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Abstract Order sets are a critical component in hospi-

tal information systems that are expected to substantially

reduce physicians’ physical and cognitive workload and

improve patient safety. Order sets represent time interval-

clustered order items, such as medications prescribed at

hospital admission, that are administered to patients during

their hospital stay. In this paper, we develop a mathematical

programming model and an exact and a heuristic solu-

tion procedure with the objective of minimizing physicians’

cognitive workload associated with prescribing order sets.

Furthermore, we provide structural insights into the problem

which lead us to a valid lower bound on the order set size.

In a case study using order data on Asthma patients with

moderate complexity from a major pediatric hospital, we

compare the hospital’s current solution with the exact and

heuristic solutions on a variety of performance metrics. Our

computational results confirm our lower bound and reveal

that using a time interval decomposition approach substan-

tially reduces computation times for the mathematical pro-

gram, as does a K−means clustering based decomposition

approach which, however, does not guarantee optimality

because it violates the lower bound. The results of com-

paring the mathematical program with the current order set
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configuration in the hospital indicates that cognitive work-

load can be reduced by about 20.2% by allowing 1 to 5

order sets, respectively. The comparison of the K−means

based decomposition with the hospital’s current configura-

tion reveals a cognitive workload reduction of about 19.5%,

also by allowing 1 to 5 order sets, respectively. We finally

provide a decision support system to help practitioners ana-

lyze the current order set configuration, the results of the

mathematical program and the heuristic approach.

Keywords Healthcare information systems · Health

informatics/health information systems/medical IS ·

Analytical modeling · Optimization · Heuristics

1 Introduction

The Design Science research paradigm has received sig-

nificant attention in the Information Systems (IS) literature

during the most recent decade [25]. Following the the-

ory, which has its roots in the engineering discipline, a

mathematical basis for designing information systems pro-

vides opportunities for the quantitative evaluation of an IT

artifact and features proving optimality of its design [14].

More recently, a number of scholars from IS and related

fields have started to use theories, methods, and tools from

neuroscience and psycho-physiology to model and better

understand human cognition, emotion, and behavior in IS

design [23]. This paper attempts to bridge the gaps between

the Design Science paradigm and Cognitive Sciences by

formulating a mathematical model of the cognitive aspects

within IS design and showcasing its applicability to health-

care information systems. Thus, gradually achieving the

unfulfilled promises of health information technology [17]
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through redesigning systems to align with end user needs is

the objective of our paper.

1.1 Design of hospital information systems

The design of effective and efficient business processes

through information and communication technologies (ICT)

has received increasing attention and healthcare is no excep-

tion [4, 5]. More significantly, along with process efficiency,

improving patient safety and quality of care, particularly

through ICT, have been the target of recent research [2, 7].

Furthermore, as detailed data is increasingly made available

through clinical information systems and health information

exchange platforms at the individual level [27, 29], the effi-

cient management of tasks for individual patients becomes

critical to improve workflow efficiency and quality of care,

simultaneously.

Hospital information systems play an important role in

improving the delivery of health care services. On the

macro-level, evaluating the impact of health IT is still much

needed [1]. In addition, useful insights have to be generated

by studying health IT at the micro-level [1] where Com-

puterized Physician Order Entry (CPOE) has proven to be

effective in increasing patient safety and reducing medi-

cation errors and costs [18]. Factors such as functionality

and ease of use can vary significantly across these type of

systems [1].

1.2 Order set usage in hospital information systems

Within CPOE, order set optimization has been the subject

of recent research [12, 29]. Order sets support physicians

in high risk situations by serving as expert-recommended

guidelines, reducing prescribing time by making complex

ordering easier, and increasing physician compliance with

the current best practice. For instance, the “Asthma order

set No. 12” shown in Fig. 1 groups together order items for

Asthma patients. The order set is typically prescribed upon

a patient’s admission to the inpatient setting. Each order

item in an order set can be defaulted ON or OFF according

to clinical relevance and frequency of use. An order item

can be part of multiple order sets. Despite the benefits of

order sets, historical data indicate a tremendous variability

in order set usage by physicians, driven largely by the diver-

sity in patient population, physician experience, and system

usability.

To illustrate the use of the order set given in Fig. 1,

assume we want to minimize the number of mouse clicks

associated with the prescription of orders and assume we

have three Asthma patients who require, respectively:

1. Ventilator Circuit Change, Subsequent Mechanical

Ventilation, and Arterial Blood Gas Draw (ICU Resp)

2. Subsequent Mechanical Ventilation, and Arterial Blood

Gas Draw (ICU Resp)

3. Elevate

The enumeration of patients’ order items reveals that the

first, second and third patient requires three, two and one

order items, respectively. The optimal solution which min-

imizes mouse clicks is as follows: We prescribe the first

patient the “Asthma Order Set No. 12” (1 click). This means

that all defaulted ON items are prescribed to the patient.

We also prescribe the second patient the order set (1 click).

However, we deselect “Ventilator Circuit Change” (1 click)

because the patient does not require this order. Finally, we

prescribe the third patient the item “Elevate” (1 click) with-

out prescribing him/her the order set. This is also called “a

la carte” prescription because the order item does not come

from an order set. The result is a total number of 4 mouse

clicks.

It is worth noting that the same number of clicks would

have been achieved if the second patient was prescribed the

items “Subsequent Mechanical Ventilation” and “Arterial

Blood Gas Draw (ICU Resp)” without assigning him/her to

the order set. In other words, these two order items could

have been prescribed “a la carte”.

Fig. 1 Asthma order set No. 12
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When using CPOE systems, clinicians can search for

particular orders by typing the order names and the search

result includes all a la carte orders and order sets that

match the keyword because order set usage is not manda-

tory. A la carte orders are individual orders that physicians

choose to enter without using order sets. Intuitively, order-

ing a la carte items takes more time compared to order sets

because they have to be searched for and entered one by

one. Some orders are standalone items and a la carte is the

only way to prescribe them. Yet, reasons for ordering a la

carte items instead of order set items mainly come from a

physician’s disagreement with order set content, unfamiliar-

ity with order sets, inconsistency of order set content with

current best practices, or, at times, a simple need for only

one or two orders. Ordering efficiency decreases when order

sets contain items that do not match the workflow or the

patient’s condition, forcing physicians to go through long

lists of orders to determine each item’s relevance to partic-

ular patients, and eventually rely on a la carte orders which

are time-consuming and subject to errors [29]. Size of order

sets range from 2 to more than 50 unique items.

1.3 Using design science to address cognitive workload

in order set optimization

Following Hevner et al. [14] who state that if design solu-

tions can be formulated appropriately and posed mathemat-

ically, standard Operations Research (OR) methods can be

used to determine an optimal solution for the specified end

conditions. The approaches developed in this paper come

into play in this context, namely addressing the challenges

of order set generation using OR methods, specifically

Combinatorial Optimization, that allows us to create order

sets from usage data with the objective of minimizing physi-

cians’ cognitive workload. Physicians’ cognitive workload

can be decomposed into the following six components: i)

assigning patients to order sets, ii) deselecting non-required

order items from order sets, iii) deselecting order items

which are prescribed multiple times, iv) ordering items a

la carte, v) confirming defaulted ON and vi) confirming

defaulted OFF order items in order sets after assigning order

sets to patients.

To tackle the problem of incorporating cognitive work-

load into order set optimization such that we bridge Design

Science with Cognitive Sciences, we develop a mathemati-

cal model to minimize cognitive workload associated with

order prescription in CPOE. The problem, model formu-

lation, computational study and decision support system

developed in this paper substantially extend and general-

ize Gartner et al. [12]’s approach, particularly going beyond

optimizing only the mouse clicks associated with order pre-

scription by incorporating physicians’cognitive workload

into the current study.

Furthermore, we execute the model on more realistic

test instances, and embed the model and solution method

in a prototype decision support system that can help prac-

titioners analyze the composition of order sets. Moreover,

our theoretical insights can be seen as a generalization

of Gartner et al. [12]’s and we show that our theoretical

insights are confirmed in our experiments. Our cognitive

workload minimization model is then decomposed given

non-overlapping fixed time intervals. However, disentan-

gling the K−means based cluster generation from the

patients’ order assignment problem now leads to a differ-

ent objective function and constraints as compared to the

ones of Gartner et al. [12]. Our evaluation study is carried

out using order item data on Asthma patients with moder-

ate complexity, which includes more than seven times the

patient population as compared to the one of Gartner et al.

[12]. We compare the current order set configuration of a

major pediatric hospital with the exact and heuristic solu-

tions on several performance metrics and at multiple levels

of detail.

The results of comparing the mathematical program with

the current order set configuration in the hospital indicates

that cognitive workload can be reduced by about 20.2% by

allowing 1 to 5 order sets, respectively. The comparison of

the K−means based decomposition with the hospital’s cur-

rent configuration reveals a cognitive workload reduction of

about 19.5%, also by allowing 1 to 5 order sets, respectively.

In order to facilitate the comparison of current order set

usage with order set optimization results, which is impor-

tant when demonstrating the new approaches to clinicians,

we develop a graphical user interface (GUI)-based decision

support system. This approach not only allows us to apply

Design Science methods to health care information systems

but also to push the frontier towards bridging the gap with

Cognitive Sciences, and, further, test our models and solu-

tion approaches for other critical health conditions that are

managed in the inpatient setting [29].

The remainder of this paper is structured as follows. In

the next section, we position our paper within related work

in this area. We then provide a formal description of the

problem, the model formulation, and structural properties. A

computational study is provided in order to demonstrate the

effectiveness of our approach based on data from a major

hospital in the United States. In that section, we describe

our evaluation metrics and present the results. We finally

summarize our paper in the conclusion section and provide

an outline of future research on this problem.

2 Related work

Four fields are relevant for the positioning of this research:

i) Cognitive workload addressed in the development of
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Information Systems, ii) IT, analytics and workload impacts

on health care performance in high risk situations, iii) order

set optimization and data-driven product development, and,

iv) Operations Research (OR) applied to clustering and

health care management.

2.1 Cognitive workload addressed in IS development

Cognitive information is processed in the lateral pre-frontal

cortex of the human brain [11] and has been reviewed in

combination with IS design by Eppler and Mengis [10]. Set-

ting the research agenda towards using neuro-physiological

tools in the development of IS, Dimoka et al. [8] review

literature on the reduction of users’ information and cog-

nitive overload. They conclude that overload arises i) from

having too much information when a person is performing

a task or ii) from the difficulty in inferring what informa-

tion is required for the task. Order set optimization can be

seen as addressing both problems. Too much information

encoded in an order set can overload a clinician because he

may confirm or de-select too many order items. On the other

hand, inferring what information is required for prescribing

orders to a patient may also incur workload and order sets

can help guide a clinician toward best-practice or evidence-

based guidelines. While other research has been done to

measure cognitive workload of IS users performing a task,

Zhang et al. [29] approached measuring cognitive workload

as time spent on each task in such as selecting or confirm-

ing order items. Our study incorporates their results into the

cognitive workload minimization model. The mathematical

program can, however, be extended towards incorporating

brain activity measures (rather than time) associated with

choosing an order set or order item.

2.2 IT, analytics and workload impacts on performance

in high risk health care situations

IT-enabled processes in a pharmacological setting in which

high risk situations can occur because of noisy data are

improved by Bai et al. [4]. Providing IT-enabled decision

support for these situations is similar to the focus of our

study where order sets can provide guidance in high risk

prescription and order management processes. We employ

analytic approaches for the efficient assignment of order

items to patients. Documentation tasks of clinicians are

studied by Powell et al. [22] who report that over-worked

clinicians document less and therefore hospital revenues

are reduced. These studies demonstrate that intelligently

designed information technology solutions can support the

efficient delivery of healthcare processes, with substantial

impact on the economics of healthcare delivery.

2.3 Order set optimization and data-driven product

development

Related work on order set optimization includes Gartner

et al. [12] and the references therein. The authors develop

a mathematical program to reduce the physical workload of

mouse clicks through order set improvement. The objective

of our paper is, however, to provide optimal and heuristic

approaches to minimize cognitive workload associated with

order prescription. Physicians’ cognitive workload can be

decomposed into the following six components: i) assign-

ing patients to order sets, ii) deselecting non-required order

items from order sets, iii) deselecting order items which

are prescribed multiple times, iv) ordering items a la carte,

v) confirming defaulted ON and vi) confirming defaulted

OFF order items in order sets after assigning order sets

to patients. The composition of order sets is dependent

on the cognitive workload associated with confirming and

de-selecting order items from order sets (see Fig. 1 in

Section 1.2). As a consequence, our aim is to provide

structural insights into the problem, such as which cogni-

tive workload coefficients lead to a valid lower bound on

order set size. Related to order set optimization is the paper

of Jiao et al. [16] who provide a review of product design

approaches including applications of clustering methods.

More recently, Lei and Moon [19] developed a market-

driven product design approach by applying K–means

clustering in the automobile industry. This is similar to our

work since we develop order sets based on patient demand.

2.4 OR applied to clustering and health care

The heuristic and optimal development of order sets can be

seen as a generalization of clustering problems. Recent lit-

erature reviews that combine data mining and OR including

clustering applications are Baesens et al. [3], Olafsson et al.

[21] and Meisel and Mattfeld [20]. Clustering approaches

are reviewed by Jain [15]. The effectiveness of applying

mathematical programming to clustering is demonstrated

by Hansen and Jaumard [13]. This is highly relevant for

our work because we apply mathematical programming for

order set optimization. One of the first binary programs to

model clustering problems is based on Vinod [24] which

is related to our modelling approach because we employ

binary decision variables to assign order items to clusters,

among others. Focusing on healthcare, Cardoen et al. [6]

and Dobson et al. [9] group medical items for surgeries

which can be seen as a clustering problem. A major dif-

ference is that we have a time interval-dependent demand

function which captures the patients’ length of stay in the

hospital. With respect to the solution methodology, we can
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decompose the problem and solve subproblems to opti-

mality or heuristically using K–means. Another difference

is that we have designed and implemented a GUI-based

decision support system for clinicians with the aim of

optimizing cognitive workload reduction.

As a conclusion of our literature review, our study can be

considered to be the first to consider the problem of cogni-

tive workload reduction in clinical information systems and

successfully employ mathematical programming to address

this for order set optimization. In addition, we incorpo-

rate the model into an exact and a heuristic decomposition

approach and prove structural properties. Our approaches

allow us to solve real-world test instances to optimality

which is unique in the order set optimization literature.

Also, the development of a GUI-based decision support

tool which allows practitioners to compare current order set

usage with heuristic and optimal order set development is

entirely new.

3 Model formulation

In what follows, we provide a concise problem description

followed by a mathematical model that clusters order items

to which patients are assigned. We will use the following

terms as synonyms: activities, items, orders, procedures and

treatments. Similarly, clusters and order sets are used as

synonyms.

3.1 Problem Description

When patients arrive at the hospital and are treated over

a planning horizon, we wish to assign the patients’ treat-

ments to clusters which represent sets of order items. Unlike

a la carte order placement, where users need to apply a

mouse click every time to select an individual order, default

ON items are automatically selected when an order set is

chosen. With additional clicks, users can add default OFF

items to the selection or deselect default ON items from the

order placement, as indicated in Fig. 1 in Section 1. In what

follows, we start with the definition of the general param-

eters for building clusters and then turn to patient-related

parameters as well as cognitive workload parameters for

the assignment of patients’ activities to order sets, and for

selecting order items a la carte, among others.

3.1.1 Sets and indices for time intervals, order sets, order

items and patients

We have a set of time intervals H := {1, 2, . . . , H } with

H denoting the last interval. For example, [22; 24] denotes

a time interval between 22 and 24 h after admission of

the patient to the inpatient setting. Intervals h, h′ ∈ H

are non-overlapping. Order sets are indexed by the set

O := {1, 2, . . . , O} with the maximum number of order sets

denoted by O. For example, O = 5 order sets can be created

in each time interval. Order item demand at time interval

h ∈ H is denoted by set Ih := {1, 2, . . . , Ih} in which Ih

is the biggest index of order items observed at time inter-

val h ∈ H. Patients are denoted by set P := {1, 2, . . . , P }

in which P is the last index of all patients. Patient demand

at time interval h ∈ H is denoted by Ph ⊂ P . We observe

activities that are required for patient p at time interval h

and we denote this subset by Ip,h ⊂ Ih.

3.1.2 Cognitive workload (CW)

We break down CW into i) the cognitive workload when

patients are assigned to order sets, ii) CW associated with

the selection of additional order items iii) CW associated

with the deselection of non-required order items and iv) CW

associated with the confirmation of patients’ required and

non-required order items.

Cognitive order set selection workload When an order set

is assigned to a patient, we denote the CW associated

with its selection as cos.

Cognitive item-specific selection workload If additional

order items are required (in addition to the activities in

an order set), cognitive workload of coff,on arise for each

additional activity. Cognitive workload for adding an a la

carte item is denoted by calc.

Cognitive item-specific deselection workload We denote

coff,non-req as cognitive workload when an order item that

is part of an order set must be deselected for that particu-

lar patient because it is not required. Sometimes, patients

may be assigned to multiple order sets. In that case, it

can happen that order items are prescribed multiple times

and cognitive workload associated with the deselection

of items that are prescribed multiple times are denoted by

coff,mult.

Cognitive order confirmation workload We denote cconf,on

as cognitive workload when an order item is confirmed

as default ON and assigned an individual patient. Simi-

larly, we denote cconf,off as cognitive workload when an

order item is confirmed as default OFF and therefore not

assigned to the patient.

We will now introduce the decision variables, the objec-

tive function and the constraints to model the problem. The

decision variables are shown in Table 1. We denote the
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aoff
h,i,o and aon

h,i,o variables as ‘clustering variables’ because

in each order set o, they will provide information regarding

which order item is defaulted-off and -on, respectively. All

other variables will mainly be used for assigning patients

to order sets or performing decisions on the patients’ item

level to determine the physician’s cognitive workload in the

objective function.

The model minimizes the cognitive workload for select-

ing a la carte items and order sets. Moreover, it accounts

for de-selecting orders from order sets to which orders are

assigned because they are either not required or assigned

more than one time. Finally, we penalize cognitive workload

associated with de-selecting defaulted ON items, selecting

defaulted OFF items and confirming items.

minimize z =
∑

h∈H

∑

p∈Ph

∑

i∈Ip,h

calc · xalc
h,p,i +

∑

h∈H

∑

p∈Ph

∑

o∈O

cos · xos
h,p,o

+
∑

h∈H

∑

p∈Ph

(

coff,non−req ·
∑

i∈Ih:i /∈Ip,h

∑

o∈O

x
on,off
h,p,i,o + coff,mult ·

∑

i∈Ih

x
m,on
h,p,i

)

+
∑

h∈H

∑

p∈Ph

coff,on ·
∑

i∈Ip,h

∑

o∈O

x
off,on
h,p,i,o +

∑

h∈H

∑

p∈Ph

∑

i∈Ip,h

∑

o∈O

cconf,on · x
conf,on
h,p,i,o

+
∑

h∈H

∑

p∈Ph

∑

i∈Ih:i /∈Ip,h

∑

o∈O

cconf,off · x
conf,off
h,p,i,o

(1)

subject to

xalc
h,p,i +

∑

o∈O

(

x
conf,on
h,p,i,o + x

off,on
h,p,i,o

)

= 1 ∀h ∈ H, p ∈ Ph, i ∈ Ip,h (2)

xos
h,p,o + aon

h,i,o − x
on,off
h,p,i,o ≤ 1 ∀h ∈ H, p ∈ Ph, o ∈ O, i ∈ Ih : i /∈ Ip,h (3)

xos
h,p,o + aoff

h,i,o − x
conf,off
h,p,i,o ≤ 1 ∀h ∈ H, p ∈ Ph, o ∈ O, i ∈ Ih : i /∈ Ip,h (4)

aoff
h,i,o − x

off,on
h,p,i,o ≥ 0 ∀h ∈ H, p ∈ Ph, o ∈ O, i ∈ Ip,h (5)

aon
h,i,o − x

on,off
h,p,i,o ≥ 0 ∀h ∈ H, p ∈ Ph, o ∈ O, i ∈ Ih : i /∈ Ip,h (6)

x
os,on
h,p,i,o ≥ xos

h,p,o + aon
h,i,o − 1 ∀h ∈ H, p ∈ Ph, o ∈ O, i ∈ Ip,h (7)

x
m,on
h,p,i ≥

∑

o∈O

x
os,on
h,p,i,o − 1 ∀h ∈ H, p ∈ Ph, i ∈ Ip,h (8)

aon
h,i,o − x

conf,on
h,p,i,o ≥ 0 ∀h ∈ H, p ∈ Ph, o ∈ O, i ∈ Ip,h (9)

aoff
h,i,o − x

conf,off
h,p,i,o ≥ 0 ∀h ∈ H, p ∈ Ph, o ∈ O, i ∈ Ih : i /∈ Ip,h (10)

aon
h,i,o + aoff

h,i,o ≤ 1 ∀h ∈ H, i ∈ Ih, o ∈ O (11)

xos
h,p,o − x

off,on
h,p,i,o ≥ 0 ∀h ∈ H, p ∈ Ph, i ∈ Ih,p, o ∈ O (12)

xos
h,p,o − x

conf,on
h,p,i,o ≥ 0 ∀h ∈ H, p ∈ Ph, i ∈ Ih,p, o ∈ O (13)

xos
h,p,o − x

on,off
h,p,i,o ≥ 0 ∀h ∈ H, p ∈ Ph, i ∈ Ih : i /∈ Ip,h, o ∈ O (14)

xos
h,p,o − x

conf,off
h,p,i,o ≥ 0 ∀h ∈ H, p ∈ Ph, i ∈ Ih : i /∈ Ip,h, o ∈ O (15)

aon
h,i,o, a

off
h,i,o ∈ {0, 1} ∀h ∈ H, i ∈ Ih, o ∈ O (16)

xos
h,p,o ∈ {0, 1} ∀h ∈ H, p ∈ Ph, o ∈ O (17)

xalc
h,p,i, x

m,on
h,p,i ∈ {0, 1} ∀h ∈ H, p ∈ Ph, i ∈ Ip,h (18)

x
conf,off
h,p,i,o , x

on,off
h,p,i,o ∈ {0, 1} ∀h ∈ H, p ∈ Ph, i ∈ Ih : i /∈ Ip,h, o ∈ O (19)

x
conf,on
h,p,i,o , x

os,on
h,p,i,o, x

off,on
h,p,i,o ∈ {0, 1} ∀h ∈ H, p ∈ Ph, i ∈ Ip,h, o ∈ O (20)
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Table 1 Overview of decision variables

Decision variable Description

aoff
h,i,o 1, if order item i is defaulted OFF in order set o in time interval h, 0 otherwise

aon
h,i,o 1, if order item i is defaulted ON in order set o in time interval h, 0 otherwise

xalc
h,p,i 1, if patient p’s order item i is chosen from a la carte items in time interval h, 0 otherwise

x
conf,off
h,p,i,o 1, if patient p’s order item i chosen from order set o in time interval h is confirmed OFF, 0 otherwise

x
conf,on
h,p,i,o 1, if patient p’s order item i chosen from order set o in time interval h is confirmed ON, 0 otherwise

x
m,on
h,p,i 1, if in time interval h patient p’s order item i is defaulted ON in multiple order sets, 0 otherwise

x
off,on
h,p,i,o 1, if patient p’s order item i is defaulted OFF in order set o and is selected in time interval h, 0 otherwise

x
on,off
h,p,i,o 1, if patient p’s order item i is defaulted ON in order set o and is deselected in time interval h, 0 otherwise

xos
h,p,o 1, if in time interval h patient p is assigned to order set o, 0 otherwise

x
os,on
h,p,i,o 1, if in time interval h patient p is assigned to order set o and order i of that patient is defaulted ON, 0 otherwise

Objective function (1) minimizes cognitive workload for

selecting patients’ order items from a la carte, assigning

patients to order sets, deselecting defaulted ON order items

from order sets, selecting defaulted OFF order items from

order sets, confirming defaulted ON order items within

order sets and confirming defaulted OFF order items within

order sets. We will denote the different terms of the objec-

tive function as zalc, zos, zoff,non-req, zoff,mult, zoff,on, zconf,on

and zconf,off. Constraints (2) ensure that each patient’s

required order item is either selected a la carte or it is

selected from order sets. If it is selected from order sets, the

order item is confirmed defaulted ON or it is switched on

because it is defaulted OFF. Constraints (3) ensure that if a

patient is assigned to an order set and a non-required order

item is defaulted ON, then it has to be de-selected. Con-

straints (4) ensure that if a patient is assigned to an order

set and a non-required order item is defaulted OFF, then

it has to be confirmed to be OFF. Constraints (5) ensure

that if a patient’s order item is switched ON from defaulted

OFF, it has to be defaulted OFF in the corresponding order

set. Constraints (6) ensure that if a patient’s non-required

order item is switched OFF from defaulted ON, it has to

be defaulted ON in the corresponding order set. Constraints

(7) ensure that if the patient is assigned to an order set and

the order item is defaulted ON, the x
os,on
h,p,i,o-variables have

to be 1. Using these variables, Constraints (8) ensure that if

the patient’s required order item is selected multiple times,

it has to be counted by the auxiliary decision variables. We

assume that there is a mechanism in the information system

which detects whether or not the item is prescribed more

than once. The user then decides through one click with

a cognitive workload coff,mult that all over-prescribed items

are de-selected automatically in order sets. Constraints (9)

ensure that a patient’s required order item can only be con-

firmed on if it is defaulted ON in the corresponding order

set. Constraints (10) ensure that a patient’s required order

item can only be confirmed OFF if it is defaulted OFF in

the corresponding order set. Constraints (11) ensure that an

order item cannot be defaulted ON and defaulted OFF in

the same order set at the same time interval. Constraints

(12) ensure that if a patient’s order item is switched on from

defaulted OFF in an order set, the patient has to be assigned

to the corresponding order set. Constraints (13) ensure that

if a patient’s order item is switched OFF from defaulted ON

in an order set, the patient has to be assigned to the corre-

sponding order set. Constraints (14) ensure that if a patient’s

defaulted ON order item is switched OFF, the patient has

to be assigned to the corresponding order set. Constraints

(15) ensure that if a patient’s defaulted OFF order item

is confirmed OFF, the patient has to be assigned to the

corresponding order set. Equations 16–20 are the decision

variables and their domain.

3.2 Dominance properties and fixing variables

Our model simplifies to the one presented in Gartner et al.

[12] if the coefficients of the last three objective function

terms are equal to zero and the remaining coefficients are

equal to 1. This means that each a la carte and order set

selection is weighted by 1 which corresponds to one mouse

click. Similarly, if an order item is not required in a pre-

scribed order set or if it is prescribed multiple times, its

deselection is also weighted by 1 mouse click. As a result,

the simplified objective function is as shown in Eq. 21.

minimize z =
∑

h∈H

∑

p∈Ph

∑

i∈Ip,h

xalc
h,p,i +

∑

h∈H

∑

p∈Ph

∑

o∈O

xos
h,p,o

+
∑

h∈H

∑

p∈Ph

⎛

⎝

∑

i∈Ih:i /∈Ip,h

∑

o∈O

x
on,off
h,p,i,o+

∑

i∈Ih

x
m,on
h,p,i

⎞

⎠

(21)

However, if the cognitive workload coefficients are not

equal to zero which Section 4.3 will reveal, objective

function (1) has to be used. In the following, we show

dominance properties for the cognitive workload model.
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Proposition 1 If calc, cos, and cconf,on ≥ 0, and, for

patient p, inequalities calc ≤ cos + |Ip,h| · cconf,on and

calc ≤ cos + |Ip,h| · coff,on hold true, the assignment of all

patient p’s order items to a la carte is non-dominated. If all

patients have this property, none of the order set assignment,

confirmation, or switching variables are required.

An example can be constructed as follows: Assume, we

have the cost coefficients as given in Section 4.3 and we

solve a subproblem with demand as follows: I := {0, 1, 2,

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32}. The individual

patient demand is: I0 := {0, 1, 2, 3, 4, 5}, I1 := {6, 7, 8},

I2 := {9, 10}, I3 := {11, 12, 13, 14}, I4 := {1, 15, 16},

I5 := {17}, I6 := {17}, I7 := {17}, I8 := {18, 19, 20, 21},

I9 := {22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32}. Then,

fetching all order items from a la carte is optimal because

even designing one order set for patient p = 9 who requires

|I9| = 11 order items will not lead to a better objective func-

tion value as compared to selecting all the patient’s order

items from a la carte.

Proposition 2 Switching order items from defaulted OFF

to ON is dominated if coff,on > calc≥ 0. As a consequence,

decision variables x
off,on
h,p,i,o can be fixed to zero.

This property will be confirmed in our computational

study where coff,on > calc (see Section 4.3). As a conse-

quence, we can also remove the defaulted OFF variables aoff
h,i,o

and modify the corresponding constraints in the model.

3.3 The time-interval-based MIP decomposition

approach

We build on the work of Gartner et al. [12] where, sim-

ilar to our cognitive workload optimization model, time

interval-connectivity is absent. However, the subproblems

are different as we will show in the remainder of this

subsection.

The time-interval-based MIP decomposition (TID)

approach is provided by Algorithm 1.

In line 1–3, we solve the MIP subproblems of each time

interval using model formulation (22)–(41). A problem in a

time interval can still be challenging as our computational

results will reveal. This is where the MIP decomposition

can be used as a heuristic by letting the solver execute for a

pre-specified amount of time or until an LP-relaxation gap

is reached. Finally, we sum up all subproblems’ objective

function values to one global objective function value. The

subproblem for each time interval reads as follows where

we can safely remove index h from the decision variables

and constraints:

minimize z =
∑

p∈P

∑

i∈Ip

calc · xalc
p,i +

∑

p∈P

∑

o∈O

cos · xos
p,o

+
∑

p∈P

⎛

⎝coff,non-req ·
∑

i∈I:i /∈Ip

∑

o∈O

x
on,off
p,i,o + coff,mult ·

∑

i∈I

x
m,on
p,i

⎞

⎠

+
∑

p∈P

coff,on ·
∑

i∈Ip

∑

o∈O

x
off,on
p,i,o +

∑

p∈P

∑

i∈Ip

∑

o∈O

cconf,on · x
conf,on
p,i,o

+
∑

p∈P

∑

i∈I:i /∈Ip

∑

o∈O

cconf,off · x
conf,off
p,i,o (22)

subject to

xalc
p,i +

∑

o∈O

(

x
conf,on
p,i,o + x

off,on
p,i,o

)

= 1 ∀p ∈ P, i ∈ Ip (23)

xos
p,o + aon

i,o − x
on,off
p,i,o ≤ 1 ∀p ∈ P, o ∈ O, i ∈ I : i /∈ Ip (24)

xos
p,o + aoff

i,o − x
conf,off
p,i,o ≤ 1 ∀p ∈ P, o ∈ O, i ∈ I : i /∈ Ip (25)

aoff
i,o − x

off,on
p,i,o ≥ 0 ∀p ∈ P, o ∈ O, i ∈ Ip (26)

aon
i,o − x

on,off
p,i,o ≥ 0 ∀p ∈ P, o ∈ O, i ∈ I : i /∈ Ip (27)
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x
os,on
p,i,o ≥ xos

p,o + aon
i,o − 1 ∀p ∈ P, o ∈ O, i ∈ Ip (28)

x
m,on
p,i ≥

∑

o∈O

x
os,on
p,i,o − 1 ∀p ∈ P, i ∈ Ip (29)

aon
i,o − x

conf,on
p,i,o ≥ 0 ∀p ∈ P, o ∈ O, i ∈ Ip (30)

aoff
i,o − x

conf,off
p,i,o ≥ 0 ∀p ∈ P, o ∈ O, i ∈ I : i /∈ Ip (31)

aon
i,o + aoff

i,o ≤ 1 ∀i ∈ I, o ∈ O (32)

xos
p,o − x

off,on
p,i,o ≥ 0 ∀p ∈ P, i ∈ Ip, o ∈ O (33)

xos
p,o − x

conf,on
p,i,o ≥ 0 ∀p ∈ P, i ∈ Ip, o ∈ O (34)

xos
p,o − x

on,off
p,i,o ≥ 0 ∀p ∈ P, i ∈ I : i /∈ Ip, o ∈ O (35)

xos
p,o − x

conf,off
p,i,o ≥ 0 ∀p ∈ P, i ∈ I : i /∈ Ip, o ∈ O (36)

aon
i,o, a

off
i,o ∈ {0, 1} ∀h ∈ H, i ∈ I, o ∈ O (37)

xos
p,o ∈ {0, 1} ∀p ∈ P, o ∈ O (38)

xalc
p,i, x

m,on
p,i ∈ {0, 1} ∀p ∈ P, i ∈ Ip (39)

x
conf,off
p,i,o , x

on,off
p,i,o ∈ {0, 1} ∀p ∈ P, i ∈ I : i /∈ Ip, o ∈ O (40)

x
conf,on
p,i,o , x

os,on
p,i,o , x

off,on
p,i,o ∈ {0, 1} ∀p ∈ P, i ∈ Ip, o ∈ O (41)

3.4 The time-interval-based K−means heuristic

approach

A similar idea is followed by the K−means based, heuris-

tic, time-interval decomposition approach. However, it not

only decomposes the MIP into time intervals but it also

disentangles the clustering decisions from the assignment

decisions represented by the a and x decision variables,

respectively. Again, this approach is an extension of Gartner

et al. [12] because we have a cognitive workload optimiza-

tion objective leading to a different assignment problem

where patients are assigned (by x-variables) to the order

sets which are now generated by the K−means algorithm.

Algorithm 2 gives an overview of the heuristic.

We can determine the K–means cluster centroids shown

in Line 2 by any implementation of Vinod [24]’s well known

K−means algorithm where the Euclidean distance can be

used to measure and improve the distance between the cen-

troids and the orders required for each instance (patient).

Once we have found the centroids, in the matrix χi,o, we

insert them as parameters into the following subproblem

which we solve for each interval individually (note that,

again, we remove the interval index h):

minimize z =
∑

p∈P

∑

i∈Ip

calc · xalc
p,i +

∑

p∈P

∑

o∈O

cos · xos
p,o

+
∑

p∈P

⎛

⎝coff,non-req ·
∑

i∈I:i /∈Ip

∑

o∈O

x
on,off
p,i,o

+ coff,mult ·
∑

i∈I

x
m,on
p,i

)

+
∑

p∈P

coff,on ·
∑

i∈Ip

∑

o∈O

x
off,on
p,i,o

+
∑

p∈P

∑

i∈Ip

∑

o∈O

cconf,on · x
conf,on
p,i,o

+
∑

p∈P

∑

i∈I:i /∈Ip

∑

o∈O

cconf,off · x
conf,off
p,i,o (42)

subject to

xalc
p,i +

∑

o∈O

(

x
conf,on
p,i,o + x

off,on
p,i,o

)

= 1 ∀p ∈ P, i ∈ Ip

(43)
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xos
p,o − x

on,off
p,i,o ≤ 1 − χi,o ∀p ∈ P, o ∈ O, i ∈ I : i /∈ Ip (44)

xos
p,o + aoff

i,o − x
conf,off
p,i,o ≤ 1 ∀p ∈ P, o ∈ O, i ∈ I : i /∈ Ip (45)

aoff
i,o − x

off,on
p,i,o ≥ 0 ∀p ∈ P, o ∈ O, i ∈ Ip (46)

x
on,off
p,i,o ≤ χi,o ∀p ∈ P, o ∈ O, i ∈ I : i /∈ Ip (47)

xos
p,o − x

os,on
p,i,o ≤ 1 − χi,o ∀p ∈ P, o ∈ O, i ∈ Ip (48)

x
m,on
p,i ≥

∑

o∈O

x
os,on
p,i,o − 1 ∀p ∈ P, i ∈ Ip (49)

x
conf,on
p,i,o ≤ χi,o ∀p ∈ P, o ∈ O, i ∈ Ip (50)

aoff
i,o − x

conf,off
p,i,o ≥ 0 ∀p ∈ P, o ∈ O, i ∈ I : i /∈ Ip (51)

aoff
i,o ≤ 1 − χi,o ∀i ∈ I, o ∈ O (52)

xos
p,o − x

off,on
p,i,o ≥ 0 ∀p ∈ P, i ∈ Ip, o ∈ O (53)

xos
p,o − x

conf,on
p,i,o ≥ 0 ∀p ∈ P, i ∈ Ip, o ∈ O (54)

xos
p,o − x

on,off
p,i,o ≥ 0 ∀p ∈ P, i ∈ I : i /∈ Ip, o ∈ O (55)

xos
p,o − x

conf,off
p,i,o ≥ 0 ∀p ∈ P, i ∈ I : i /∈ Ip, o ∈ O (56)

aoff
i,o ∈ {0, 1} ∀h ∈ H, i ∈ I, o ∈ O (57)

xos
p,o ∈ {0, 1} ∀p ∈ P, o ∈ O (58)

xalc
p,i, x

m,on
p,i ∈ {0, 1} ∀p ∈ P, i ∈ Ip (59)

x
conf,off
p,i,o , x

on,off
p,i,o ∈ {0, 1} ∀p ∈ P, i ∈ I : i /∈ Ip, o ∈ O (60)

x
conf,on
p,i,o , x

os,on
p,i,o , x

off,on
p,i,o ∈ {0, 1} ∀p ∈ P, i ∈ Ip, o ∈ O (61)

As can be observed, for example, Constraints (44) are

similar to Constraints (24) with the exception that the

defaulted ON variables become now a parameter, not a deci-

sion variable. This holds true for other constraints in which

aon-variables are used.

4 Experimental analysis using data on patients

suffering from a chronic condition

In the following, we provide an experimental investigation

of the presented methods. We first give an overview of the

data employed for our study, followed by an analysis of

computation times and the optimality gap. We then turn to

the physician’s cognitive workload analysis of the hospi-

tal’s current solution and compare it with our optimal and

heuristic approach. The results are broken down by different

metrics and levels of detail.

4.1 Data

We evaluated our approaches on data from a major U.S.

pediatric hospital and focused on Asthma patients with

moderate complexity. In total, we observed 106 patients

who were prescribed 9141 order items within 24 hours

before and after admission to the inpatient setting. In the

current system, 32 unique order sets were used for this

condition along with a la carte orders while the total num-

ber of unique order items in the entire CPOE system adds

up to 3335. We joined usage data from the current CPOE

system with data from the electronic medical record. In

doing so, we obtained time stamps for the current order set

assignments and patient demand, among others. This allows

us to generate all parameters for our exact and heuristic

approaches and to compare the solution with the physicians’

current cognitive workload.

4.2 Computational complexity and optimality

gap analysis

All computations were performed on an Intel Core i7-

4700MQ CPU with 32 GB RAM running Windows 7

operating system. The models were coded in Java in an

ILOG Concert environment. The solver used was ILOG

CPLEX 12.7 (64 bit) and we used the K–means algorithm

as implemented in WEKA [26]. We chose to split the plan-

ning horizon into H = 9 intervals as follows: [−24, −4.45],

[−4.45, −2], [−2, 0] , [0, 1], [1, 2] , [2, 5] , [5, 10] , [10, 15]
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and [15, 24] hours with respect to each patient’s admission

time point. In setting these intervals, it is guaranteed that

at least 71 patients require at least 125 distinct orders in

each interval. Another motivation not to choose smaller time

intervals is to prevent clinicians from having to revise the

order sets too frequently.

4.3 Cognitive workload definition

The six key components of physicians’ cognitive workload

are listed in Section 2.3. We assume that the objective func-

tion weights, or cognitive cost coefficients, are independent

of the patient, order set, time interval and physician. The

coefficients are obtained through a survey of 15 respondents

including physicians and nurses. A paper-based survey was

given to subjects during an order set development workshop

and a Biomedical Informatics conference, where subjects

completed the survey on the spot in about 5 minutes [28].

The survey contains 6 questions with sub-questions, asking

the subjects to estimate the time to pick an order set while

treating patients. More specifically, the subjects were asked

to identify the time it takes them to 1) choose a default-

ON item, 2) not choose a default-ON item, 3) choose a

default-OFF item, and 4) leave a default-OFF item as off

under large, mid-size, and small order sets. According to

the survey results, there are some defaulted-ON items in

the general lab order sets which should not be given to

patients with a particular diagnosis. Therefore, close atten-

tion has to be paid to the defaulted-ON items to ensure the

safety of patients, and thus the cognitive workload associ-

ated with leaving a defaulted-ON item as ON is higher than

what it would be in an ideal situation. Contrarily, physicians

often have to go through a list of defaulted-OFF items to

find items that patients need because being defaulted-OFF

does not necessarily guarantee clinical irrelevance either.

Therefore, the cognitive workload for leaving those as OFF

is also higher than an ideal situation.

Following the results from the study of Zhang [28], we

chose to set the cognitive workload coefficients as follows

[29]: calc = 1.1, cos = 1.1, coff,non-req = 1.3, coff,mult =

1.3, cconf,on = 1.0 cconf,off = 1.1 and coff,on = 1.4. The

figures reveal that all CW coefficients are greater than or

equal to one. However, since coff,on ≥ calc, switching order

items from default OFF to ON is dominated by a la carte

assignment.

To evaluate the computational complexity of the order set

optimization problem, we vary the number of order sets by

setting O = 1, 2 and 5. Table 2 shows the computational

results where we limit the computation times of each of

the MIP subproblems in the MIP decomposition to 3,600s.

Once we solve the MIP decomposition with its 9 subprob-

lems, we store the computation time and set it as a limit for

the full MIP formulation given in Eqs. 1–20. This ensures

comparability of the computational results.

The figures reveal that in the case of O = 1 order set,

running Model (1)–(20) which is the MIP without decom-

position, 528s are required for an 0.08% optimality gap.

However, with one order set generated in each interval and

the same computation time, the decomposed MIP can be

solved to optimality. The heuristic decomposition solves the

same problem more than 60 times faster as compared to

the MIP decomposition. The drawback is, however, that the

optimality gap between the MIP with decomposition and the

K−means based heuristic is 0.29%.

In the case of O = 2 order sets, and the MIP decomposi-

tion, we observed that two subproblems couldn’t be solved

within 3,600s time. A more detailed analysis revealed that

the LP relaxation gap across all 9 subproblems is 0.3%.

Comparing the MIP decomposition results with the heuris-

tic decomposition results, we have a gap in the objective

function value of 39.5. In other words, using the MIP,

the objective function value of the K−means approach

can be improved by 0.47% with the drawback of longer

computation times.

Table 2 Computation time

analysis results for cognitive

workload minimization

Approach |O| z #Decision #Constraints Computation Gap [%]

variables time [s]

Model 1 8,433.4 288,709 794,759 528 0.08

(1)–(20) 2 8,421.5 562,048 1,574,148 7,677 1.23∗

5 8,416.4 1,382,065 3,912,315 15,062 2.81∗

MIP 1 8,426.3 32,078.8 88,306.6 528 0.0

decomposition 2 8,410.2 62,449.8 174,905.3 7,676 0.3∗

5 8,386.3 153,562.8 434,701.7 15,037 0.8∗

K−means based 1 8,451.1 32,078.8 88,475.2 8 0.29∗∗

heuristic 2 8,449.7 62,449.8 175,242.7 26 –

decomposition 5 8,437.5 153,562.8 435,545.0 70 –

Best performance is highlighted in bold. ∗ denotes the LP relaxation gap. ∗∗ denotes the optimality gap

between the optimal and the K−means based objective function value
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In the case of O = 5 order sets, we observed that in

the case of the MIP decomposition, 4 subproblems couldn’t

be solved to optimality within the 3,600s time limit of each

subproblem. One explanation for this phenomenon is the

increase in the model size handed over to CPLEX. Now,

comparing the MIP decomposition results with the heuris-

tic results, we have a gap in the objective function value of

51.2.

Overall, the results show that all computation times

increase with increasing number of order sets O. The

increase in computation times is, however, substantial in the

case of the MIP approaches either used as a full model for-

mulation or as a time-index based decomposition version.

We also observe that the number of constraints is larger

for the K−means-based approach as compared to the MIP-

based decomposition approach. One explanation for this

phenomenon is that, for simplicity, we fixed the cluster-

ing decision variables by additional constraints rather than

incorporating them as constants into the subproblems.

4.4 Cognitive workload analysis

We now turn to the cognitive workload analysis results

which are broken down by i) the current configuration in

the hospital, ii) the MIP decomposition approach and iii) the

K−means based approach.

4.4.1 Cognitive workload analysis of the hospital’s current

configuration

Figure 2 provides an analysis of cognitive physician work-

load in the current configuration of the hospital’s CPOE

system.

The figure reveals that a la carte selections contribute to

52.6% of the entire cognitive workload. The results con-

firm a trend observed in Gartner et al. [12]’s small sample

results where the main contributor of physical workload was

identified as a la carte selections. However, since this study

goes beyond the work of Gartner et al. [12], we focus on

a detailed evaluation of cognitive workload associated with

the confirmation of order items. A closer analysis revealed

that 28.5% of the total cognitive workload is attributed to

the confirmation of order items wich are defaulted ON in

order sets.

4.4.2 Cognitive workload analysis of the MIP approach

The figures from the MIP approach with time-interval-based

decomposition are shown in Figs. 3, 4 and 5 where the num-

ber of order sets is bounded by O = 1, 2 and 5, respectively.

Figure 3 reveals a substantial drop-off between the cognitive

workload observed with the current hospital’s configuration

and the MIP decomposition approach already by allowing

Fig. 2 Cognitive workload

associated with current order

set usage
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Fig. 3 Cognitive workload

associated with order sets built

using the MIP decomposition

approach and O = 1 order set
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Fig. 4 Cognitive workload

associated with order sets built

using the MIP decomposition

approach and O = 2 order sets
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for O = 1 order set. Here, the total potential to reduce

cognitive workload is 19.7%.

Now, with setting O = 2 order sets, cognitive workload

can be reduced further which is shown in Fig. 4.

The results when O = 5 order sets are generated are

shown in Fig. 5. The figure reveals that the cognitive work-

load drops to a value of CW = 8,386.3 which is a 20.2%

reduction as compared to the hospital’s current configura-

tion where the cognitive workload is CW = 10,080.2, shown

in Fig. 2.

The results from the MIP decomposition approach reveal

that cognitive workload from selecting order items a la carte

is the biggest driver in cognitive workload. In none of the

results did we observe a switching between defaulted OFF

to ON, which confirms our Proposition 2. Finally, the sec-

ond largest driver in cognitive workload is the confirmation

of defaulted ON order items which contributes to 14.0% of

the cognitive workload when the number of order sets is set

to O = 5.

4.4.3 Cognitive workload analysis of the K−means

based approach

The cognitive workload analysis for the K−means based

approach are shown in Figs. 6, 7 and 8. Figure 6 reveals

a remarkable pattern that in all but the admission time

interval [0,1], none of the patients were assigned to order

sets. A more detailed analysis of the admission time inter-

val revealed that of the 100 patients who were admitted,

12 patients were assigned to the order set with a total num-

ber of 120 order items confirmed defaulted ON. This is a

valuable insight because, obviously, decomposing the MIP

into the K−means based clustering problem that deter-

mines the a variables and a MIP-based assignment problem

that determines the x variables fails. A closer look into

the order set composition revealed a pattern that only in

the admission time interval, the number of items defaulted

ON is 13. All other order sets consist of less than 10

order items defaulted ON. Therefore, assigning patients to

order sets is dominated by a la carte decisions, detailed in

Proposition 2.

The results when O = 2 order sets are built are shown

in Fig. 7. The figure shows a similar pattern as compared

to the case where O = 1 order set is built using K−means

algorithm: Only in 4 out of 9 time intervals, patients are

assigned to order sets.

The case where O = 5 order sets are generated is

shown in Fig. 8. The barplot shows that only in time interval

[10,15] no order sets are assigned to patients.

As a summary of our K−means-based heuristic decom-

position, we can conclude that the cognitive workload can

be reduced by 19.3% to 19.5% by allowing 1 to 5 order sets

in each time interval, respectively.

4.5 Order set size and number of a la carte selections

For each time interval h, we now report the average order

set size (OSSh) and a la carte selection count (ALCh). The

average order set size metric is computed as follows:

OSSh =

∑

i∈Ih

∑

o∈O

aon
h,i,o

|O|
. (62)

Since the aon
h,i,o-variables are represented by the con-

stants χh,i,o in each of the subproblem h of the K−means

approach, we calculate the order set size for this approach

as:

OSSh =

∑

i∈Ih

∑

o∈O

χh,i,o

|O|
. (63)

The a la carte selection count is determined by

ALCh =
∑

p∈Ph

∑

i∈Ih,p

xalc
h,p,i . (64)

for each time interval h ∈ H.

We don’t report how many order items are defaulted

OFF because the dominance properties of the objective

function coefficients prevents order items defaulted OFF

in order sets simply because the objective function coef-

ficients associated with switching items from default OFF

to ON are greater or equal to the objective function coeffi-

cients associated with a la carte selection. Table 3 shows the

results.

Remarkably, the K−means approach comes up with big-

ger order sets as compared to the current configuration in

the hospital. Another observation is that the MIP approach

comes up with a substantially bigger OSS as compared

to the K−means and the current approach. This confirms

Proposition 1 because a valid lower bound on the number of

items in an order set can be determined by comparing the

a la carte with the order set selection cost coefficients. This

result extends the study of Gartner et al. [12] by demonstrat-

ing how the structural properties hold in the experimental

analysis.

4.6 Detailed analysis of the MIP decomposition

In what follows, we break down the MIP decomposition

results into computational and solution characteritics as

given in Table 4.

The results reveal an interesting pattern. In interval h =

8, the average order set size comes up to 13.8 which is

very close to our lower bound on order set size given the

cognitive workload coefficients set in Section 4.3. A more
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Fig. 5 Cognitive workload

associated with order sets built

using the MIP decomposition

approach and O = 5 order sets
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Fig. 6 Cognitive workload

associated with order sets built

using the K−means based

approach and O = 1 order set
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Fig. 7 Cognitive workload

associated with order sets built

using the K−means based

approach and O = 2 order sets

[−24,−4.45] [−4.45,−2] [−2,0] [0,1] [1,2] [2,5] [5,10] [10,15] [15,24]

K−Means Heuristic Solution (O=2, CW=8,449.7)
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Fig. 8 Cognitive workload

associated with order sets built

using the K−means based

approach and O = 5 order sets
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K−Means Heuristic Solution (O=5, CW=8,437.5)
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Table 3 Average order set size

(OSSh) and number of a la

carte selections (ALCh) for

|O| = 5 order sets

h Time Current MIP approach K−means approach

OSSh ALCh OSSh ALCh OSSh ALCh

1 [−24,−4.45] 5.2 881 37.0 1,029 14.6 1,095

2 [−4.45,−2] 6.6 761 29.0 923 9.8 973

3 [−2, 0] 5.2 425 27.6 429 5.6 545

4 [0, 1] 6.1 1,015 37.8 2,343 19.4 2,404

5 [1, 2] 7.2 269 25.6 315 8.4 463

6 [2, 5] 7.6 319 20.6 304 5.4 391

7 [5, 10] 2.3 381 14.8 383 5.6 442

8 [10, 15] 5.1 279 13.8 288 3.0 348

9 [15, 24] 6.6 487 22.8 493 6.8 587

detailed analysis of the x−variables revealed that only 4

patients were assigned to order sets and each patient was

assigned to a different order set. A closer look into the

patient demand showed that these 4 patients were the only

ones requiring 12 or more order items. Moreover, the size

of the 5th order set which was never assigned to any patient

had only 9 order items defaulted ON.

5 A platform for order set optimization

To demonstrate the effectiveness of heuristic and optimal

order set optimization for hospital practitioners, we devel-

oped a Java-based order set optimization platform. It fea-

tures a graphical user interface (GUI) in which the current

order set configuration in the collaborating hospital’s CPOE

system can be displayed and explored. Important metrics

such as order set size (OSSh) are calculated for each inter-

val h, automatically. Another important feature is that order

sets generated by our heuristic and optimal approaches can

be calculated and displayed. Figures 9 and 10 show the

platform which is divided horizontally by the physical and

cognitive workload-oriented order set optimization. Since

this paper focuses on cognitive workload minimization, the

corresponding tab will be examined in greater detail. The

panel within this tab is divided into three sub-tabs display-

ing the hospital’s current setting, heuristic and optimal order

set results. For simplicity, we focus on O = 1.

Figure 9 shows the current order set usage in the ‘current

solution’ tab and the user can choose between the different

time intervals by clicking ‘analyze next interval’.

Subsequently, the user can select the desired order set by

clicking ‘analyze next order set’. Once the user has reached

the last order set, denoted by O, the counter starts over from

order set number 1 in that interval. Similarly, once the last

interval is reached, the next click on ‘analyze next inter-

val’ brings the user back to the first interval. The screenshot

reveals that interval [-24;-4.45] and order set number 3 are

selected. As can be seen, this order set consists of multi-

ple defaulted ON order items and if the user scrolls further

down the list, he will see that, in fact, all order items are

defaulted ON. For example, a non-ICU venous blood gas

test is defaulted ON with item ID 667.

Figure 10 shows the optimal order set configuration

where 37 order items are defaulted ON as marked by the

[X] in the table’s ‘default-setting’ column. This observation

Table 4 Computational

complexity and results for

each subproblem for |O| = 5

order sets

h Time Ph Ih #Var. # Constr. Sol. time [s] OSSh ALCh

1 [−24,−4.45] 75 153 125,153 41,373 3,600 37.0 1,029

2 [−4.45,−2] 94 163 162,796 57,271 3,600 29.0 923

3 [−2, 0] 94 157 153,589 41,824 89 27.6 429

4 [0, 1] 100 274 294,964 15,774 3,601 37.8 2,343

5 [1, 2] 71 144 107,430 05,985 3,601 25.6 315

6 [2, 5] 71 177 130,644 76,674 115 20.6 304

7 [5, 10] 90 135 126,499 63,804 38 14.8 383

8 [10, 15] 84 125 109,106 14,581 12 13.8 288

9 [15, 24] 87 190 171,884 95,029 380 22.8 493



Cognitive workload reduction in hospital information systems 241

Fig. 9 Current order set usage

is consistent with the findings from Table 3 where the aver-

age number of a la carte clicks is 1,029 which, multiplied by

calc = 1.1, results in the cognitive a la carte cost of 1,131.9

as shown in the decision support tool.

6 Discussion and limitations

In this study, we incorporated the cognitive workload coef-

ficients of Zhang [28] into our model where the cognitive

workload was measured for Asthma patients. However, to

generalize our study, the cognitive workload coefficients

may be different for prescribing order items to patients

being treated for other types of conditions, such as acute or

surgical conditions.

Another limitation is that the cognitive workload may

be physician-specific which were averaged and normalized

by Zhang [28]. The results of our model are applicable

when the number of patients treated by physicians who

have, on average, a cognitive workload structure simi-

lar to those we have used. However, in extreme cases,

where one physician has a high cognitive workload asso-

ciated with, say, a la carte selections and that physician

treats the majority of the patients, then different results

are to be expected. This can, however, be addressed by

extending the model to include i) clinician-dependent cog-

nitive workload coefficients, and ii) subsets of patients

that are treated by that physician and summing up

the cognitive workload in the objective function across

clinicians.
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Fig. 10 Overview of the

optimal order set for O = 1

7 Summary and conclusions

In this paper, we have tackled the problem of cogni-

tive workload minimization for order set optimization to

improve Hospital Information Systems design. Building on

the pillars of Design and Cognitive Sciences theory, we

bridge both paradigms by mathematical modelling of the

cognitive aspects within IS design in the context of our study

on optimizing order sets in clinical information systems.

Showcasing the applicability of our approach to a real-

world problem, our results from comparing a mathematical

program with the current order set configuration in the hos-

pital indicates that cognitive workload can be reduced by

about 20.2% by allowing 1 to 5 order sets, respectively. The

comparison of the K−means based decomposition with the

hospital’s current configuration reveals a cognitive work-

load reduction of about 19.5%, also by allowing 1 to 5 order

sets, respectively. We developed a graphical user interface

to the optimization platform which allows practitioners to

compare current order set usage with optimal and heuristic

order set results. Extending and validating our experimental

study towards other clinical conditions and reviewing results

of order set compositions with clinicians are the next steps

in this research.
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6. Cardoen B, Beliën J, Vanhoucke M (2015) On the design of cus-

tom packs: grouping of medical disposable items for surgeries. Int

J Prod Res 53(24):7343–7359
7. Chen YD, Brown SA, Hu PJH, King CC, Chen H (2011) Man-

aging emerging infectious diseases with information systems:

reconceptualizing outbreak management through the lens of loose

coupling. Inf Syst Res 22(3):447–468

8. Dimoka A, Banker RD, Benbasat I, Davis FD, Dennis AR, Gefen

D, Gupta A, Ischebeck A, Kenning P, Pavlou PA et al (2010) On

the use of neurophysiological tools in IS research: developing a

research agenda for NeuroIS. MIS Q 36(3):679–702

9. Dobson G, Seidmann A, Tilson V, Froix A (2015) Configuring

surgical instrument trays to reduce costs. IIE Trans Healthc Syst

Eng 5(4):225–237

10. Eppler MJ, Mengis J (2004) The concept of information over-

load: a review of literature from organization science, account-

ing, marketing, MIS, and related disciplines. Inf Soc 20(5):325–

344

11. Ferstl EC, Rinck M, Cramon DY (2005) Emotional and temporal

aspects of situation model processing during text comprehension:

an event-related fMRI study. J Cogn Neurosci 17(5):724–739

12. Gartner D, Zhang Y, Padman R (2015) Workload reduction

through usability improvement of hospital information systems –

the case of order set optimization. In: International conference on

information systems (ICIS). Fort Worth, TX

13. Hansen P, Jaumard B (1997) Cluster analysis and mathematical

programming. Math Programm 79(1-3):191–215
14. Hevner AR, March ST, Park J, Ram S (2004) Design science in

information systems research. MIS Q 28(1):75–105
15. Jain AK (2010) Data clustering: 50 years beyond k–means. Pattern

Recogn Lett 31(8):651–666
16. Jiao JR, Simpson TW, Siddique Z (2007) Product family

design and platform-based product development: a state-of-the-art

review. J Intell Manuf 18(1):5–29
17. Kellermann AL, Jones SS (2013) What it will take to achieve

the as-yet-unfulfilled promises of health information technology.

Health Aff 32(1):63–68
18. Kini N, Savage B (2003) CPOE primer. Phys Exec 30(2):20–26
19. Lei N, Moon SK (2015) A decision support system for market-

driven product positioning and design. Decis. Support. Syst.

69:82–91
20. Meisel S, Mattfeld D (2010) Synergies of operations research and

data mining. Eur J Oper Res 206(1):1–10
21. Olafsson S, Li X, Wu S (2008) Operations research and data

mining. Eur J Oper Res 187(3):1429–1448
22. Powell A, Savin S, Savva N (2012) Physician workload and hos-

pital reimbursement: overworked physicians generate less revenue

per patient. Manuf Serv Oper Manag 14(4):512–528
23. Riedl R, Davis FD, Hevner AR (2014) Towards a NeuroIS

research methodology: intensifying the discussion on methods,

tools, and measurement. J Assoc Inf Syst 15(10):
24. Vinod HD (1969) Integer programming and the theory of group-

ing. J Amer Stat Assoc 64(326):506–519
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