that doing mathematics meant doing operations, with formulas. I believe

that learning math with concrete functions, definitions, and examples is

the best way for me to learn math.

By the end of the semester, SK indicates very little change in her beliefs. She has

shifted some of what she perceives to be the teacher's role to that of her fellow stu-

dents, who are members of her group:
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After being in this class I realize that you can learn mathematics with less

teacher-student interaction and more student-student interaction. I have

started to take responsibility for my actions.

She shifts some of the responsibility for her failure to do well on (a) the text; (b) the

graphing calculator; and (c) the pace of instruction.

The most challenging thing is the fact that there is not direct formulas

and direct "teaching." I need an example which allows me to see how to

do the work and then I could actually do the work for myself.

A change that would help to improve my learning in this class would

be a slower and more thoroughly explanation of the graphing calcula-

tor. I think more explanation on how everything ties together would be

helpful. For example, a step by step process of why this part of the
problem goes into the calculator and so on.

I have a difficult time because so much depends on what I do. I have to

keep up with all the assignments and I can't let myself fall behind
because if I miss one day of work I have no idea what is going on.

MC's attitudes and beliefs have undergone a change during the semester, those

of SK have been impacted to a far lesser extent. MC focuses on understanding why, SK

focuses on understanding how toclear-cut examples of the relational understanding

and the instrumental learning described by Skemp [1987, pp. 166-172]. MC is willing

and able to change his beliefs; SK holds fast to her previous beliefs, despite her grow-

ing frustration and lack of progress. In her final interview, she says, "Even now, I

believe that learning math with concrete functions, definitions and examples is the best

way for me to learn math." Her early and later responses characterize this student and

reflect the value she attaches to repetition and procedural rules which shape the con-

struction and organization of her cognitive collages of cognitive units, concept images

and schemas. MC, given the opportunity, chooses to travel the path towards proceptual

understanding. SK, offered the same opportunities, stays her course on the path of

divergence towards the proceptual divide.

8.3 Underlying Structure: Schematic Diagrams

Can the concept maps of these two students contribute more bits and pieces of

knowledge that might shape the cognitive collages of MC and SK and inform our

understanding of these two students? Schematic diagrams of their concept maps are
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analyzed, together with the classification schemes each used when constructing their

maps, in an effort to better understand the nature of their processes of constructing,

organizing, and reconstructing their knowledge. The underlying structures of each

map done by MC and SK during week 4, week 9, and week 15 are revealed in the

schematic diagrams of those maps. They illustrate the differences in the nature of the

processes of construction and reconstruction used by MC and SK. The concept maps

of every student in each of the groups of extremes was analyzed in a similar fashion.

The schematic diagrams of the maps of MC and SK are typical of the diagrams of the

other students' concept maps in their respective groups and are shown in Figure 8.6

(MC) and Figure 8.7 (SK) on the following two pages.

The schematic diagrams maintain a one-to-one correspondence with the named

concepts, processes, and representations included on students' original maps. Each

node of the schematic diagram corresponds to one named concept, process or repre-

sentation from the original map. The schematic diagrams were created using a back-

ground grid which imposed a degree of regularity on the relative positions of the

various nodes and main branches. Other than this degree of regularity, the approximate

location of each main branch [indicated by a slightly larger rectangle] relative to the

central rectangle representing Function has been maintained; as has the approximate

location of each node relative to its category as assigned by the student. Upon comple-

tion, the schematic diagrams were scaled so that all three schematic diagrams for a

given student could be displayed on the same page to facilitate analysis.

The week 4 map elements are unpatterned. Those elements in the schematic

diagrams of week 9 and week 15 that are unpatterned are the elements that were on a

previous map [and diagram] which had been retained in the same relative position and

within the same category. Beginning with the week 9 map, concepts, processes, and

representations that are new [i.e. not included on a previous map/diagram] are indi-

cated by gray-coloured nodes. A boldly-outlined and striped node represents an ele-

ment that was present on an earlier map and is now in a different category and/or

relative position. The maps are arranged from earliest (top) to latest (bottom), begin-

ning at the top of the page with the schematic diagram of the week 4 concept map.

Both the maps and their corresponding schematic diagrams illustrate the development

over time of a student's cognitive collage of the notion of function.
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FIGURE 8.6. Schematic Diagrams of Student Concept Maps: MC
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FIGURE 8.7. Schematic Diagrams of Student Concept Maps: SK

Week 15

V1
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8.6 Schematic Diagrams of Concept Maps

The three schematic diagrams of MC are analyzed, followed by a similar anal-

ysis of the schematic diagrams of SK. A first glance at the schematic diagrams of MC

in Figure 8.6, strikes you with a sense of familiarity, as your eye moves from the dia-

gram of Week 4 to that of Week 9 and to that of Week 15. It's as if a voice is saying

"I've seen this before." A closer inspection of the week 4 map compared with that of

week 9, and then with that of week 15, reveals the similar structures evident in all three

maps.

A more careful inspection reveals that the basic structure assembled by week 4

remains relatively unchanged in week 9 and in week 15. New concept images com-

posed of bits and pieces of knowledge have been assimilated into the week 4 structure

in Figure 8.8. [indicated by the dashed rectangle]. A new concept image that includes

the cognitive unit, finite differences, has been added onto the basic week 4 structure in

the lower right corner. The basic structure of the cognitive collage constructed by week

4 is retained over time, with new bits and pieces of knowledge integrated into and

added onto that existing framework by week 9. Analysis of the week 15 schematic dia-

gram reveals this same process of construction, and the retention of the basic week 4

structure, which remained relatively intact.

FIGURE 8.8. MC: Schematic Diagram of Week 9 Concept Map

199



Visual Representations of Cognitive Collages Schematic Diagrams of Concept Maps

The schematic diagrams of the concept maps constructed by SK during the six-

teen-week semester convey no sense of familiarity as one's eye moves from the week 4

diagram to that of week 9 and then to the diagram constructed during week 15. A more

careful study of the three maps still reveals no similaritiesno basic structure that has

remained intact. In fact, this sequence of schematic diagrams suggests that a new cog-

nitive framework has been constructed by week 9, and yet another new framework by

week 15. A comparison of the schematic diagram of week 9 with that of week 4

reveals that only three elements [bolded and striped] from the week 4 structure are

included in the week 9 map. The retained elements, however, have been restructured

into a new framework. They appear in the new week 9 map in a different category and/

or position than they did in the earlier week 4 map. All other elements of the week 9

map are new [shaded gray]. These differences are shown in Figure 8.9.

FIGURE 8.9. SK: Schematic Diagrams of Week 4 and Week 9 Concept Maps

In the week 15 map, only five elements from the original map are retained relatively

intact from the week 4 map, despite not being included on the week 9 map. The stu-
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dent does not appear to have anything to fall back upon, a counter-example of what

Davis [1984] describes as "falling back to the default position," and to what was con-

cluded about SK's selection of a schema to deal with the final exam problem.

One might ask, when confronted with these qualitatively different schematic

diagrams, whether this difference was unique to these two individual students. The

schematic diagrams of the concept maps of the other students in each group revealed

similar construction and reorganization processes, thus providing triangulation of the

data previously described and analyzed. Each student's maps reflected his/her style, in

a manner similar to that of one's signature being a unique trait of the individual. How-

ever, each set of schematic diagrams for students classified as most successful had a

common characteristic: each set of diagrams of the concept maps constructed over the

sixteen- week semester retained the basic structure of the week 4 map in the week 9

and week 15 maps. Students that are successful appear to construct and organize new

knowledge into a basic framework which is retained. New bits and pieces of knowl-

edge are added onto and integrated into the existing framework to form increasingly

rich, complex cognitive networks.

Each set of schematic diagrams for students classified as least successful also

exhibited a common characteristic: a new structure replaced the previous structure in

each subsequent map, with few, if any elements of the previous map retained in the new

structure. No basic structure was retained from map to map. The set of concept maps,

together with their schematic diagrams for two other students, one from each group of

extremes are included in Appendix C, so as to provide the reader with additional

examples of the characteristic differences in the concept maps and their related sche-

matic diagrams of students in each group of the extremes.

8.7 Basic Categorization Schemes

This chapter began with a detailed presentation and analysis of the concept

maps of the two students representative of the most successful and least successful stu-

dents. In order to provide triangulation of this data, the concept maps and schematic

diagrams of two additional students, one from each group of extremes, are included in

Appendix C. Further triangulation is provided using the classification schemes of all

eight students, the four most successful, and the four least successful. The basic cate-
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gories used by each of the eight students in their concept maps were examined,

together with the concepts they had included in each category. The main category

headings that branched directly off of the main topic of Function are summarized in

Tables 8.1 and 8.2.

Table 8.1: Basic Classification Schemas of Concept Maps (Most Success)

Week 4
Representation
Function Machine
M of Central Tendency
M of Variability

Week 4
Visualizing Process
Data

Representations
Relationship of Variables:

Changing Quantities
M of Central Tendency
M of Variability
Function Notation

Week 4

TP S1 (Most Successful):

Week 9
Representation
Function Machine
M of Central Tendency
M of Variability
Sequences

Mathematical Models

Week 15
Representation
Function Machine
M of Central Tendency
M of Variability
Parameters
Systems of Equations
Rational Functions

MC S2 (Most Successful)

Week 9
Visualizing Process
Data

Representations
Relationship of Variables:

Changing Quantities
M of Central Tendency
M of Variability
Finite Differences

MD S3 (Most Successful)

Week 9

Week 15
Visualizing Process
Data

Representations
Relationship of Variables:

Changing Quantities
M of Central Tendency
M of Variability

Week 15
Representations
Domain/Range
M of Central Tendency
M of Variability

Week 4

Graph

Equation
M of Central Tendency
M of Variability
Quadratic Function
Linear Function

LK S4 (Most Successful)

Week 9

Graph

Equation
M of Central Tendency
M of Variability
Quadratic Function
Linear Function
Exponential Function

Week 15
Representations
M of Central Tendency
M of Variability
Data

Rates of Change

Representations
M of Central Tendency
M of Variability
Data

Quadratic Function
Exporiential Function
Linear Function
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Table 8.2: Least Successful: Basic Classification Schemas used on Concept Maps

Week 4

SK S23 (Least Successful)

Week 9 Week 15
Domain/Input
Measures of Central Tendency
Range/Output
Function Machine

Week 4

Quadratic Function
Linear Function
Exponential Function
Equal Symbol
Range of a Function
Unary Operations
Binary Operations
Domain of a Function

Parameters*
Measures of Central Tendency
Simplify
Data
Function .Machine

BC S26 (Least Successful)

Week 9 Week 15
Relation

Week 4

Central Tendency
Input

Rate of Change
Representation
Standard Deviation
Formulas

Relation
Input
Notation
Binary/Unary
Graphs/Tables

AT S22 (Least Successful)

Week 9 Week 15
Representations
Input/Output
Measures of Central Tendency
Measures of Variability

No map submitted Models
Change

Algebraic Functions
Things that work with Data
Terms relating to Data
Situations with change/algebra

MM S24 (Least Successful)

Week 4 Week 9 Week 15
Change

Variability
Change

Variability
Models
Data

Rate of Change
Models
Data

Analyses of the basic classification scheme used by each student of the most

successful group, triangulated with the evidence of the schematic diagrams of their

concept maps, support the thesis that successful students construct, organize, and

restructure their knowledge in qualitatively different ways than do students who are

least successful. The most successful students' classifications indicate that a basic cat-

egorization scheme is created and retained over time. The basic categories, once estab-

lished, remained relatively stable over the course of the semester, growing in

interiority as new elements were assimilated. New categories were created as new

203



Visual Representations of Cognitive Collages Basic Categorization Schemes

knowledge was acquired. Occasionally the elements in a category were re-classified

and assimilated into other existing categories, or were combined with other elements

into a new category. Students in the least successful group created new classification

systems which retained few, if any of the prior categories. Membership in the catego-

ries also varied considerably over time, in contrast to the stability of categories of the

most successful students.

Comparisons of the basic classification schemes used by students in both

groups of extremes confirm the concept map and schematic diagram analyses. This tri-

angulated evidence supports the conclusion that students classified as most successful

construct a basic framework which remains relatively stable over time and that new

bits and pieces of knowledge are assimilated into this basic, retained cognitive frame-

work. Students classified as least successful do not create and retain a basic framework

over time into which they assimilate new knowledge. Instead, they appear to create

new, differently organized collages, retaining few, if any of the elements from the pre-

vious framework in the newly-constructed cognitive collage. Those few elements that

are retained are generally reassembled into new local hierarchies and/or networks of

cognitive units, concept images, and schemas.

8.7.1 The Nature of Students' Classification Schemes: Most & Least Successful

The categories used by the students do not permit of easy identification, despite

the fact that, in the classification schemes of those students who were successful, most,

if not all of the original classification schemes and categories are retained over time.

The classification schemes, like the maps of the most successful students, had other

common characteristics: all included Measures of Central Tendency and Measures of

Variability on each of their three maps. Three of the four successful students had the

category Representations on each of their three maps. Their concept maps, together

with the corresponding schematic diagrams, and the basic classification schemes

employed, indicate that their processes of constructing, organizing, and restructuring

knowledge facilitate the building of increasingly complex cognitive structures that

have interioritytheir basic structures, retained and relatively stable, provide a foun-

dation on which to construct cognitive collages that are enhanced by the lines, colours,

and shapes of their networks of cognitive units, concept images and schemas.

204



Visual Representations of Cognitive Collages MC and SK: A Comparison of Classification Schemes:

The concept maps and schematic diagrams of the least successful reveal the

fragmentary and sparse nature of their conceptual structures. No category appears on

all three maps of any individual student. There are also no categories that were com-

mon on any maps of all of the least successful students. As new knowledge was

acquired, new cognitive structures and new categories were formed, with few, if any

previous elements retained. Prior concepts and/or cognitive units that were retained

were reclassified and used in new categories with a different classification scheme.

Most concepts and cognitive units that appeared on an earlier map were not retained.

The processes of knowledge construction used by these students are similar to

those of the carpenter who builds a framework with weakened lumber and/or nails, or

who attempts to build a framework on a weakened foundation which cannot support

the weight of the structure. It collapses and the carpenter begins again, constructing a

new, differently organized framing system, occasionally salvaging bits and pieces

from the collapsed structure. If the processes documented in these students' concept

maps and schematic diagrams are typical of the processes of knowledge construction

of students who fail, the reasons for their lack of success is better understoodthey do

not utilize or build onto their previously constructed structures. It is conceivable that

these prior structures are retained somewhere in memory, but are organized in a way

that makes efficient retrieval of the concept image(s) and/or schema(s) difficult, if not

impossible.

8.8 MC and SK: A Comparison of Classification Schemes:

In addition to the schematic diagrams and basic classification system, the

terms and groupings of students' concept maps offer a glimpse into the way individual

students organize and restructure their knowledge over time. An examination of the

classification schemes of quadratic functions by our two profiled students provides tri-

angulation of the conclusions formed earlier in Chapter 7, based on MC's and SK's

responses to the final exam question concerning the toy rocket. At week 9, just prior to

the main investigations of quadratic functions, MC's map and classification scheme,

shown in Table 8.3 suggest his concept image of quadratic functions is very sparse.
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Table 8.3: MC's Cognitive Collage of the Category Representations

Week 4 Week 9 Week 15

Quadratic Quadratic
2nd finite difference 2nd finite difference

y = ax2 + bx + c y = ax2 + bx + c
3 solutions poss-graphs
finding zeros (factors)

and x-intercepts
factoring (sol. graphs)
discriminant (to x-inter)

b2 4ac
max # of solutions: 2

(finding zeros)
Use Appropriate Method(s)

By week 15, six weeks later, he has formed several powerful connections and

his concept images have grown in interiority. The bits and pieces of knowledge of new

knowledge have been organized into a cognitive collage rich in connections and interi-

ority. The terms, their organization and restructuring that has occurred in the category

of Quadratics which was included in the more general category, Algebraic Models

reflects this growing interiority of MC's cognitive collage of quadratic functions which

developed over a period of six weeks is well-documented in his work as well as in his

concept maps. In Week 4, there is no mention of quadratic functions. By Week 9,

shortly after quadratic functions were introduced, two basic concepts are recorded:

2nd finite difference and the general form of the equation, y = ax2 + bx + c. By Week

15, the concept map of MC, while retaining the two basic concepts from Week 9,

includes connections between various representations (symbolic, numerical and

graphical), as well as between concepts and processes (terms enclosed in parentheses

on the classification table); i.e., finding zeros >factors; finding zeros >x-inter-

cepts; discriminant>x-intercepts.

Under another general category, Representations, MC links graphical >find

zeros, which he shows as a shared term under the category Quadratics. He perceives

factoring, a category under Quadratics, as connected with Graphical Representations

and its sub-category x-intercepts. Parameters, a sub-category on his week 15 concept

map under Algebraic Models is linked to another sub-category, regression models, in

Graphical Representations, which he identifies are useful in finding parameters, and

links to 2nd finite differences, which is linked to the general form of the quadratic,
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y = ax2 + bx + c. The classification scheme used by SK, given in Table 8.4, provides a

stark contrast to the scheme used by MC.

Table 8.4: SK's Cognitive Collage of the Category Quadratic Function

Week 4 Week 9 Week 15

QUADRATIC FUNCTION

Parameters

solving & evaluating eq
math statements
math expressions

Equation

Inequality

PARAMETERS

Quadratic Functions

y(x) = ax2 + bx + c

Linear Function
y(x) = ax + b
analyze table
find slope
use slopes+1ord.pr
substitute

Exponential Function

y(x) = cab'
find cnst common. ratio
see quadratic above
1st out/c.ratio=0
use c.ratio in g.eq

In week 4, SK likewise provides no information to indicate what she knows or

how she thinks about Quadratic Functions. Shortly after the topic of Quadratic Func-

tions was introduced, SK's concept map and classification scheme in week 9 indicates

she has formed a limiting, constrained concept image, which includes the notions of

parameters, equation, and inequalitynotions which have much more general appli-

cability than just to quadratics. There are no categories or terms included, which dis-

tinguish quadratic functions from other types of functions. In fact, the category

parameters, lists a distinguishing characteristic property of equations and inequalities:

math statements. Unlike her Week 15 final map, no definitions or step-by-step proce-

dures are included. SK lists no information about the kind of equations she is solving

and/or evaluating, nor does she include any properties which are typical of either cate-

gory. Her classification scheme by week 15 reveals no specific knowledge about quad-

ratic functions, except it's general form. Her categorization schemes for Linear and

Exponential Functions are included, as they provide a contrast to her categorization

scheme for Quadratic Functions. Both Exponential and Linear Functions list the steps

of the computational process for finding parameters. SK lists no steps for finding the
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parameters of a quadratic function. At week 15, SK's concept image of quadratics

looks similar to that indicated on MC's concept map six weeks earlier. It is of interest

to compare SK's classification of Parameters (Table 8.6) with that of MC's classifica-

tion (Table 8.5).

Table 8.5: MC's Cognitive Collage of the Category Parameters
Week 4 Week 9 Week 15

REPRESENTATIONS

Graphicall
REPRESENTATIONS

Graphical
Regression (best fit)

Algebraic Algebraic
(one example) Equations (to Gen. Forms)

General Forms(Linear,etc)
Parameters: a, b, c
Linear
1st finite difference
y = ax + b

REPRESENTATIONS

Graphical
Regress models (best fit)

Use to find parameters

Algebraic
Models

Parameters: a, b, c
Linear

1st finite difference
ax + b

a=slope(const chg)
toutput; in=0or
b= y-intercept

Systems (to equations)
Elimination
Substitution
Matrices

Use coeffs & const

Table 8.6: SK's Cognitive Collage of the Category Parameters
Week 4 Week 9 Week 15

QUADRATIC FUNCTION

Parameters
solving & evaluating eq
math statements
math expressions

PARAMETERS

Quadratic Functions

y(x) = ax2 + bx + c

Linear Function
y(x) = ax + b
analyze table
find slope
use slopes+1ord.pr
substitute

Exponential Function

y(x) = ab"
find cnst common. ratio
see quadratic above
1st out/c.ratio=0
use c.ratio in g.eq

Though SK lists Parameters as a category under Quadratic Function in Week

9, she makes no specific reference to it in her Week 15 map. When one recalls SK's
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strong procedural tendencies and her beliefs about needing concrete steps and defini-

tions, the absence of a procedure by which to calculate the parameters for a specific

quadratic algebraic model is surprising, particularly when the detailed procedures for

both the linear and exponential functions are noted.

We are reminded of SK's work on the toy rocket problem described in Chapter

7. The list of concepts included on her maps, together with her work reviewed earlier

in Chapter 7 and with information obtained from interviews with her, support the con-

clusion that SK's concept image of Quadratic Functions is indeed accurately reflected

and represented in her concept maps and classification schemes. It seems reasonable to

conclude that SK did not know how to find the parameters of a quadratic equation, and

not knowing, she did indeed retrieve a default schemagiven a quadratic function,

solve it using the quadratic formula. The fact that the category Parameters, a major

sub-category in Week 9, is not included in her concept map and classification scheme

of Week 15, suggests that the term, parameters, is a compartmentalized term, inappro-

priately connected, and stored in the crevices of memory, isolated and forgotten.

Both students' classification schemes show evidence of the restructuring that

occurred between week 9 and week 15. MC's final map suggests that his construction

processes consist mainly of assimilating new knowledge into his existing framework,

with accomodation, subsequently, when necessary. SK's work reveals a process of

construction that consists of replacing the previous structure with a new one, using a

new classification system, new categories, and mostly new elements. The triangulation

of the data of the students' work with their concept maps and their classification

schemes contribute more evidence to that already provided by the schematic diagrams,

which reveal the divergent processes of constructions.

8.9 Conclusions

In this chapter, we explored the thesis that successful students construct, organ-

ize, and reconstruct their knowledge in qualitatively different ways from students who

are not successful. The concept maps and their corresponding schematic diagrams

revealed how differently knowledge is structured by students who are most successful

and those least successful. The classification schemes contribute additional details

about students' different ways of categorizing concepts. They also provide a more
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detailed look at how students organized their knowledge. Student-constructed concept

maps, completed at different points in time during the semester, together with their

corresponding schematic diagrams, provide evidence in support of the main thesis.

The maps and schematic diagrams of students who are most successful indi-

cate that their processes of assembling cognitive collages of knowledge facilitate the

building of increasingly complex cognitive structures that have interiority. They

include basic structures that are retained and remain relatively stable, providing a

foundation on which to construct cognitive collages that are enhanced by the lines,

colours, and shapes of their networks of cognitive units, concept images and schemas.

The maps of those least successful reveals a process of construction that consist of

replacing the previous structure with a new structure organized differently, which

includes a new classification system, new categories, and mostly new elements. The

triangulated data of the concept maps, classification schemes and strategies of students

of the two groups of extremes supports the thesis that students who are most success-

ful construct, organize, and restructure their knowledge in ways that are qualitatively

different from those of students least successful.
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CHAPTER 9 Reflections and Future Directions

A theory if you hold it hard enough

And long enough gets rated as a creed:

Frost, Etherealizing

And there is always more that should be said.

Frost, The Wind and the Rain

9.1 An Emerging Cognitive Collage of the Most/ Least Successful

The task of assembling the bits and pieces of knowledge which have been col-

lected and organized into the cognitive collage that is this thesis, assimilating new bits

and piecesusing the threads of intuition and analysisoccasionally restructuring the

collage already assembled to form a coherent picture that illuminates our intuitions

and expands our understandings has been daunting. The collage that has emerged

reveals a picture of divergence and fragmentation of strategiesa conceptual divide as

well as a proceptual dividegreater than was initially predicted. The weight of evi-

dence which has been presented supports the thesis that qualitative, as well as the

quantitative divergence occurs between students who are successful and those who are

unsuccessful in the mathematics classrooms of a population which consists of students

who have demonstrated weaknesses or failure in their previous mathematics courses.

9.1.1 Divergence and Fragmentation of Strategies

Both quantitative and qualitative divergence was clearly documented. It was

expected that the most successful students would demonstrate growth in mathematical

understanding and competence to a greater extent than do the least successful students.

What was unexpected was how little growth occurred among the students least suc-

cessful. It is in the diversity of ways that students did or did not improve that is of

interest. Remedial undergraduate students who were successful improved in their abil-

ity to deal flexibly with (a) ambiguous notation, (b) in their choice of strategies and

tools; (c) in their ability to translate among representations and (d) in their ability to

switch their train of thought from a direct process to its reverse process, as well as (e)

demonstrate the ability to curtail reasoning in a relatively short period of time. Though
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the most successful students demonstrated significant growth in their mathematical

abilities over the semester, their ability to deal flexibly with conceptual questions was

more inconsistent than their ability to deal flexibly with ambiguous notation in proce-

dural questions. Restructuring their cognitive collages built on arithmetic understand-

ings of the minus symbol proved difficult even for the students most successful, who

demonstrated significant improvement in their ability to think flexibly generally.

Results of the study indicate that the least successful students experienced

almost no growth. What little improvement they made was very inconsistent, for indi-

vidual students, as well as for the group. Surprisingly, these students were able to deal

with procedural questions involving ambiguous functional notation better than they

were able to deal with traditionally formatted questions. It is believed that, as func-

tional notation was not part of their prior experiences, previously constructed inappro-

priate schemas caused less interference. However, their failure to assimilate and retain

the bits and pieces of new knowledge in a coherent, connected framework, upon which

they could continue to build their cognitive collages of mathematical knowledge con-

strained their ability to think flexibly and effectively.

Lacking a coherent structured collage, these students were unable to flexibly

interpret and use ambiguous notation to translate among representations, or to switch

their train of thought, bound up in ever-increasing webs of cognitive overload. These

students collected bits and pieces of knowledge, assembling them using the fragile

fabric of their inadequate language and understandings, until the weight of the assem-

bled pieces caused their structures to tear apart, leaving connected fragments of knowl-

edge lying around. Some pieces may eventually be picked up, dusted off, and used.

Other fragments fell into the cracks of memory, where they are forgotten. Even with

guided practice, in the sense described by Krutetskii, these students were unable to

reconstruct their existing schemas into more appropriate, flexible cognitive structures.

9.2 The Cognitive Collages of Two Students: MC(S2) and SK (S23)

The divergent performance and strategies of two students, MC (S2) and

SK(S23), were examined, using the theoretical framework described in Chapter 3.

MC, representative of the group, those most successful, demonstrated an improved

ability during the semester to think flexibly. His work, supported by interview data,
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indicates that he was able to deal with both direct and reverse processes, and recog-

nized them as two distinctly different processes [Post-test questions P1 and P3; P8 and

P9; P10 and P11; P13 and P14]. He was able to translate flexibly and consistently

among various representational forms [tables, graphs, traditional symbolic forms, and

functional forms]. Confidence in the correctness of his answers increased over the

course of the sixteen weeks.

A closer examination of his work suggests that he initially focuses on the

mathematical expression as an entity, then unparses it as necessary. On the toy rocket

problem, MC's initial focus of attention appears to have been the general algebraic

model, which cued retrieval of a concept image of quadratic function rich in interior-

ity. His work demonstrates his coherent, rich understanding, his concept maps provide

support for this conclusion. On his final map, MC indicates cross links between graph-

ical and algebraic representations. He links factors with (a) the number of possible

solutions to a quadratic, (b) with finding the zeros of a function, and with (c) solving a

quadratic equation. He cites the need to use appropriate methods, and considers the

regression models feature of the graphing calculator to be an efficient means of finding

parameters, given data. MC moves flexibly between procedural and conceptual think-

ing. He is able to describe and justify procedures used, as well as answer questions

about functions when no rule is provided. By the end of the semester, he demonstrated

improvement in his ability to recognize the role of context when interpreting ambigu-

ous notation [Post-test P5], as well as to parse and unparse the notation, depending

upon the context.

SK demonstrated no ability to reverse a direct process, in either numerical or

algebraic contexts, at the beginning of the semester or at the end of the semester. On at

least two occasions, she retrieves and implements two different schemas, and does not

recognize the conflict [her responses to P1 and to P5 on the pre- and post-test]. She

shows almost no growth in her ability to interpret and use ambiguous mathematical

notation, nor is she able to translate among various representational forms consistently

by the end of the semester. She readily admits she is unable to distinguish between a

linear, quadratic, and exponential function, even after sixteen weeks of investigation of

these three function types. Confidence in the correctness of her answers decreased

over the semester, and her attitude became more negative.
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SK usually focused initially on the numerical values stated in a problem. When

confronted with a problem for which she has no appropriate schema, she retrieves a

default schema learned previously. Though this is something we all do on occasion,

SK appears to use this strategy on a consistent basis. She demonstrated no ability to

move flexibly between procedural and conceptual thinking, instead clinging to the

step-by-step procedures she has memorized, using them uncritically. When given a

function without its rule, she was able to execute only a one-step procedural task, and

then only intermittently. SK remains bound by an arithmetic interpretation of the

minus symbolwhen a minus sign precedes a variable it is interpreted to mean a neg-

ative-valued number. Her work on the toy rocket problem suggests that her concept

image of quadratic functions is even more sparse than her concept images of linear and

exponential functions. This conclusion is validated by the evidence of her concept

maps and interview data. It is noted that both her concept image of linear function and

of exponential function, as indicated in her classification scheme and on her concept

map (Week 15), is limited to the computational procedures used to determine the

parameters. Neither her classification schemes, nor her concept maps, reveal any inte-

riority to these conceptsthere are no links to other concepts, to graphical representa-

tions or to alternative strategies for finding parameters. She compartmentalizes her

knowledge, building new cognitive collages rather than assimilating new knowledge

into her existing cognitive structure.

9.2.1 Divergence and Fragmentation of Strategies: MC (S2) and SK (S23)

The fragmentation of strategies that occurred as a result of the initial percep-

tions, categorization, and retrieval of schemas which leads to the divergence of per-

formance was documented. To examine why this divergence occurred, the study also

investigated students' processes of knowledge construction, organization, and recon-

struction. It was hypothesized that successful students construct, organize, and recon-

struct their knowledge in qualitatively different ways than do students who are least

successful and that how knowledge is structured and organized determines the extent

to which a student is able to think flexibly.

MC (S2) and SK(S23) both used two different schemas simultaneously when

interpreting the minus symbol, given variables in an algebraic context. With no cogni-
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tive dissonance or conscious awareness that they are doing so, they mentally use the

minus symbol twiceto indicate that c is negative, followed by use of the minus sym-

bol as the subtraction operator. MC's responses on the post-test provide evidence that

he has developed a more flexible way of thinking about variables and has grown in his

ability to interpret ambiguous notation. However, even though he has successfully

reconstructed his cognitive collage to interpret notation more flexibly, he is still unable

to interpret the minus symbol in a similarly flexible manner at the end of the semester,

interpreting the minus symbol in the expression (xc) to mean that "the value for c is

negative because of the sign in front of c, "adding that "c will subtract from any

number that comes before the symbol," illustrating the confusion that results when

two concept images are retrieved, along with two distinct schemas for interpretation

and use of the minus symbol. SK retrieves a different concept image and schema,

based on a well-remembered rulewhen you see a minus symbol in front of a letter,

change signs and add. She does not attempt to interpret the expression, (xc), which

suggests that, once again when confronted with a question she can't answer, SK

retrieves a default schema that she knows how to implement.

The qualitative divergence that occurred was hypothesized to be a consequence

of qualitative differences in the strategies students use, the way in which they catego-

rize their initial perceptions, and in the way they structure their knowledge. Despite a

lack of confidence in his algebraic skills, MC is able to select an appropriate alterna-

tive strategy when necessary, using the list, graphing, and table features of the calcula-

tor. His ability to translate among representations is documented. His work suggests

that he has formed mental connections linking the notions of zeros of the function, x-

intercepts, general quadratic form and the specific algebraic model appropriate to the

problem situation. He relates new knowledge to his previously acquired knowledge,

building on the cognitive collage he has already constructed.

The path taken by SK is very different from that taken by MC. Using the lines

and colours of her words, actions, and writings, the picture that emerges presents a

stark contrast to the cognitive collage that represents MC. SK's initial focus of atten-

tion is on the numerical values stated in a problem when she is dealing with a quad-

ratic equation, h = ag +bt + c. This initial focus of attention sets up an inappropriate

path-dependent logic and retrieval of a schema that is characterized by SK's focus on
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"getting the answer," resulting in the selection and retrieval of a very different schema

from that of MC. SK's initial perception of the problem task of determining the alge-

braic model of the path of the toy rocket could be interpreted to indicate that she has an

understanding of the problem requirements and a schema by which she can determine

the answer. Not knowing what to do to find the parameter values of a, b, and c, SK

ignored the original data which does not fit her retrieved schema. Instead, she retrieved

a schema she felt comfortable usingher cognitive collage of quadratic equations,

which appears to consist primarily of memorized procedures (finding the discriminant;

use the discriminant value in the quadratic formula to "solve" the equation). What few

connections SK appears to have formed are procedural connections necessary to "get

the answer" in the process of finding solutions.

Her knowledge is compartmentalized. Despite knowing how to solve a linear

system of equations using the matrix features of the graphing calculator, SK fails to

recognize that the toy rocket problem involves solving a system of linear equations to

determine the parameter values, and that the matrix features and/or the regression

model features of the calculator would be appropriate means of accomplishing this

task. Her initial focus of attention, coupled with her flawed and incomplete construc-

tion of her cognitive collages of quadratic equations and systems of equations are

underlying causes of her lack of success in this instance. It appears that SK has assem-

bled some bits and pieces of knowledge appropriately, but she is missing other basic

pieces. How she has assembled those bits and pieces constrains her ability to construct

concept images and cognitive collages that have interiority and which permit meaning-

ful connections. Lacking rich concept images and locked into inflexible thinking,

when confronted with situations in which she is unclear what to do, SK retreats to the

familiar and defaults to using those procedures she knows.

9.2.2 The processes of constructing cognitive collages: MC (S2) and SK (S23)

The two students' processes of constructing their cognitive collages of concep-

tual structures were examined in detail, using their concept maps and schematic dia-

grams of those maps. Evidence drawn from analyses of student-constructed concept

maps, triangulated within the framework of the cognitive collages of students in the

extremes of an undergraduate population of remedial students was presented in
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defence of the thesis that successful students construct, organize, and restructure

knowledge in qualitatively different ways than do students who are least successful. It

was argued that, though students' cognitive collages of knowledge representation

structures are not directly knowable, that it was possible to document the qualitatively

different ways in which students construct and organize new knowledge, and restruc-

ture their existing cognitive structures.

Student-constructed concept maps done at different points in time during the

semester provided the means of documenting these processes. The concept maps of

the two profiled students, MC and SK, constructed during week 4 and week 9 of the

semester, were examined. The underlying structure of each map was revealed and ana-

lyzed, using schematic diagrams of each map created by the researcher. The structures

of the maps of MC (S2) and SK (S23), revealed radically different routes to success

and failure, a pattern which was found in the maps of other students in each group.

Analysis of the classification schemas for all students of the two groups of extremes

the four most successful and the four least successful was presented.

The data provided by students' concept maps, their work and documented

strategies, together with the researcher's schematic diagrams of the concept maps and

students' classification schemes, were interpreted within a multi-dimensional theoreti-

cal framework. Successful students organized the bits and pieces of new knowledge

into a basic cognitive structure that remained relatively stable over time. New knowl-

edge was assimilated into or added onto this basic structure, which gradually increased

in complexity and richness. Students who are least successful constructed cognitive

structures which were subsequently replaced by new, differently organized structures

which lacked complexity and essential linkages to other related concepts and proce-

dures. The bits and pieces of knowledge previously assembled were generally dis-

carded and replaced with new bits and pieces in a new, differently organized structure.

9.3 Reflections and Observations

The combination of a teaching situation, combined with the various methods of

collecting the accumulated data described and analyzed in these chapters provides

opportunities for inferences, about the states of students' schemas at various stages in

their learning and about the processes by which they progress from one stage to another.
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As researcher and instructor of the course during the preliminary and main classroom-

based studies, one of my goals was to develop a plan of research, together with data

collection instruments, which could be utilized by classroom instructors who are inter-

ested in the mental processes of their students. As Mason [1997] has pointed out,

"absence of evidence of behaviour does not mean evidence of absence of abilityjust

not knowing or thinking to behave in a particular way at a particular time [Mason,

1997, p. 379]. The triangulated data, collected over time and presented in this disserta-

tion, is an attempt to minimize the extent of researcher inferences concerning cognitive

processes. The subjects of this research have prior histories consisting of a variety of

experiences, not all of which can be known or discovered by the researcher. It is

acknowledged that interpretations which can be attributed to students' understanding

are limited by the constraints of students' willingness, their disposition, their cultural

environment, and factors identified by Krutetskii [1969] and others. Analyses of the

triangulated data revealed a divergence in performance and qualitatively different

strategies used by undergraduate remedial students who were most successful com-

pared with students who were least successful.

The most successful students demonstrated significant improvement and

growth in their ability to think flexibly to interpret ambiguous notation, switch their

train of thought from a direct process to the reverse process, and to translate among

various representations. They curtailed their reasoning in a relatively short period of

time. Students who were least successful showed little, if any, improvement during the

semester. They demonstrated less flexible strategies, few changes in attitudes, and

almost no difference in their choice of tools. Despite many opportunities for additional

practice, the least successful were unable to reconstruct previously learned inappropri-

ate schemas.

Behaviours similar to those reported in this study have been documented in the

Russian studies of grades 1-3 and in grades 7-8, as well as in the present study at the

undergraduate level. Krutetskii [1969] identified a structure of mathematical abilities

necessary for successful mathematical performance. Subsequent studies by him and by

several other Russian researchers documented the divergence of strategies, character-

izing and classifying the performances and abilities of students into the categories of

gifted, very able, able, average, and less able. Their work suggests the divergence to be
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a consequence to the qualitatively different strategies and abilities they identified,

though they do not explicitly refer to this phenomenon by name.

The findings suggest that the phenomenon of divergence occurs in classrooms,

not only of elementary-grade children, but possibly across the full spectrum of grade

and course levels. The research of Gray and Tall [1994] documented the bifurcation of

strategies that occurred in elementary grade classrooms and concluded that this diver-

gence was a consequence of students' ability to think flexibly. The documented need to

think flexibly, together with evidence that suggests successful students construct,

organize, and restructure their conceptual structures in ways that are qualitatively dif-

ferent from students who are least successful, has profound implications for those of

us who are attempting to deal with the practical problems of attending to the social and

human needs of our students.

Students' concept maps and schematic diagrams of those maps revealed that

most successful students organized the bits and pieces of new knowledge into a basic

cognitive structure that remained relatively stable over time. New knowledge was

assimilated into or added onto this basic structure, which gradually increased in com-

plexity and richness. Students who are least successful constructed cognitive structures

which were subsequently replaced by new, differently organized structures which

lacked complexity and essential linkages to other related concepts and procedures. The

bits and pieces of knowledge previously assembled were generally discarded and

replaced with new bits and pieces in a new, differently organized structure. If these

findings can be supported by further research, the implications for instruction are sig-

nificant.

In particular, what mathematics we should be teaching, when, and to whom

needs to be re-examined. The undergraduate students of this study were, for the most

part, conscientious students, with many competing demands on their time, their ener-

gies, and their interests. The algebra courses, even more than calculus courses, are a

filter which prevents many students from accomplishing their goals. When one consid-

ers the significant improvement of the most successful students, one must ask: "What

if?" What if these students had been given an the opportunity to learn mathematics in

ways that made sense to them earlier? Is it too little, too late for some of them? Would
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students like SK have developed more flexible thinking and been able to build cogni-

tive collages and a more solid foundation for subsequent learning?

9.4 Strengths and Weaknesses of the Study

Clarke, Helme, and Kessel (1996) report that very few students who claimed to

have learned something new actually met their criteria for meaningful learning. How-

ever, their research consisted of video-taping a single lesson, followed by interviews of

the students. They question whether it is reasonable to expect significant learning to

occur in every lesson. The data reported in this paper would seem to indicate that

meaningful learning did occur, but usually over time, and only after students have had

the opportunity to reflect and synthesize their learning into their cognitive collages.

The findings of the study also indicate that meaningful learning did not occur for all

studentsthat, for those least successful, despite hard work and great effort on the part

of students like SK, little, if any learning occurred. Was this the result of instruction,

the sequence of instruction, the nature of the tasks, or were there other factors, as yet

unidentified, that explain the divergence and qualitatively different ways students con-

struct knowledge?

Though the use of concept maps, together with the corresponding schematic

diagrams, documented the qualitatively different ways in which students who are suc-

cessful and those who are not successful constructed knowledge, it must be remem-

bered that these visual representations were constrained by factors which limited the

extent to which the concept maps represented the totality of a student's knowledge on

a given topic at a particular moment in time. Some students found it difficult to trans-

late their three-dimensional way of thinking about concepts and relations to a two-

dimensional surface. Other students were not always able to complete their maps in as

much detail as they were capable of because of social and work commitments outside

of class which constrained the amount of time spent constructing the map. As the maps

were focused on a single topic, Functions, how student's thought about related topics

was not generally reflected in their maps.

However, concept maps, when triangulated and interpreted with other data,

provide evidence of students' processes of knowledge construction and evidence of

inappropriate knowledge constructions. Though limited in scope, concept maps and
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their related schematic diagrams reveal how students organize newly-acquired knowl-

edge, restructure prior knowledge, and perceive relationships. In addition to providing

researchers with data about students' processes of knowledge construction, they con-

tain evidence of students' inappropriate constructions and a means of engaging stu-

dents in reflective activities.

The role of technology in the process of learning and teaching of mathematics

needs to be more deeply understood and researched as well. Clearly, we need to have a

better understanding of the differences and needs of the individual students in our

classes, which must be taken into account in our curricular design and instructional

practices. This study suggests that technology can be a powerful tool for some stu-

dentsin their acquisition of new knowledge and in the development of new insights

and connections, as well as in the reconstruction of existing inappropriate concept

images. For other students, technology appears to add to the cognitive overload they

are already experiencing, disenfranchising them, rather than empowering them.

9.5 Future Directions and Possibilities

In future studies of mathematical learning in classroom settings, we need to

have a clearer picture of the previous mathematical understanding and concepts stu-

dents bring to the task and detailed analysis about which new pieces of knowledge

they develop as a result of different interactional activities. We need to know which

mathematical invariants students construct during their activities, which new rules,

concepts, or modes of representations they adopt, which new relations or structures

they discover. We also have to analyze the role that information and conventions pro-

vided by others play. Such analyses are needed not only to provide suggestions for bet-

ter mathematics education but also to contribute to a better understanding of the

psychological issues related to how new knowledge comes to be constructed, discov-

ered, and used by students.

An earlier chapter began with lines from Robert Frost's poem, The Road Not

Taken, to introduce the notion of divergence among the two groups of extremes of stu-

dents who participated in this study. The lines of that poem aptly describe my feelings

as I reflect back on this study:
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Two roads diverged in a yellow wood,

And sorry I could not travel both

And be one traveler, long I stood...

Oh, I kept the first for another day!

Additional research on the use of concept maps as a research tool and students'

ways of categorizing is needed. A pre-test, triangulated with an initial concept map and

task-based interview, to document a students' prior knowledge at the beginning of a

course could provide additional meaningful data. At the time this study was designed

and implemented, the literature on perception and categorization was not identified as

a component of the theoretical perspective within which I intended to interpret the

data. It was only as the data was analyzedwhen the findings revealed the strikingly

different patterns of knowledge constructionand the need to interpret the qualita-

tively different classification schemes became necessarythat it occurred to me that

this body of research from other domains could provide insights which could help me

better understand and interpret the data.

The theses developed in this dissertation were based on the premises that (a)

students do develop and acquire abilities and that (b) that differences in attainment are

sometimes caused by cultural influences, including schooling. More recently, the real-

ization that classification schemes are the results of perceptions, which, to some extent

as yet unknown, are determined by biological structure, as well as by adaptive use as a

result of evolution and behaviour have become the focus of interest. It seems specious

to conclude, as David Geary [1996] has, that differences in attainment are caused by a

variety of influences, including culture and schooling, without including biological

structure as a possible contributory source of the qualitative differences which have

been documented.

Research on the roles of perception and categorization, neuro-psychological

theories of how the brain functions, and recent findings that support an evolutionary

viewpoint of mathematics in the learning of mathematics, offer a broader framework

within which to continue the investigations initiated in the study reported in this dis-

sertation. The work of Rosch (prototype and typicality features of categorization) and

Lakoff (Dyirbalian categorization), Edelman (theory of neuronal group selection); and

the recent research of Dehaene (evolutionary theory of mathematics), together with the
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literature on cognitive psychology, sociocultural theories, and theories of distributed

cognition offer a multi-dimensional framework in which perspectives can be devel-

oped which synthesize those aspects of each by which progress can be made.

Lakoff's description of the Dyirbal system of classification suggests that per-

haps, just perhaps, students like SK categorize and organize their perceptions to form

connections in ways that are as mysterious to the mathematician's ways of thinking

and structuring knowledge as the Dyirbal classification system is to any Western-cul-

tured person. Recent reports of neurological research on the brain and in the fields of

categorization and perception offer fascinating evidence that suggests we need to

enlarge our analytic and interpretive perspectives in order to progress in our efforts to

understand students' processes of conceptual construction and the organization of the

resulting cognitive structures.

The trade-off between access and understanding that comes from focusing on

either tool-aided cognition or tool-unaided cognition, described by Pea [1993] needs to

be examined objectively and dispassionately, so as opportunities for learner participa-

tion in higher level activities and meaningful contributions are not lost. As Pea points

out,

We are still faced with the moral question of educational aimswhether

they are to foster intelligence that is executed 'solo,' is tool-aided, or is

collaborative, or in what combination for what content domains and

activities. We are at a point in cultural history where these issues of tool-

aided, socially shared cognition must be examined and debated on empir-

ical grounds [Pea, 1993, p. 74].

It is within an expanding theoretical framework which considers these recent

developments, that the question is asked: "What if students like SK are organizing

their knowledge according to a classification scheme which is not recognized or under-

stood?" There exists the possibility that some students have different ways of know-

ingways of perceiving, categorizing, constructing, organizing, and restructuring

knowledgewhich those of us engaged in the teaching and learning of mathematics

are unfamiliar with and have failed to consider. It is within this framework that my

own future research is planned. The conundrum of students like SK, who claim to

want to connect new knowledge to old, yet appear unable to integrate new knowledge

into existing structures, except in a very limited way, is still an unsolved problem.
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Appendix A Terms and Definitions

A.1 Terms and Definitions

accommodation: a modification of a conceptual structure in response to a perturbation

which is necessary for cognitive development to occur.

assimilation: the integration of any sort of reality into a structure.

automatic skill: skill with understanding, characterized by adaptability and a well-con-

nected schema.

collage: an artistic composition of materials and objects pasted over a surface, often

with unifying lines and colour.

category: a specifically defined division in a system of classification.

catalyst: one that precipitates a process or event without being involved in or changed

by the consequences.

cognitive collage: a metaphorical characterization of a conceptual framework of cog-

nitive structures which includes complex networks of schemas, concept images,

and cognitive units, flexibly linked together by highly individual paths, with vary-

ing hierarchical levels, degrees of compression, and flexibility.

cognitive unit: those bits and pieces of knowledge chunked together that can be held in

the focus of attention (i.e., held in working memory), which act as the cues for

retrieval and selection of the schema which determine subsequent actions or those

facets of a concept image needed for the task at hand.

concept image: everything associated with the concept name, including mental

images, properties, processes, contexts of applications.

concept maps: external visual re-presentations of a student's internal conceptual

structures at a given moment in time that is explanatory of the process of con-

structing new knowledge structures and reorganizing existing knowledge struc-

tures.

distributed intelligence: resources in the world are used, or come together in use, to

shape and direct possible active emerging from desire.

epistemology: a theory of the nature, genesis, and warranting of subjective knowledge,

including a theory of individual learning

external representation: of a concept map is an observable representation of the stu-

dent's internal cognitive collage at a given moment in time.

intelligence: the ability to learn in a particular way; a kind of learning that results in

the ability to achieve goal states in a wide variety of conditions, and by a wide

variety of plans.
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Terms and Definitions Terms and Definitions

intelligent technologies: those which undertake significant cognitive processing on

behalf of the user and thus is a partner in distributed intelligence.

interiority of a concept: the richness of the various concepts in a network of cognitive

structures and the complexity of appropriate linkages among them.

internal representation refers to possible mental configurations of individuals, such

as learners.

methodology: a theory of which methods and techniques are appropriate and valid to

use to generate and justify knowledge, given the epistemology.

mechanical skill: rote-learned habit with little or no adaptability and few linkages in

the existing schema.

ontology: a theory of existence concerning the status of the world and what populates

it.

pedagogy: a theory of teachingthe means to facilitate learning according to the episte-

mology

prior variables: attitudes, beliefs and competencies they bring to the current course.

procept: symbolism that inherently represents the amalgam of process/concept ambi-

guity.

proceptual divide: a bifurcation of strategy between flexible thinking and procedural

thinking which distinguishes more successful students from those less success-

fulthe divergence in performance that is a result of a failure to think proceptu-

ally.

procedure: a specific algorithm for carrying out a process.

process: the cognitive representation of a mathematical operation.

representation: a something that stands for something else, a kind of model of the

thing represented.

schema: a very stable, refined cognitive collage. It can be a cognitive unit or a concept

image which has been carefully shaped and refined with use into an effective tool

for organizing and retrieving stored knowledge and can also be used to organize

and assimilate new knowledge into an existing cognitive structure

skill: the combination of having a plan, and being able to put it into action. Sources of

the plans that form the basis of skills include schemas, genetically-programmed

plans of actions and plans of action learned as habits. In the case of the latter two,

plan and action are fused and contain a small cognitive element, with useful, effec-

tive skills in a particular situation or under certain conditions, but they are inflexi-

ble, lacking adaptability.

understanding: connected knowledge, i.e., a process by which one assimilates some-

thing into an appropriate schema.
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Appendix B Data Collection Instruments

B.1 Pre- Course Self-Evaluation Survey

1. About how often did you attend your previous mathematics class?

less than 1 1-3 3-5 5-7 more than 7

1 2 3 4 5

2. IN ADDITION TO the time spent in class, about how many hours PER WEEK did you

spend on homework outside of class for previous math classes?

less than 1 1-3 3-5 5-7 more than 7

1 2 3 4 5

3. How would you rate your ability to interpret mathematical notation and symbols at the

BEGINNING OF THE SEMESTER?

very somewhat

poor poor

1 2

fair

3

somewhat very

good good

4 5

4. How would you rate your ability to interpret and analyze data at the BEGINNING OF
THE SEMESTER?

very somewhat

poor poor

1 2

fair

3

somewhat very

good good

4 5

5. How would you rate your willingness to attempt to solve a problem you have never seen

before at the BEGINNING OF THE SEMESTER?

very somewhat

poor poor

1 2

fair

3

somewhat very

good good

4 5

6. How would you rate your ability to solve a problem you have never seen before at the
BEGINNING OF THE SEMESTER?

very somewhat

poor poor

1 2

fair

3

somewhat very

good good

4 5

7. Do you feel that the use of the graphing calculator helps, hurts, or does not affect your

understanding of mathematical concepts and ideas?

hurt hurt did not helped helped

considerably somewhat affect somewhat considerably

1 2 3 4 5
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Data Collection Instruments

B.2 Post-Course Self-Evaluation Survey

1. About how often did you attend this mathematics class?

less than 1 1-3 3-5 5-7 more than 7

1 2 3 4 5

2. IN ADDITION TO the time spent in class, about how many hours PER WEEK did you

spend on homework outside of class for this mathematics classes?

less than 1 1-3 3-5 5-7 more than 7

1 2 3 4 5

3. To what degree do you think this course has improved your ability to interpret mathemati-

cal notation and symbols?

not at all

1

a little somewhat a good bit very much

2 3 4 5

4. To what degree do you think this course has improved your ability to interpret and analyze

data?

not at all a little somewhat a good bit very much

1 2 3 4 5

5. To what degree do you think this course has improved your willingness to attempt to solve

a problem you have never seen before?

not at all a little somewhat a good bit very much

1 2 3 4 5

6. To what degree do you think this course has improved your ability to solve a problem you

have never seen before?

not at all

1

a little somewhat a good bit very much

2 3 4 5

7. Do you feel that the use of the graphing calculator helped, hurt, or did not affect your
understanding of mathematical concepts and ideas?

hurt hurt did not helped helped

considerably somewhat affect somewhat considerably

1 2 3 4 5
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Data Collection Instruments

B.3 Pre- and Post-Course Questionnaire

1. Evaluate 32
What first comes to mind:

2. Evaluate: 37-5+2+4x3
What first comes to mind:

3. Evaluate (-3)2

What first comes to mind:

4. Given a function f, what does f(x) represent?

What first comes to mind:

5. In the expression (x c), is the value of c positive, negative or neither?

What comes to mind:

6., Given fix) = x2 5x + 3, findf(-3).

What comes to mind:

7. Given f(x) = x2 5x + 3, find f(t-2).

What comes to mind:

Given the graph

8. Indicate what y(8) =

What comes to mind:

9. If y(x) = 2, what is x?

What comes to mind:



Data Collection Instruments

Consider the following tables for functions f and g:

x f(x)

1 3

2 -1

3 1

4 0

5 -2

10. What is the value offig(1))? Why?

What comes to mind:

11. What is the value of g(f(5)? Why?

What comes to mind:

x g(x)

-2 3

-1 1

0 5

1 2

2 4

12. Write the equation of the linear function given either its table or graph.

What comes to mind:

X Y i

III:l is
-3 9
0 3
3 -3
fi -9
9 -15
12 -2/

X= -6

WINDOW
Xm in= -3
Xmax=6
Xsc 1=1
Ym in= -4
Ymax=10
Ysc 1=2
Xres=1

13. Given a function f, what is the meaning of f(x)? (Post-test only)

What first comes to mind:

14. Given a function f, what is the meaning of (Post-test only)

What first comes to mind:
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15. The graph of a quadratic function appears below.

WINDOW
Xmin=-9.4
Xmax=9.4
Xsc1=1
Ymin=-25
Ymax=20
Ysc1=5
Xres=1

a.What are the zeros of this function?

What comes to mind:

b. What are the factors of this function?

What comes to mind:

(Post-test only)

c. Write the algebraic representation of this function.

What comes to mind:

16. Consider the following graphs for functions f and g. The graph off is the line. The

graph of g is the parabola. Approximate the value of A1(1)). Describe how you

determined your answer. (Post-test only)

FORMAT
miry= -6
Xmax=6
Hsc1=1
Ymin= -5
f max=10
f sc1=1

What comes to mind:
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B.4 Demographic Survey: Student Information

You are participating in a field study of curriculum materials designed to improve mathemati-

cal understanding through the use of group learning and technology. Your complete answers

will help us evaluate the effectiveness of these materials. Your answers will in no way affect

your grade for this course. Results are strictly confidential. Thank you for your cooperation.

Instructor I.D.#

Institution I.D.#

Institution type Two-year Four-year

Term Semester: Fall, 1995 Spring, 1996

Quarter: Fall, 1995 Winter, 95/96 _Spr, 1996

DAREC Course Code 001 (Introductory Algebra) 002 (Intermediate Algebra)

Course Title

Student Name

Social Security Number

Sex Male Female

Age 17-20 21-25 26-30 30-35 over 35

Major (if known), otherwise write Unknown

Student status: Full-time (12 or more hours) Part-time

Hours enrolled this term:

1-5 hr 6 11 hrs 12-15 hr more than 15

Hours worked on outside job per week (on average):

0-5 hr 6 - 11 hrs 12-15 hr more than 15

When did you take your last math course?

_last term 1-5 years ago more than 5 years ago

As an algebra student I believe that I am:

Excellent Good Fair Disastrous

Indicate the kind of calculator(s) you have used previously in school (Check all that apply):

Never used a calculator

Four function (add, subtract, multiply, divide, square root)

Scientific (powers, trig functions, log and statistics functions)

Graphing (indicate: TI-81, TI-82, TI-85, Casio 7700, HP 28 or HP 48G)

Indicate the kind of calculator(s) used previously outside of school (Check all that apply):

Never used a calculator

Four function (add, subtract, multiply, divide, square root)

Scientific (powers, trig functions, log and statistics functions)

Graphing (indicate: TI-81, TI-82, TI-85, Casio 7700, HP 28 or HP 48G)
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Appendix C Student Concept Maps and

Schematic Diagrams

C.1 Concept Maps

Purpose

Concepts maps are used to

organize and reflect on the content learned.

provide a tool for self-assessment and review.

visualize and make explicit the connections between various concepts.

record the development of richer understandings built on previously

learned content.

Definition: Concept maps are a visual language for integrating thinking, learning,
teaching, and assessment.

A concept map provides a visual picture of a whole topic or concept and shows

how different ideas and/or processes are related to the main topic.

Students create concept maps by following a trail of thoughts from an initial idea

and mapping these thoughts out on paper.

The concept map requires that students think about specific connections in their

knowledge of a concept.

Students use concept maps

to visualize connections between newly-acquired knowledge and previ-

ously-learned content.

to organize and reflect on the content learned.

for review.

The process of creating a concept map helps the student

recall details.

identify main points of topics discussed.



Student Concept Maps and Schematic Diagrams Creating a Concept Map

C.2 Creating a Concept Map

On a piece of paper, write down the main topic of the concept map, then

list all of the words that you associate with that topic. Concepts, proce-

dures, your feelings about the topic, previous knowledge and other repre-

sentations such as function machines, graphs and/or tables can also be

included on your list.

Think in terms of making an outline, with a Main Idea, supporting ideas,

and details. Making your list of concepts and procedures is kind of like

making an outline of a book you've been assigned in English class.

main idea

I
supporting ideas

1 1

detailsF7

Working from your list, use a highlighter and identify what you think are

the most important supporting ideas for your topic. Under each of your

main sub-groups, identify those words, representations, and procedures

you associate with each of your main supporting categories.

After you have finished analyzing your list, write each word on a separate

post-it.

Post the main topic in the middle of a piece of paper. Arrange the post-it for

each key word or idea you've listed around the main topic.

Near each key word, arrange post-it notes with the words, representations,

and procedures you associate with that key word. Writing the words on

post-it notes allows you to rearrange the words so that you can indicate the

connections among words in that group and between words in other groups

that you see as related.

Build from the main topic in a way that makes sense to you.

When you've posted and arranged all of your words, draw in the linkages

and connections between words and between groups of words. Use arrows

to indicate the direction of each link. Wherever possible, write in the rela-

tionship along the connecting link.

Sometimes, you have a word that you connect with more than one key

word. Arrange your key words so that the shared connecting word is

located between them so you can draw connections to both key words.

Be creative and personalize your map.



Student Concept Maps and Schematic Diagrams Creating a Concept Map

Figure C. 1. MC(S2): Concept Map Week 4 and Week 9
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Student Concept Maps and Schematic Diagrams Creating a Concept Map

Figure C. 2. MC(S2): Preliminary Notes: Concept Map Week 15
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Student Concept Maps and Schematic Diagrams Creating a Concept Map

FIGURE C.3. MC (S2): Schematic Diagrams of Weeks 4, 9, & 15 Concept Maps
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Student Concept Maps and Schematic Diagrams Creating a Concept Map

FIGURE C.1. SK (S23) Concept Maps Weeks 4.9, and 15
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Student Concept Maps and Schematic Diagrams Creating a Concept Map

FIGURE C.2. SK (S23): Schematic Diagrams of Weeks 4, 9, & 15 Concept Maps
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Student Concept Maps and Schematic Diagrams Creating a Concept Map

FIGURE C.3. TP (S1) Concept Maps Weeks 4.9. and 15
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Student Concept Maps and Schematic Diagrams Creating a Concept Map

Figure C. 4.TP (S1): Schematic Diagrams of Weeks 4, 9, & 15 Concept Maps
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Student Concept Maps and Schematic Diagrams Creating a Concept Map

Figure C. 5.BC (S26): Concept Maps Weeks 4, 9, and 15
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Student Concept Maps and Schematic Diagrams
Creating a Concept Map

FIGURE C.6. BC (S26) Schematic Diagrams of Concept Maps Weeks 4.9 & 15
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