
RESEARCH Open Access

Cognitive vision system for control of dexterous
prosthetic hands: Experimental evaluation
Strahinja Došen1*, Christian Cipriani2, Miloš Kostić3, Marco Controzzi2, Maria C Carrozza2, Dejan B Popović1,3

Abstract

Background: Dexterous prosthetic hands that were developed recently, such as SmartHand and i-LIMB, are highly

sophisticated; they have individually controllable fingers and the thumb that is able to abduct/adduct. This

flexibility allows implementation of many different grasping strategies, but also requires new control algorithms

that can exploit the many degrees of freedom available. The current study presents and tests the operation of a

new control method for dexterous prosthetic hands.

Methods: The central component of the proposed method is an autonomous controller comprising a vision

system with rule-based reasoning mounted on a dexterous hand (CyberHand). The controller, termed cognitive

vision system (CVS), mimics biological control and generates commands for prehension. The CVS was integrated

into a hierarchical control structure: 1) the user triggers the system and controls the orientation of the hand; 2) a

high-level controller automatically selects the grasp type and size; and 3) an embedded hand controller

implements the selected grasp using closed-loop position/force control. The operation of the control system was

tested in 13 healthy subjects who used Cyberhand, attached to the forearm, to grasp and transport 18 objects

placed at two different distances.

Results: The system correctly estimated grasp type and size (nine commands in total) in about 84% of the trials. In

an additional 6% of the trials, the grasp type and/or size were different from the optimal ones, but they were still

good enough for the grasp to be successful. If the control task was simplified by decreasing the number of

possible commands, the classification accuracy increased (e.g., 93% for guessing the grasp type only).

Conclusions: The original outcome of this research is a novel controller empowered by vision and reasoning and

capable of high-level analysis (i.e., determining object properties) and autonomous decision making (i.e., selecting

the grasp type and size). The automatic control eases the burden from the user and, as a result, the user can

concentrate on what he/she does, not on how he/she should do it. The tests showed that the performance of the

controller was satisfactory and that the users were able to operate the system with minimal prior training.

Background
Most commercially available hand prostheses are simple

one degree-of-freedom grippers [1,2] in which one

motor drives the index and middle fingers synchro-

nously with the thumb. The remaining fingers serve aes-

thetic purposes and move passively with the three active

fingers. Recently, several dexterous prosthetic hand pro-

totypes have been developed (e.g., SmartHand [3,4],

HIT/DLR Prosthetic Hand [5], and FluidHand III [6]).

Some hands are even commercially available (e.g.,

i-LIMB [7] and RSL Steeper Bebionic Hand [8]) or pro-

jected to appear on the market in the recent future (e.g.,

Otto Bock Michelangelo Hand [9]). In general, these are

quite sophisticated devices that are morphologically and

functionally closer to their natural counterpart. They

have similar sizes and masses as the adult human hand,

individually powered and controlled fingers, and a

thumb that is able to abduct/adduct. The new devices

ensure flexibility that allows implementation of many

different grasps; yet, they require novel control algo-

rithms that can exploit the many degrees of freedom

available.

The control of an externally powered hand prosthesis

is often implemented in the following manner [10,11]:

1) the user communicates his/her intentions (e.g., open

or close the hand) by generating command signals; and

2) these signals are transferred to the hand controller,

which decodes the signals, extracts the underlying
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commands, and drives the system. Following this gen-

eral structure, the efforts to improve the control of hand

prostheses have been directed towards increasing the

bandwidth of the communication link between the user

and the system, i.e., increasing the number of com-

mands that can be generated by the user and recognized

by the controller.

Different types of signals (e.g., electromyography

(EMG) [12], voice [13], insole pressures [14], muscle

and tendon forces [15]), and pattern recognition signal

processing techniques (e.g., artificial neural networks,

fuzzy and neuro-fuzzy systems, Gaussian mixture mod-

els, linear discriminant analysis, and hidden Markov

models [12,16-24]) have been suggested and tested for

this purpose. A characteristic of these methods is that

the result depends on the ability of the user to generate

distinct commands in a reproducible manner. The user

needs to go through a training program in order to

learn how to use the system. As a rule, the more sophis-

ticated the system is, the more conscious the effort and

attention that is needed to operate it, especially if the

control interface is less intuitive (e.g., voice [13], insole

pressures [14]). Finally, as Cipriani et al. [25] showed,

although more sophisticated control allows better per-

formance, the preference of the user is to use the sim-

ple, less effective control, since it does not require

conscious involvement ("how to use the device"). This is

one of the major reasons why most of the commercially

available prosthetic hands (e.g., Otto Bock Sensor Hand,

Touch Bionics i-LIMB, and RSL Steeper Bebionic)

implement simple myoelectric control: a surface EMG is

recorded from at most two sites on the residual limb

and used as a proportional or discrete (ON/OFF) input

for the control of opening and closing of the hand

[26,27].

The main challenge is therefore how to implement

more sophisticated control (e.g., many commands and/

or independently controlled degrees of freedom) without

simultaneously overburdening the user. This could be

achieved by means of recently introduced promising

surgical procedures and techniques, such as the Tar-

geted Muscle Reinnervation proposed by Kuiken et al.

[28,29].

A non-invasive approach for decreasing the burden to

the user is to make the artificial hand controller more

autonomous. This idea has been proposed originally by

Tomović et al. [30,31] in 60's and implemented within

the Belgrade Hand. The hand was instrumented with

pressure sensors, which were used for the semi-auto-

matic selection of the grasp type based on the point of

initial contact with the object. If the initial contact was

detected at the fingertip, the pinch grasp was triggered.

Otherwise, if the contact was at the palm or along the

first phalanx, the palmar grasp was executed.

Nightingale et al. [32-35] improved and extended this

concept by implementing it within a hierarchical control

scheme. The user issued high level commands (open,

close, hold, squeeze and release), and the controller was

capable of selecting precision or power grasp (touch

sensors), performing the selected grasp, and holding an

object with the minimal required force (slippage

sensors).

In this manuscript we propose an autonomous con-

troller that is empowered by artificial vision and

reasoning. The reasoning that we advocate is borrowed

from the human motor control [36-38]. The sensori-

motor systems of a human, when grasping, builds the

opposition space and orients the hand to match the

opposition space of the hand to the object. This yields

to the posture (grasp type) in which a set of balanced

forces is applied to the object surfaces, resulting in

force equilibrium. In humans, the reasoning of how to

orient the hand and build the opposition space is

developed through learning and critically depends on

the vision [37].

Beginning with the work of Cutkosky, researches have

demonstrated that it is possible to predict the type of

grasp from the object properties and task requirements

by employing a set of rules [39] or artificial neural net-

works [40]. Tomović et al. [41] suggested using rules to

select a grasp type for an artificial hand prosthesis based

on the estimated object size. Iberall et al. [42] designed

the control for a simulated artificial hand in which a

myoelectric interface was used to choose from the three

hand postures (pad, palm, and side opposition), each

one available in several predefined aperture sizes.

The authors have recently developed a cognitive vision

system (CVS) that uses computer vision and rule-based

reasoning to automatically generate preshaping and

orientation commands for the control of an artificial

hand [43]. The CVS employs a standard web camera

and a distance sensor for retrieving the image of the tar-

get object and measuring the distance to it. This infor-

mation is used to estimate the size and orientation of

the object, and these estimates are then processed by

employing heuristics expressed in the form of rules in

order to select an appropriate grasp type, aperture size

and orientation angle for the hand (for details see [43]).

In this paper, we demonstrate how the CVS can be

integrated into a hierarchical control structure for the

control of a dexterous prosthetic hand. The operation of

the system was tested in 13 healthy subjects. The Cyber-

Hand prototype [44] was mounted onto an orthopaedic

splint and attached to the forearm of each subject,

thereby emulating the use of a prosthetic hand. The

goal of the current study was to test the feasibility of

the proposed control method, in particular the feasibility

of integration of the autonomous artificial control with
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the volitional (biological) control of the user. This is an

essential step before evaluating the usability of the sug-

gested approach for the control of a functional transra-

dial prosthesis operated by an amputee. The results in

this paper refer to the efficacy of grasping the objects,

typical for daily activities, placed at different positions

within the workspace.

Methods

Control system architecture

The conceptual scheme of the implemented control is

depicted in Fig. 1. It is a hierarchical structure, in which

the overall control task is shared between the user, a

high-level controller and a low-level embedded control-

ler. The user issues commands for hand opening and

closing via a simple EMG interface and also controls the

orientation of the hand during grasping and manipula-

tion. The high-level controller comprises: 1) the CVS

estimating object properties (size, shape) and automati-

cally selecting grasp type and aperture size appropriate

for grasping the object; and 2) a hand controller trans-

lating the selected grasp into a set of desired finger posi-

tions (for hand preshaping) and forces (for hand

grasping) that are sent to a low-level controller. The

low-level controller embedded into the CyberHand pro-

totype implements closed-loop position and force con-

trol during hand preshaping and grasping, respectively.

The novel contribution of this study is the development

of the high-level controller and the integration of the

aforementioned elements into a unified control

framework.

Experimental setup

The experimental setup consisted of the following com-

ponents (see Fig. 2): 1) the prosthetic hand mounted

onto an orthopaedic splint, 2) the CVS, 3) a two-chan-

nel EMG system, and 4) a standard PC (dual-core Pen-

tium 2 GHz) equipped with a DAQ card (NI-DAQ

6062E, National Instruments, USA). The control was

run within an application developed in LabView 2009.

As can be seen from Figs. 2 and 3, the hand was rigidly

fixed for the orthopaedic splint (no wrist joint) and the

splint was attached to the subject's forearm by using

straps, in such a way that the artificial hand was just

below the subject's hand and oriented in the same man-

ner (i.e., the palm of the artificial hand was parallel to

the volar side of the subject's forearm). The subject

could rotate the artificial hand by using pronation/

supination.

Prosthetic hand

The stand-alone version of the CyberHand prototype

[44], already employed in many research scenarios

[25,45,46], was used to emulate a prosthetic hand. It

consists of four under-actuated anthropomorphic fingers

and a thumb based on Hirose's soft finger mechanism

[47] and actuated by six DC motors. Five of them,

located remotely, control finger flexion/extension. One

motor, housed inside the palm, drives the thumb abduc-

tion/adduction. The hand is comparable in size to the

adult human hand, and the remote actuators are

assembled in an experimental platform that mimics the

shape of the human forearm. The remote actuators act

on their respective fingers using tendons and a Bowden

cable transmission. Active flexion is achieved as follows:

when a tendon is pulled, the phalanxes flex synchro-

nously, replicating the idle motion (i.e., free space

motion) of a human finger [48]. As a result of this

mechanism, the shape of the hand adapts to the shape

of an object automatically, providing multiple contact

points and a stable grasp. Therefore, the final geometri-

cal configuration of the hand is dictated by external

constraints imposed by the shape of the grasped object.

When a tendon is released, torsion springs located

within the joints extend the fingers, thereby providing

hand opening and releasing of the object.

The hand includes encoders integrated in the motor

units (position sensors) and force sensors in series with

the tendons (for the assessment of the grasp force).

The controller embedded in the hand (low-level con-

troller in Fig. 1) is an 8-bit, microcontroller-based archi-

tecture (Microchip Inc. microcontrollers); it is itself

organized in a hierarchical manner and consists of six

low-level motion controllers (LLMCs) and one high-level

Figure 1 Control system architecture. The Cognitive Vision

System (CVS) is integrated into a hierarchical control system for the

control of a dexterous prosthetic hand (emulated by the CyberHand

prototype). The user triggers the system and controls the

orientation of the hand. A high-level controller autonomously

selects the grasp type and size that are appropriate for the target

object. A low-level controller embedded into the hand provides a

stable interface for preshaping and grasping.
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hand controller (HLHC). Each motor is directly actuated

and controlled by an LLMC that implements a propor-

tional-integral-derivative (PID) position control and force

control based on tendon tension. All LLMCs are directly

controlled by the HLHC, which regulates overall hand

operation and acts as an interface with the external

world. This interface comprises a set of commands that

can be sent to the hand from a host PC via a standard

RS232 serial link. It includes commands for reading the

forces and positions, as well as for setting the finger posi-

tions in the range from 0 (fully open) to 100% (fully

flexed) and tendon forces in the range from 0 (no force)

to 100% (maximal force ~140 N).

Cognitive vision system (CVS)

The CVS is composed of a small-sized, low-cost web

camera (EXOO-M053, Science & Technology Develop-

ment Co. Ltd., China), an ultrasound distance sensor

(SRF04, Devantech Ltd., UK) and a laser pointer, housed

in a custom-made metal housing, mounted onto the

dorsal side of the hand using a pivot joint (see Fig. 3)

and communicating with a PC via a DAQ card and USB

port [43]. Two timer/counter modules on the DAQ card

were used to interface with the distance sensor: one to

generate a trigger pulse to start the measurement and

the other to read the pulse-width-modulated (PWM)

sensor output. The web camera was connected directly

to a USB port of the PC, whereas the laser pointer was

simply powered by using the power lines of the USB

interface. The laser pointer was used to point at the

object that was the target for grasping, the web camera

provided the image of the object and the distance sensor

measured the distance to the target.

EMG system

Bipolar EMG was recorded from the finger flexor (flexor

digitorum superficialis and profundus) and extensor

muscles (extensor digitorum communis) by using stan-

dard, disposable, self-adhesive Ag/AgCl electrodes (size

3 × 2 cm, Neuroline 720, AMBU, SE). The outputs of

the EMG amplifiers were connected to the analog input

channels of the DAQ card. Single-channel isolated EMG

amplifiers (EM002-01, Center for Sensory-Motor Inter-

action, DK) were used. The input channel (CMRR >100

dB, input impedance >100 MΩ, gain ≤10000) was

Figure 2 The implementation of the control system architecture. The hardware comprises: 1) the cognitive vision system (CVS), 2) a two-

channel EMG system, and 3) a PC with a data acquisition card. The PC runs a control application implementing a finite state machine that

triggers the following modules (gray boxes): the myoelectric control module, the CVS algorithm and the hand control module. The myoelectric

module acquires and processes the EMG, generating a two-bit code signalling the activity of the flexor and extensor muscles. This code is the

input for the state machine. The CVS algorithm estimates the size of the target object and uses a set of simple IF-THEN rules to select the grasp

type and aperture size appropriate to grasp the object. The hand control module implements the selected grasp parameters by sending the

commands to the embedded hand controller (HLHC) via an RS232 link.

Figure 3 Experimental platform. The platform consists of: 1) the

CyberHand attached onto an orthopaedic splint, 2) the cognitive

vision system (CVS) mounted onto the dorsal side of the hand via a

pivot joint, and 3) the EMG electrodes for myoelectric control.
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equipped with an analogue second-order band-pass But-

terworth filter with the cut-off frequencies set at 5 and

500 Hz. The amplifiers were custom made at the Centre

for Sensory-Motor Interaction and used previously in a

number of motor control studies.

Control algorithm

The control algorithm integrates the following tasks: 1)

acquires input information: image and distance from the

CVS, and EMG signals from the amplifiers, 2) processes

the data, 3) generates hand control commands, and 4)

sends them to the hand. The control application imple-

ments a finite state machine in which transitions

between the main states (hand open and close) are trig-

gered by the user's EMG. The processing part, i.e., the

core of the application, comprises three distinct mod-

ules: the CVS algorithm, the myoelectric control and the

hand control modules (see Fig. 2).

The CVS algorithm processes the image and distance

information. In the first stage, computer vision methods

[43] are used to analyze the image in order to locate the

target object and to estimate its size, i.e., the lengths of

its short and long axes. The size is estimated using the

distance to the object (as measured by the distance sen-

sor), the length of the object axes in pixels, and the

focal length of the camera [43]. When the user triggers

the operation of the CVS (as explained later), ten conse-

cutive measurements are performed. The final size esti-

mate is obtained as the median of these ten estimates.

The median is used in order to obtain more robust esti-

mation, since it is less affected by potential outliers

compared to the mean value.

The estimated object size is input for the cognitive

part of the algorithm that is implemented as a set of IF-

THEN rules. These rules compare the estimated size

against fixed thresholds (IF) and based on the results of

the comparisons, an appropriate grasp type and aperture

size is selected (THEN). The rules are constructed so

that four different grasp types can be chosen: palmar,

lateral, 3-digit and 2-digit (pinch) grasps. Furthermore,

palmar and lateral grasps are available in three different

aperture sizes (small, medium, and large) while the 3-

digit grasp has two available sizes (small and medium).

Therefore, there are nine possible grasp modalities in

total (see Table 1). The main principle in designing the

rules was to match the size of an object with a corre-

sponding functional grasp; large objects trigger the

selection of palmar or lateral grasps, whereas the 3-

digit and 2-digit grasps are used for small and very

small objects, respectively. If a large object is also wide

enough, a palmar grasp is chosen; otherwise, for thin

objects, a lateral grasp is used. The qualitative terms of

"small", "large", "wide" and "thin" are quantified using

numerical thresholds, and the thresholds are expressed

in the percents of the hand size and the size of the max-

imal aperture when the artificial hand is preshaped

according to a given grasp type. As an example, Fig. 4

shows the rules used for the palmar grasp. Rules for the

other grasps are very similar (see the additional file 1).

Importantly, different grasps are mutually exclusive, i.e.,

only one output can be generated by the CVS algorithm

for the given input.

To demonstrate the operation of the CVS, we show in

Fig. 5 the representative outputs of the CVS algorithm

obtained during the experiments described later in the

text. Pictures shown in Fig. 5(a)-(d) were generated

when the CVS aimed at different target objects used in

this study. Each image shows the detected object, the

measured distance (D), the estimated lengths of the

short (S) and long (L) object axes, and the resulting

grasp type and size selected. For example, the object in

Table 1 Grasp types and sizes

Type of opposition Grasp type and aperture
size

Grasp
ID

Palm opposition

All palmar surfaces of the fingers and the palm are involved and the thumb is in opposition to other fingers
(as in grasping a bottle).

Palmar Large PL

Palmar Medium PM

Palmar Small PS

Side opposition

The thumb opposes the radial aspect of the index finger (as in grasping a key). Lateral Large LL

Lateral Medium LM

Lateral Small LS

Pad opposition

The opposition is formed between the fingertips of the thumb and the fingers (as in lifting a pin from a flat
surface).

3-digit Medium (index,
middle finger and thumb)

TM

3-digit Small TS

2-digit (index finger and
thumb)

B
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Fig. 5(a) is long and thin, and the estimated grasp type

was therefore lateral. The CVS selected the same grasp

type for the object in Fig. 5(b), but since this time the

object was wider, the estimated aperture size was large.

Fig. 5(c) shows a small object for which the selected

grasp was 3-digit small and for the smallest object in

Fig. 5(d), the estimation was 2-digit grasp.

The prehension control commands generated by the

CVS algorithm are inputs for the hand control module.

The task of this module is to send the proper HLHC

commands to the hand in order to preshape or close

the hand according to the output of the CVS. A lookup

table with the preshaping positions and tendon force

values (for stable grasps) that should be assumed by

each finger in each grasp was built. Values were chosen

based on Cutkosky's grasp taxonomy [39], i.e., the forces

were set according to the expected power demands in

different grasps (e.g., higher forces for palmar than for

2-digit grasp, higher forces for larger aperture sizes,

etc.).

The myoelectric control module simply thresholds the

EMG inputs in the following manner: raw EMG signals

are sampled at 2 kHz, and the mean absolute value

(MAV) is calculated over 100-ms overlapping time win-

dows. The MAVs of both channels are then thresholded

Figure 4 A decision tree depicting the IF-THEN rules for the

selection of the grasp type and size. The inputs for the rules are

the estimated lengths of the object's short (S) and long (L) axes. The

lengths are compared against fixed thresholds (T) by following

decision nodes (diamond shapes) of the tree until one of the leaf

nodes (rounded rectangles) is reached. The thresholds are defined

relative to the hand size and the size of the maximal aperture when

the hand is preshaped according to a given grasp type. For

example, TLARGE = 90% PW, TTHIN = 70% MLA, TWIDE = 50% MPA, and

TVERYWIDE = 65% MPA, where PW is the width of the palm (from

lateral to medial side), while MPA and MLA are the maximal aperture

sizes for the palmar and lateral grasps, respectively. For the full set

of rules see the additional file 1.

Figure 5 The representative outputs of the cognitive vision algorithm. The images depict the detected target object (see Table 2),

measured distance (D), estimated lengths of its short (S) and long (L) axes and estimated grasp type and aperture size. The actual object sizes

are given above the images. The estimated object axes are also shown graphically (superimposed gray lines). The bright spot is the reflection of

the laser beam. The figure demonstrates that the cognitive vision system estimates the grasp types and sizes that are appropriate for the size of

the target object. (Notations: Bidigit ~2-digit grasp, Tridigit ~3-digit grasp)
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using individually adjustable levels, and a two-bit binary

code (first bit referring to flexor muscles and second to

extensors) is generated. The binary code is input for the

application's state machine (see Fig. 6) implementing the

following steps:

1) The starting, idle state is where the robotic hand

is in a neutral posture (i.e., all fingers 60% flexed).

2) When the subject decides to grasp an object, he/

she needs to point with the laser beam toward the

object and activate his/her finger extensor muscles.

The recognized EMG activity that is larger than the

preset threshold starts the CVS algorithm for the

estimation of the pointed object size and selection of

the appropriate grasp type and aperture size.

3) Once the size and grasp type are selected, the

hand control module commands finger extension,

thereby providing preshaping.

4) The subject then grasps the object by positioning

the hand around the object and commanding its clo-

sure by activating his/her finger flexors. The artificial

hand grasps the object by using force control to flex

the involved fingers.

5) The object is held until the subject contracts his/

her finger extensor muscles, thereby triggering the

opening of the hand and releasing of the object.

6) The final phase is the return to the idle state

(after a three-second delay).

Experimental protocol: "reach, pick up and place" trials

The working principle of the system was tested in experi-

mental trials in which subjects operated the artificial

hand in the "reach, pick up and place" tasks. 13 able-

bodied subjects participated in the experiments (29 ±

4.5 years of age). All volunteer subjects signed the

informed consent approved by the local ethics committee.

Figure 6 Finite state machine for the control of the artificial hand. The control is realized as an integration of the cognitive vision system

(CVS) with myoelectric control. The two channels of electromyography (EMG) recorded from finger extensors (Ext EMG) and flexors (Flex EMG)

drive the system through the states by providing a two-bit binary code (in brackets); the first bit signals the activity of the flexors and the

second is for the extensors, while X means "don't care." The user aims the system toward a target object and triggers the hand opening. The

CVS estimates the grasp type and size. The user reaches for the object, commands the hand to close, manipulates the object and finally

commands the hand to open and release the object. Notations: rounded rectangles - states; full black circle - entry state; arrows - state

transitions with events.
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The subjects were comfortably seated on an adjustable

chair in front of a desk where a workspace was orga-

nized (see Fig. 7). The workspace comprised a plane

background with five positions marked: the initial

(rest) position for the hand (labelled IP), two positions

(A1 and A2) where the objects to be picked up were

placed, and two positions (B1 and B2) to which the

objects had to be transported; B1 and B2 were used as

the final positions if the object was initially at A1 or

A2, respectively. The positions A1 and A2 were 30 cm

and 50 cm away from the initial position, respectively.

18 objects listed in Table 2 were selected as targets;

the objects were chosen in order to have two samples

for each of the grasp types given in Table 1. The task

was to reach, grasp, transport and release the target

object by operating the artificial hand as explained in

the previous section. The subject was instructed to place

the hand on the initial position so that the ulnar side of

the hand rested on the table. Upon receiving an auditory

cue, he/she had to drive the system through all of the

states of the state machine by using myoelectric control,

as shown in Fig. 6. During aiming, the subject was told

to orient the hand so that the palm was facing down,

parallel to the surface of the table. This orientation was

selected to ensure that the CVS operated in identical

conditions during the experiment, and also because dur-

ing the preliminary tests, the subjects reported that this

orientation was the easiest for aiming. After the CVS

finished processing and the hand started preshaping, the

subjects were free to move the system in any way

desired. There were two blocks of 18 trials for each sub-

ject. In the first block, the target objects were placed at

the location A1 (i.e., the sequence was IP-A1-B1), while

in the second block, the location was A2 (i.e., the

sequence was therefore IP-A2-B2). In both blocks, the

target objects were selected in a random order. In order

to minimize muscle fatiguing due to the perceived

weight of the prosthesis (about 300 grams for the pros-

thesis and about 100 grams for the CVS on a longer

lever-arm, compared to the natural hand), there was a

five-minute resting period between the two blocks.

Two of the subjects participated in a longer experi-

ment comprising four extra blocks (six in total, alternat-

ing between A1 and A2) of 18 trials separated by five-

minute breaks in order to better analyze improvements

in performance due to learning.

At the beginning of the experiment, the amplifier

gains and EMG thresholds were set to meet individual

abilities of each subject. The subjects practiced the use

of the system for about ten minutes. Attention during

practicing was primarily paid to the proper pointing of

the laser beam towards the object and to generating the

appropriate muscle contractions of the finger extensors

and flexors above the preset thresholds.

The following outcome measures have been used to

evaluate the performance: 1) estimation accuracy: the

estimation was considered successful if the grasp type

and size were estimated according to the classification

given in Table 2; 2) task accomplishment: the task was

considered accomplished if the object was correctly

picked up, transported and placed at the target location

(as in [25]); and 3) the total time spent to accomplish

the task. In the analysis, we considered that the task

accomplishment and successful estimation are not

directly related. Namely, the task could be accomplished

even though a wrong grasp was used (e.g., lateral grasp

to pick up a bottle); on the other hand, the subject

could fail to do the task despite the fact that the grasp

was successfully estimated (e.g., the object slipped).

Statistical differences among experimental results were

evaluated using the Wilcoxon signed rank test for com-

paring two groups with paired data (i.e., repeated mea-

surements) and the Friedman test for the simultaneous

comparison of more than two groups with paired data.

If the Friedman test suggested that there was a differ-

ence, groups were compared pairwise using the Bonfer-

roni adjustment. Non-parametric tests were used since

the collected data did not pass the tests for normality

(e.g., Lilliefors test). Due to the same reason, median

and inter-quartile ranges were selected as the summary

statistics for the data. The groups for the statistical

Figure 7 Experimental workspace. The notations are: IP - initial

position for the hand; A1, A2 - initial positions for the object to be

grasped; B1, B2 - target locations for the object placed at A1 and

A2, respectively. The task for the subject was to reach for an object,

grasp it, transport it to the target location and release it. Two

sequences were used depending on the initial position of the

object: IP-A1-B1 and IP-A2-B2.
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analysis were formed based on the blocks of trials. For

example, the results achieved in the first block (group 1)

were compared with the results obtained in the second

block (group 2). The data from two different groups

were paired based on the same target object and/or sub-

ject. For example, the time spent to grasp and transport

a small cup in the first block (a result from group 1)

was paired with the time spent to grasp and transport

the same object in the second block (a result from

group 2). A level of p < 0.05 was selected as the thresh-

old for the statistical significance. The statistical analysis

was performed using MatLab 2009b (The MathWorks,

Natick, MA, USA) scripts.

Results

13 subjects performed a total of 612 grasp trials; among

these, 11 subjects performed 2 blocks of 18 trials, and 2

subjects performed 6 blocks of 18 trials. Overall, the

CVS correctly estimated both grasp type and grasp size

in 84% of the cases. In an additional 6% of the cases,

the estimation was wrong but the task was still success-

fully accomplished. Two different errors were observed

here. In half of the cases, the grasp type was correctly

estimated but the grasp size was actually larger than the

correct one. For example, the CVS estimated palmar

large for an object that was supposed to be classified as

a palmar medium grasp. Obviously, this type of error

could not jeopardize the task accomplishment. In the

other half of the cases, the estimated grasp type was

actually wrong, but it was still similar enough to accom-

plish the task. For instance, instead of using the 2-digit

grasp for a very small object, the CVS estimated 3-digit

small. Therefore, from the functional point of view, the

estimation was successful in about 90% of the trials.

No statistical difference between the estimation

accuracies obtained for the two different distances (i.e.,

IP-A1 and IP-A2) was found. Importantly, if the number

of choices in the rule-based classification was decreased,

the success rate improved. For example, if the output

was limited to just two sizes for the lateral and palmar

grasps and a single size for the 3-digit grasp (i.e., mer-

ging medium and small grasps), the classification was

successful in 89% of the cases. Finally, if considering the

grasp type only (regardless of the grasp size), the success

rate was 93%. The results achieved in this study are

summarized in Figs. 8 and 9.

From the point of view of successful task accomplish-

ment, 5 out of 13 subjects showed an improvement

between the second and first blocks of trials. The sub-

ject that showed the best improvement failed five times

in the first block and just once in the second block of

trials. Considering the whole group, the total number of

unsuccessful tasks decreased from 27 in the first block

to 20 in the second. Two subjects who performed six

blocks had no failures in the last block of trials. For the

above analysis, only the trials that were unsuccessful

despite the fact that the grasp type and size were

Table 2 Target objects

Grasp
ID

Object Size of the back plane projection
S × L [cm]

Mass
[g]

PL Cylinder 10 × 18 650

PL Cylinder 11 × 17 600

PM Big cup 8 × 9 280

PM Big bottle 8 × 25 550

PS Spray Can 6 × 12 220

PS Small bottle 6 × 22 480

B Rubber 1 1 × 1.5 10

B Rubber 2 1.5 × 3 15

TS Lego
element

3 × 5.5 10

TS Very small
bottle

3 × 7 30

TM Tennis Ball 6 60

TM Light bulb
box

5 × 5 70

LS Felt-tip pen 1 1 × 11.5 20

LS Pen 1 × 13 25

LM Felt-tip pen 2 2.5 × 11.5 30

LM Pen box 1 2.5 × 16 40

LL Pen box 2 4 × 16 35

LL Plastic box 3.5 × 13 80

Notations: S, L - short and long axes, respectively.

Figure 8 Overall estimation accuracy for the grasp type and

size. Both grasp type and size were correctly estimated in 84% of

the cases. In 3% of the cases, the type was correct and the size was

larger than the correct one. We had the same number of cases (3%)

in which the grasp was wrong but still similar enough for the

subject to accomplish the task. Therefore, from the functional point

of view, the classification was successful in 90% of the cases (all

gray slices).
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correctly estimated were taken into account (otherwise,

the responsibility for the failure was attributed to the

CVS).

The analysis on a subject by subject basis showed that

in 10 out of 13 subjects, the median time spent to

accomplish the task decreased in the second block of

trials. Maximal registered improvement was 4.45

seconds. In eight of these ten subjects, the change was

statistically significant. When regression lines were fitted

through the data for each subject organized across the

trials, the line slope was negative in 11 subjects, suggest-

ing a trend for the decrease in time during the course of

the experiment. When the first and second blocks were

compared by considering the whole group (all subjects),

the median decreased from 17 to 14.9 seconds, and this

change was statistically significant.

Fig. 10 clearly shows the improvement in performance

throughout the experiment for one of the subjects that

took part in the longer evaluation (i.e., 6 blocks × 18

trials); results for the second subject were comparable

but for a better readability of the graph they are not

included. The plot in Fig. 10(a) presents the time spent

to accomplish the task versus the trial number. A cubic

polynomial was fitted to the data to show the trend:

time decreased and this decrease was slowing down. If

the times are compared between the consecutive blocks,

paired by the target object (Fig. 10[b]), then the median

time in the first block was 19.4 seconds and it dropped

to 10.3 seconds in the last block.

Discussion

The goal of this study is to present and assess a novel

concept for the control of grasping in transradial pros-

theses. The core of the presented architecture is the

cognitive vision system (CVS) that uses artificial vision

and a rule-based decision making to analyze the target

object and to generate proper commands for the control

of prehension. The tests showed that the autonomous

artificial controller was successfully integrated with the

biological control of able-bodied users. The CVS was

combined with a simple EMG interface resulting in a

fully functional prototype of an artificial hand operated

by means of a shared (cooperative) control. The user

was responsible for aiming, triggering, and orienting the

hand while the automatic control implemented the

selection of the grasp type and size, hand preshaping

(position control) and grasping (force control). The pro-

totype was successfully tested in healthy subjects that

used it to grasp, transport and release a set of common

objects. The current results (i.e., short training, success

rates, and overall user impression) imply that the pro-

posed concept might be successfully translated to the

control of a dexterous prosthetic hand operated by

amputees.

The controller designed in this study is capable of

making high-level decisions autonomously. As a result,

the communication link between the user and the sys-

tem is very simple; the user issues just the basic com-

mands (e.g., triggering grasp and release), and the

controller implements the rest. Importantly, since the

CVS is a self-contained component that uses a novel

Figure 9 Classification accuracy for different number of

possible outputs. If the number of possible outputs (i.e., hand

preshape commands) that the IF-THEN rules can generate is

decreased, the success rate improves. Groups: 1 - all grasp types

and sizes, 2 - two grasp sizes for the lateral and palmar grasps and

one grasp size for the 3-digit and 2-digit grasps; 3 - only grasp

types (i.e., one grasp size for all grasp types).

Figure 10 Improvements in performance due to learning. The

figure shows the results (time spent to accomplish the task)

organized as a) individual trials and b) blocks of trails. The vertical

axis is the time needed to accomplish the task. In plot a), the trend

obtained by fitting a cubic polynomial through the experimental

results (black dots) is shown by a continuous line, and the

boundaries between the blocks of trials are depicted by the dashed

vertical lines. In plot b), the horizontal lines are the medians, boxes

show inter-quartile ranges and whiskers are minimal and maximal

values. Statistically significant difference is denoted by a star. The

time needed to successfully accomplish the task decreases steadily

during the experiment.
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type of feedback (i.e., artificial vision and ultrasound), it

can be combined/integrated with the other aforemen-

tioned control schemes described in the literature (e.g.,

[16,32,49,50]).

The use of the system is intuitive. The subject acti-

vates hand preshaping by contracting his/her finger

extensors and then closes the hand by activating the fin-

ger flexors, which follows the healthy-like grasping mus-

cle activation. The automatic control eases the burden

from the user and, as a result, the user can concentrate

on what he/she does and not on how he/she should do

it. The other quality is that the intuitive control allowed

the operation with virtually no prior training. In the pre-

sent experiment, less than 15 minutes of practicing were

enough for the subjects to start using the system suc-

cessfully. During that time, the subjects learned to gen-

erate proper EMG signals, to aim at the target object

using a laser beam, and to orient the hand for grasping

and during manipulation. However, the current test was

conducted in healthy subjects. In transradial amputees,

who are the actual target population, setting up the

EMG interface and learning its use could take more

time depending on the state of the residual limb (i.e.,

severity of the damage). Nevertheless, it is still the sim-

plest form of the myoelectric control (i.e., only two

channels, discrete control) that the subjects would have

to master. With respect to aiming, there should be no

significant difference between the ability of transradial

amputees with the healthy elbow and upper arm, and

the healthy population.

The requirement to aim the laser at the target object

is a potentially counter intuitive step in the proposed

approach. As shown in Fig. 3, the CVS was mounted

above the hand, which is not an ideal position because

the optical axes of the camera and the direction of the

ultrasound burst are not aligned with the axis of the

forearm. Therefore, the aiming with the laser had to be

used to ensure that, in the initial phase of the move-

ment, the user oriented the hand so that the target

object was actually picked up by the sensors. However,

the subjects in general had no difficulties in mastering

this step. The aiming lasted from 2 to 3 seconds in aver-

age, even for the small objects. Furthermore, as will be

explained later, the future goal is to miniaturize and

integrate the CVS into the hand itself. In that case, the

axes of the sensors would align with the axis of the fore-

arm and the aiming could become automatic (subcon-

scious), i.e., it could be an integral part of the approach

phase during which the hand aligns with the target

object in preparation for the grasp.

The outputs of the CVS are the estimated grasp type

and aperture size appropriate for grasping the detected

target object. Both outputs are essential for the success-

ful grasping using an anthropomorphic artificial hand. If

the grasp type is not adequate, it could be difficult to

form a stable grip, as documented well in the studies on

robotic grasping [36,39]. As demonstrated for the

human [51] and robotic grasp planning [25,52], assum-

ing a proper aperture plays a key role, i.e., forming an

aperture with the size that is adapted to that of the

object allows for a more accurate reaching and position-

ing of the hand and therefore leads to a better prepara-

tion for the following enclosing phase. This reasonably

increases the chances of forming a stable grip.

The CVS was capable of generating nine different

commands (i.e., combinations of grasp types and sizes)

with a success rate of 84%. If the number of possible

commands from the CVS was reduced, the success rate

increased (up to 93%); thus, this control principle allows

selection of the suitable trade-off between desired

sophistication and robustness. In general, it is hard to

define precisely and objectively what would be the

acceptable performance for the eventual practical appli-

cation (e.g., see the discussion of the "hot coffee pro-

blem" in [21]). Nevertheless, to reach a higher level of

robustness, the current objective for the CVS classifica-

tion is to improve the performance even further so that

the error rates are reduced to below 5%. This can be

done by improving the image processing and/or distance

estimation as described later in the text.

The cognitive vision algorithm tested in this study was

operating on the PC in the LabView environment. The

processing of an image and the size estimation lasted an

average of 0.3 seconds. As explained before, ten of these

snapshots were taken and processed before the com-

mand could be sent to the hand. Overall, the period

between the moment when the user issued a command

(i.e., contracted his muscles) and the start of hand pre-

shaping was too long: about 4 seconds (on average).

Farrell and Weir [53] defined the notion of optimal con-

troller-induced delay as the maximum amount of time

that can be used by the controller for data collection

and analysis without affecting prosthesis user perfor-

mance. They also noted that there is no general agree-

ment in the existing literature about the acceptable

delays; the estimates in different studies range from as

low as 50 to up to 400 milliseconds. One reason for this

disagreement could be the fact that the acceptable delay

likely depends on the specific control method used (e.g.,

proportional, discrete control) as well as on the mechan-

ical characteristics of the prosthesis (e.g., speed of open-

ing and closing). For the controller presented in this

manuscript, the current goal is to decrease the delay so

that it falls somewhere within the range of acceptable

delays given in the literature (~few hundred millise-

conds). This can be done by implementing the control-

ler within an embedded platform and by optimizing the

processing.
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In the present study, unsuccessful grasps were caused

by the three main reasons: 1) subjects made mistakes

and failed trials while learning how to operate the sys-

tem (in the initial trials, subjects wrongly positioned the

hand around small objects; hence, the fingers missed the

object while closing); 2) the CVS generated wrong com-

mands due to wrong estimation of the object size; and

3) EMG triggering failed, especially in the initial trials

while the subjects were still learning how to generate

the commands. The wrong estimation of the object size

was caused by the following: a) image segmentation and

b) distance errors. We discuss these reasons below:

a) The segmentation is, in computer vision, the task of

separating the object from the background; it is a crucial

step in the algorithm since it allows the identification of

the target object. During the experiments, the segmenta-

tion in some cases failed, "mistaking" a part of the back-

ground as a part of the object or vice versa. This led to

a wrong estimation of the object axis lengths, that is,

incorrect grasp type and/or size selection. Imperfect seg-

mentation is a common problem in computer vision

[54,55], and this limitation has already been identified in

our earlier study [43]. As a result, in the present study,

we improved the recognition by implementing an edge-

based segmentation in the RGB colour space [56].

b) The wrong estimations were also caused by a false

reading from the distance sensor: it sometimes regis-

tered a reflection from an object that was not the target

(e.g., an edge of the table) or it missed the target object

completely. The latter was the case when the target

object was small. This error could be minimized by test-

ing sensors equipped with different models of ultra-

sound transceivers [57] in order to find an optimal

diameter of the cone of the emitted ultrasound burst (i.

e., having a more or less focused beam).

Although the main goal of this study was to evaluate

the performance of the control algorithm, we were also

interested in assessing how easy it was to operate the

system and if the subjects would improve their perfor-

mance by learning how to use it. Results are encoura-

ging, showing that the subjects were able to operate the

system well just after a short period of practice (less

than 15 minutes): all subjects failed less than five times

(out of 18) in the first block of trials. Furthermore, in

the second block, the subjects decreased the time

needed to accomplish the task without actually sacrifi-

cing their performance. For example, the subjects

learned that they could start reaching for the target

object before the hand was fully preshaped into the

selected grasp. Importantly, this is how the normal

human grasp naturally develops; the transport and pre-

shape components evolve in parallel.

It is important to emphasize that the goal of this work

was to test the feasibility of the overall approach and not

to test, fine tune and perfect all of its component parts.

For example, the surface of the table and the wall behind

the objects were in the plane colours during the experi-

ments. Since the segmentation is based on edge detec-

tion, identifying an object in an image with a strongly

textured background would be a much more challenging

task. Due to similar reasons, the current algorithm would

not perform well in cluttered environments, i.e., when

there are many objects close and behind each other.

Importantly, these issues are the focus of research in the

computer vision community, and it is therefore to be

expected that new solutions will soon emerge. Since the

system proposed here is modular, the novel algorithms

can be incorporated easily as soon as they appear.

In terms of aesthetics, again, the system shown in Fig. 3

should be regarded only as a first prototype. The CVS is

presently mounted on the hand as a separate component;

the sensor elements (e.g., lenses and image sensor, ultra-

sound transmitter and receiver) and their supporting

electronics are housed in two metal boxes (see Fig. 3).

However, the future goal is to integrate the CVS into a

prosthetic hand. The sensor electronics will be merged

with the electronics of the hand, and both will reside

within the palm. The best positions for mounting the

lenses and ultrasound transceivers (miniaturized ver-

sions) will be identified by testing. One possibility would

be to place the components in the palm between the

metacarpophalangeal joints. In the neutral hand posture,

the fingers are somewhat flexed, and this would ensure a

free line of sight. The cosmetic covering should have

small openings for the sensors and the camera. Since the

CVS implements a robust estimation rather than a fine

and sensitive analysis, the new components will add a

marginal load to the standard procedures for the hand

maintenance (i.e., the lenses will have to be kept relatively

clean). For one example of a camera that is actually a part

of the robotic hand, see [58].

Future work will be focused mainly on developing a

more robust computer vision part of the algorithm. For

example, vector-based approaches for edge detection

[56] or region growing methods [54] for object segmen-

tation are possible directions for future research. How-

ever, these methods are significantly more demanding in

terms of processing, and fast algorithms convenient for

real-time implementation have yet to be developed.

Regarding the hardware, the next step is to realize it as

an embedded computer platform, such as the one pre-

sented in [59], and integrate it into a functional transra-

dial prosthesis [3] in order to assess the usability of the

approach in amputees.

Conclusions

The original contribution of this research is a novel con-

troller that uses vision and reasoning borrowed from
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biological control to implement high-level analysis (i.e.,

determining object properties) and autonomous deci-

sion-making (i.e., selecting appropriate grasp type and

size). Importantly, the controller is designed to be con-

venient for real-time application: the image processing

pipeline is minimal and the reasoning module comprises

a set of simple IF-THEN rules. The automatic control

eases the burden from the user; he/she is responsible for

issuing just the basic commands of "open" and "close"

via a simple two-channel EMG interface. As a result, the

user can concentrate on what he/she does, not on how

he/she should do it. The tests showed that the perfor-

mance of the system was satisfactory and that the users

could successfully operate the system with minimal

prior training. Having an intelligent controller that oper-

ates autonomously while being integrated within the

volitional control of the user, and thereby complement-

ing the user in controlling the system, is essential for

the implementation of complex control scenarios

exploiting the full flexibility of the modern dexterous

prosthetic hands.

Additional material

Additional file 1: IF-THEN rules. The complete set of rules for selecting

the grasp type and aperture size.
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