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ABSTRACT Automatic image annotation is an effective and straightforward way to facilitate many

applications in computer vision. However, manually annotating images is a computation-expensive and

labor-intensive task. To address these problems, this paper proposes a novel approach by using a cograph

regularized collective nonnegative matrix factorization method to annotate images, which is referred to as

CG-CNMF; CG-CNMF maximizes the annotation consistency for each image and minimizes the semantic

gap for good annotation performance. To reduce the computation cost, this method formulates the annotation

problem as a recommending issue and uses nonnegative matrix factorization (NMF) to recover the image-to-

label relation for the testing images. Moreover, to find the most similar latent image features and latent label

features during the matrix factorization, it exploits the image-to-image relation and label-to-label relation

by utilizing the visual content information of images and the semantic cooccurrence information of labels,

respectively. To reduce the semantic gap between the image visual content and semantic concepts, both the

semantic features and convolutional neural networks (CNNs)-based visual features are considered. More-

over, to address the label-imbalance and incomplete-label problems, the visual-based label cooccurrence

information is also considered. In this way, visually similar images are highly correlated with the true

semantics of the test images. The experimental results for three multilabel image datasets demonstrate the

effectiveness and the efficiency of the proposed method.

INDEX TERMS Image annotation, nonnegative matrix factorization, collective nonnegative matrix

factorization, semantic gap, convolutional neural networks.

I. INTRODUCTION

With the rapid development of the internet, digital images

have achieved an exponential increase. Manually annotating

this huge volume of images is a rather challenging issue. Due

to the capability of describing visual images with semantic

concepts, automatic image annotation has been an effec-

tive and straightforward way to facilitate many applications.

Automatic image annotation attracts extensive attention not

only in the image retrieval [1]–[3] and image understanding

fields [4], [5] but also in other domains, such as biomedical

engineering [6]–[8]. Realistically, due to the high costs and

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

time constraints associated with manual annotation, labeling

all these images with semantic information by humans is

impractical. An efficient and accurate automatic image anno-

tation method is urgently needed.

To resolve this problem, researchers have devoted many

efforts to solving the image annotation issue automatically.

A large number of methods have been proposed. These

approaches assign one or more keywords to describe the

visual content of the images, which demonstrates the map-

ping from visual content to semantic concepts. In the lit-

erature, some studies solve this issue by extracting global

image features [5], [9], [10], such as global color and

texture features. Moreover, some methods are based on

multiview features [10], [11]. The more features depicted
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FIGURE 1. The overview of the proposed method.

from images, the more comprehensive is the information

that can be attained to improve the performance. However,

the fact remains that the more features there are, the more the

computation will cost. This is one of the challenges for image

annotation.

There is another challenge for image annotation, which

is the semantic gap [12] between low-level visual features

and high-level semantic features of images. With respect to

the former, extracting one type of feature from an image is

usually difficult and complex; this approach requires prior

expert knowledge to design appropriate handcrafted features

manually. With regard to the latter, semantic features cannot

fully preserve the visual content of images. However, deter-

mining how to reduce the semantic gap between human lan-

guages and common visual features for images is also a rather

challenging issue but is vital for automatic image annotation

task. Some researchers have devoted efforts to improving the

visual features extracted from images to narrow down the gap

and boost the annotation performance. To this end, the state-

of-the-art CNN-based feature learning methods [13]–[15]

have achieved the most significant improvement. However,

these feature-based approaches do not preserve the semantic

features well. A fewworks [4], [12], [16] have achieved some

improvements by exploiting the semantic information from

labels to reduce the gap. For example, some of them use

label cooccurrence [4], [12]]; however, this type of method

does not exploit the fine-grained visual features. To make

use of the information from both images and labels, some

efforts have aimed to explore the possibility of obtaining

more useful information not only from the images but also

from labels [10], [17], [18]. For example, some methods

attempt to discover correlations between visual contents and

semantic concepts [17], [18]. In addition, other techniques

have been employed to minimize the gap, such as the super-

vised dictionary learning used in [19]. The authors proposed

a weakly supervised dictionary learning method that uses

both the visual features and feature-to-visual word mappings

to narrow down the semantic gap. Other methods such

as [20] annotate images by coherent semantic con-

cepts learned from visual contents of images. In these

methods, [19], [20] consider both the image-to-image and

image-to-label relations. To jointly consider the three types

of relations, [21]–[23] all employ a loose joint solution for

image annotation. [23] solves the image annotation problem

by a graph learning method based on both the image-based

graph and label-based graph, which conducts the learn-

ing of two graphs as two sequential steps of learning and

does not utilize three relations simultaneously. Among these

approaches, there is a common intuition that similar images

share similar labels. Moreover, the similarity of images is

always defined using only visual features. However, while

visual similarity can deal with correlations among labels

to some extent, it fails to handle the two issues of class

imbalance (different labels have different frequencies in the

dataset) and incomplete labels. To resolve these problems,

we think the image similarity should make use of both visual

similarity and semantic similarity.

To address the aforementioned problems, we propose a

novel image annotation method named cograph regularized

collective nonnegative matrix factorization, which simultane-

ously utilizes the three relations from both images and labels

and employs the image graph and label graph to regularize

the matrix factorization, thus enhancing the information from

the three relations and narrowing down the semantic gap.

We refer to this approach as CG-CNMF. In this method,

we formulate the image annotation issue as a recommending

problem, which uses a collective nonnegative matrix factor-

ization [24] model to combine the three relations of images

and labels. To understand the three relations in our method,

we show the relations in Figure 1.

In this method, we first construct the image-label matrix,

image similarity matrix and label cooccurrence matrix by

the three relations. Then, we factorize each matrix into

two factors simultaneously. This process is similar to the
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FIGURE 2. Overview of the collective nonnegative matrix factorization for image annotation.

collective matrix factorization. To obtain a comprehensive

interpretation of the proposed method, we display the matrix

factorization in Figure 2.

During this process, to reduce the computation cost, we try

to find a new low-dimensional space that bridges the semantic

gap by extracting latent factors from three relation matrices.

These latent features can make more meaningful features and

affect each other, which can help to force the factorizations

to find the most useful latent factors. Finally, we recover the

image-label matrix (R) by the product of these matrices and

recommend the labels for each testing image. To formulate

the image-to-image similarity, we consider two types of sim-

ilarities: visual-based and semantic-based. For visual-based

image similarity, visual feature learning is the key step. Thus,

we employ the CNN feature to construct the similarity, which

avoids manual feature designing and has recently shown the

best performance in computer vision tasks [15], [25], [26].

The visual-based similarity matrix S is factorized into two

latent features U and P. Semantic-based similarity is used in

the terms of the Laplace matrix [27] that is built by pair-

wise image similarity according to their labels. Consequently,

the two image similarities can affect the factorizations of R

and S, and then affect the shared latent feature matrix U in

turn. With respect to label-to-label cooccurrence, we take two

kinds of information into account, pure semantic-based and

visual-based information. Pure semantic-based cooccurrence

mainly depends on the frequencies of labels in the datasets.

We decompose the related matrix C into two matrices P

and Z. The visual-based label cooccurrence is calculated

by the frequencies of visual contents that are related to

some labels. The visual-based label cooccurrence is used as

a Laplace matrix regularization term in the matrix factoriza-

tion. This term affects the factorizations R and C simulta-

neously, then affects the shared latent feature matrix V in

turn.

To conduct latent factor analysis, we learn the low-rank

latent feature spaces by employing the image-label matrix,

image-image matrix and label-label matrix. We connect these

matrices by the label latent feature space and image latent

feature space. That is, the label latent factors in image-label

space are connected to the ones in label-label space, and

the image latent factors in image-label space are tied to the

ones in image-image space. Finally, the learned image latent

factors and label latent factors are used to recover the image-

label matrix, which can be utilized to recommend the image

labels.

Given all of the above, we can summarize the main novelty

and technique contributions of this method as follows:
• We formulate the image annotation problem as a label

recommendation problem, which can simplify the pro-

cess of image annotation.

• To make full use of the three relations, we use a collec-

tive matrix factorization model to factorize three relation

matrices simultaneously.

• To learn a more precise similarity for images, we use a

CNN feature learning method to learn the visual features

from images offline, which reduces the running time and

improves the overall performance of this method.

• To narrow down the semantic gap between images

and labels, we build the image graph by semantic
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information and the label graph by visual-based cooc-

currence information simultaneously.

Experimental results demonstrate that the proposed

method achieves promising annotation performance by using

three relations on both images and labels. To further improve

the performance, this method utilizes both the visual content-

based similarity and semantic-based similarity for images,

and it also explores the visual-based label similarity and

semantic-based label cooccurrence for labels. It makes

full use of both images and labels information for image

annotation.

The remainder of this paper is organized as follows.

In Section II, we review some of the recent works in this

domain. Section III describes the proposed method of this

paper. Section IV analyzes the optimization process of the

method. In Section V, we conduct a set of experiments to

evaluate the performance of our method. Finally, we analyze

the experimental results and state the conclusion for this

paper.

II. RELATED WORK

A. AUTOMATIC IMAGE ANNOTATION

Automatic image annotation plays an important role in com-

puter vision, multimedia and information retrieval domains.

Early annotation works usually can be categorized into four

types: mixture models, generative models, discriminative

models and nearest neighbor-based methods. Mixture mod-

els such as [28]–[30] usually define a joint distribution

between images and labels then estimate the labels over the

cooccurrence of labels and images from training images.

Generative models often utilize topic models to represent

image-label relationships, such as probabilistic latent seman-

tic analysis (PLSA) [31], [32] or latent Dirichlet alloca-

tion (LDA) [33], [34], and nonnegative matrix factorization

(NMF) [11], [35], [36]. Discriminative models often pose

annotation as a classification problem, such as an SVM [9]

and multiple instance learning [37]. These models learn a

separate classifier for each label based on low-level visual

features. Both generative and discriminative models require

clean and large-scale image datasets for training process.

Due to the simplicity and efficiency, nearest neighbor-

based approaches [16], [38]–[40] have primarily been the

most important and popular method for the image annotation

domain. It predicts labels for a test image by calculating the

similarity with the training images. However, these methods

tend to overfit to local distributions of samples. To address

this issue, some techniques have been added, such as metric

learning [41], [42] and weighted KNN [35], [43]. Repre-

sentative examples of these methods are TagProp [41] and

2PKNN [42]. TagProp transfers labels to a test image by

wrapping a logistic discriminant model over a weighted

KNN method, which resolves the class imbalance problem

and boosts the importance of the infrequent labels by sup-

pressing the importance of the frequent labels. This method

directly maximizes the log-likelihood of the tag predictions

in the training data. 2PKNN is a two-step variant of the

KNN method. This method utilizes image-to-tag and image-

to-image similarities and learns weights for multiple features.

Recently, the graph-based methods have achieved huge

successes in image annotation [3], [17], [18], [44]. These

methods usually exploit the image feature distance to estab-

lish relevant graphs of samples. They connect both anno-

tated images and unannotated images according to their

visual similarities. There is an assumption that neighboring

images in the relevant graph have similar labels. Based on

this assumption, these methods propagate the labels from

labeled images to unlabeled images by considering the visual

similarity between nodes. One weakness of these meth-

ods is the complexity. The graph-based methods construct

a k-NN similarity graph with pairwise relations over images

but do not consider the correlations between labels. Another

issue is the high computational time required in the testing

phase. Usually, these methods need to search the nearest

neighbors in the entire dataset with high-dimensional feature

vectors for each testing image. Using dimensional reduc-

tion techniques can reduce the testing time. To this end,

NMF-based approaches [11], [18], [45] are proposed to solve

image annotation problems. In [45], single-view features

are used. References [11] and [18] extend this method to

multiview by simply concatenating multiple feature vectors

into one vector before dimension reduction. However, this

approach causes the dimension disaster problem.

To address these issues, motivated by their advantages

and weaknesses, we do not utilize the multiview features for

image annotation. To resolve this problem in a different way,

we formulate it as a label recommending problem. Based on

this consideration, we factorize the image-label matrix into

an image feature matrix and a label feature matrix. Simul-

taneously, an image visual-based similarity matrix and label

cooccurrence matrix are factorized into two matrices. The

latter two factorizations share the latent image feature matrix

and label feature matrix with the first factorization.

We refer to the proposed method as the cograph nonneg-

ative matrix factorization method. In this method, to reduce

the feature dimension and obtain high efficiency in compu-

tation, we use the NMF-based method. To make full use of

the image and label information, we combined the cograph

regularization terms in this method and consider both the

visual-based and semantic-based information for both images

and labels. To further reduce the semantic gap, we use the

CNN features to build the visual-based image similarity

matrix. Furthermore, we employ the three relations simul-

taneously in the image annotation, allowing the relations to

affect each other in the matrix factorizations.

B. CNN-BASED FEATURE LEARNING

CNNs have the advantages of low complexity, by sharing

weights, and high performance in vision tasks when com-

pared with traditional handcrafted feature learning meth-

ods; further, CNN-based feature learning methods have been

shown to be the most powerful feature learning approaches

in computer vision [13]–[15] and have been applied in
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FIGURE 3. Overview of the proposed method for image annotation.

many tasks, such as image classification [13], object recog-

nition [14], image parsing [46] and image retrieval [25].

There are many CNN models that have achieved good

performances in image feature extraction. Alexnet [47],

a 5-layer network, was proposed for image classification

and won the ILSVRC-2012 competition. In this work, sig-

nificant improvement in large-scale image classification on

ImageNet [48] was achieved by using CNN. In [14], a deeper

architecture VGG-net was proposed and achieved better per-

formance in image classification accuracy. Other CNN mod-

els, such as GoogLeNet [49] and ResNet [50], have refreshed

the accuracy record of recognition. It is known that deeper

CNN can achieve better performance in extracting features.

However, deeper networks have much more computational

cost. Moreover, in [26], VGG-net and ResNet were shown to

perform better than several other famous models. Moreover,

VGG-net has simpler architecture compared with ResNet; as

such, we choose VGG-net as the feature extraction method to

build the visual-based image similarity matrix.

III. COGRAPH REGULARIZED COLLECTIVE NONNEGATIVE

MATRIX FACTORIZATION

In this paper, we focus on the annotation problem in which

an untagged image can be assigned multiple labels. Let

X = {x1, x2, . . . , xm} denote the image set, which has

m images in it. For each image, CNN features have been

extracted.

A. PROBLEM FORMULATION

For the multilabel image annotation task, we suppose there

are m images and n semantic labels L = {l1, . . . ln}. The aim

of this paper is to annotate the unlabeled images efficiently.

To achieve this goal, we exploit three relationships: image-

to-image, label-to-label and image-to-label. To utilize the

three relations, we construct three matrices as image-image

similarity matrix S, label-label cooccurrence matrix C and

image-label matrix R. As the image-to-label matrix R is

incomplete with many missing entries, our objective goal is

to fill these missing entries to obtain a label set for each test

image. We use the nonnegative matrix factorization model to

factorize these three matrices to find the inherent relation-

ships of images and labels. We show the overall view of the

proposed method in Figure 3.

Figure 3 shows the main idea of the proposed method

based on collective matrix factorization. Given the image-

label matrix R ∈ R
m×n, we decompose it into two low-rank

matrices U ∈ R
m×k and V ∈ R

n×k , where k ≤ n. The latent

image information is shared through sharing matrix U with

the image-image similarity matrix S and Laplace matrix of

the image semantic graph. Simultaneously, the image-label

matrix shares the label information through sharing matrix V

with the label-label cooccurrence matrix C and the Laplace

matrix of the label visual-based graph.

B. MODELING THE IMAGE-TO-IMAGE RELATION

For humans, we consider the similarity between two images

usually according to two reasons. One is their low-level fea-

tures, such as color, texture and so on. The other is the anno-

tated labels of them, which denotes the high-level semantic

features of images. Therefore, we design two types of image

similarities: visual-content similarity and semantic similarity.

To calculate the two similarities for images, we construct two

image similarity matrices according to different goals.

1) VISUAL-CONTENT IMAGE SIMILARITY

While calculating the visual-content-based images similarity,

feature extraction plays an important role in this process. The

deep convolutional neural network as an end-to-end feature
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learning method leads this trend. To achieve the optimal

performance, we exploit the CNN as the visual-based feature

learning method.

To avoid designing a new network, we employ the 16-layer

deep CNN architecture VGG-net [14] and recommend read-

ers to refer to the details from the original paper. We utilize

this architecture to extract a 4096-dimensional feature vector

for each image. To be compatible with VGG-net, we resize

each image to 224× 224, and extract visual features through

8 convolutional layers and three fully connected layers. The

activations of the last fully connected layer are the visual

features. To reduce the running time, we extract CNN features

offline.

Let sxi and sxj indicate the feature vector of the i
th image

and jth image respectively. We define the pairwise similarity

based on CNN features as follows:

SVSxi,xj =
< sxi, sxj >

‖sxi‖ ‖syi‖
(1)

where < sxi, sxj > calculates the inner product of the two

feature vectors. According to Eq. (1), we can construct the

similarity matrix S for pairwise images without considering

the semantic meaning of each image.

2) SEMANTIC IMAGE SIMILARITY

As discussed above, the visual-content-based similarity does

not take the multilabel information into account. In addition,

this approach cannot employ the label information of training

images. To make full use of the label information collected

from training data, we use the label cooccurrence to build a

semantic similarity graph GU .

In the graph, nodes represent label sets of images in the

training dataset, and edges represent the affinity between the

label sets. The affinity matrix WU ∈ R
m×m of the graph is

defined as

WU
i,j =

{

sim(l(xi), l(xj)) if xi and xj share some classes,

0, otherwise.

(2)

where sim(l(xi), l(xj)) denotes the similarity of the pairwise

label vectors, which is calculated as Eq. (3),

sim(l(xi), l(xj)) =
< l(xi), l(xj) >

‖l(xi)‖
∥

∥l(xj)
∥

∥

, (3)

where l(xi) and l(xj) denote the semantic label vector of

image xi and xj, respectively. < l(xi), l(xj) > computes the

inner product of image-label vectors. SinceWU
i,j in our paper

is only measuring the closeness of the two label sets for the

two images, we only use the simple semantic similarity. Pre-

serving the geometric structure in the image space is reduced

to minimizing the following loss function:

O1 =
1

2

m
∑

i,j=1

∥

∥ui − uj
∥

∥

2
WU
ij = Tr(UTLUU ) (4)

where DU ∈ R
m×m is a diagonal matrix whose entries are

column sums ofWU ,DUii =
∑m

j=1W
U
ij , and LU = DU −WU

is the Laplacian matrix of the graph GU .

C. MODELING THE LABEL-TO-LABEL RELATION

In the multilabel image dataset, one label is usually assigned

to many images if the visual contents of these images are

related to this label. Scanned over the whole dataset, we can

find that the relationships among these labels are not inde-

pendent of the visual contents of the images. Therefore,

in this paper, we consider the label-to-label relation from two

perspectives. First, we consider the semantic-based label rela-

tion, which we named as label cooccurrence. For example,

if two labels are always assigned to the same image in the

dataset, we can calculate the cooccurrence percentage of the

two labels by counting the label pairs annotated jointly in

the whole dataset. Second, if two labels are always shared by

the same image, then these images always have some similar

visual-based characteristics. In the following, we will design

the two cooccurrences.

1) VISUAL-BASED LABEL COOCCURRENCE

Since the visual content is the direct representation of one

image, it should contribute to the label cooccurrence.We con-

sider the visual-based similarity for two labels in the fol-

lowing measures: if two labels always occur as candidates

for the same image xi and never with any other labels, then

they are considered as highly visually similar, and we use

vsim(la, lb) = 1 to denote the similarity. If labels la and

lb never occur together, we consider they are not visually

similar, and vsim(la, lb) = 0. These two cases are the special

cases. In other cases, if two labels occur together with other

labels for the same image, we define the visual-based label

cooccurrence as follows:

vsim(la, lb) =
1

TP
KS (I (la), I (lb))

=
1

TP

∑TP

i=1,j=1
SI (Ii(la), Ij(lb)) (5)

where I (la) and I (lb) indicate the image sets related by

label la and label lb, respectively. Ii(la) is the ith image in

image set I (la). KS (.) denotes the similarity of the two image

sets, and SI means the similarity function between the two

images. TP is the number of the most similar images from

the labeled images. We set Tp = 10 in our paper. That

means we choose 10 images for calculating the visual-based

similarity of labels and then obtain the average value as the

final similarity.

Similar to the semantic similarity graph GU , we construct

the visual-based label graph GV . We use WV ∈ R
n×n to

indicate the affinity matrix and define WV as

WV
ij =

{

vsim(la, lb); la and lb occur together,

0 otherwise
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Then, we get the following loss function:

O2 =
1

2

n
∑

i,j=1

∥

∥vi − vj
∥

∥

2
W v
ij = Tr(V TLVV )

where LV = DV − WV is the Laplacian matrix, DV is a

diagonal matrix and DVii =
∑n

j=1W
V
ij .

2) SEMANTIC-BASED LABEL COOCCURRENCE

Generally, if there are two labels with high cooccurrence

in the training dataset, then there will be a high probabil-

ity to annotate other images simultaneously. In this paper,

to calculate the cooccurrence percentage of the two labels,

we construct an image-label matrix T for the training data,

where the rows denote the images and the columns denote

the labels. If image xi is assigned the label lj, then tij = 1 and

tij = 0 otherwise. We use t:i and t:j to denote the ith and jth

column of matrix T , respectively. Then, we define the label

cooccurrence of the two labels as follows:

sim(li, lj) =
< t:i, t:j >

‖t:i‖
∥

∥t:j
∥

∥

(6)

where < t:i, t:j > calculates the inner product of the two label

vectors in the training data. According to Eq. (6), we can

construct the label cooccurrence matrix C.

D. OBJECTIVE FUNCTION OF CG-CNMF

This multilabel annotation problem can be considered as an

optimization problem.We solve the problem by the following

objective function:

LJWNMF (U ,V ,P,Z )
s.t.U≥0,V≥0,P≥0,Z≥0,

=
1

2

∥

∥

∥
Y ⊙ (R− UV T )

∥

∥

∥

2

F
+

α

2

∥

∥

∥
S − UPT

∥

∥

∥

2

F

+
β

2

∥

∥

∥
C − VZT

∥

∥

∥

2

F

+
λU

2
Tr(UTLUU )+

λV

2
Tr(V TLVV )

+
λ

2
(‖U‖2F + ‖V‖

2
F + ‖P‖

2
F + ‖Z‖

2
F ) (7)

where Y is the indicator matrix of the missing ‘‘rating’’,

of which missing values are addressed by binary weights Yij

Yij =

{

1, if Rij is observed;

0, if Rij is unobserved .

where ‖.‖ denotes the Frobenius norm, ⊙ is the Hadamard

product operator. α, β, λU , λV are the regularization param-

eters that balance the reconstruction error of CG-CNMF in

the first three terms and the rest of the terms. Moreover,

the last four terms with λ help the objective function avoid

overfitting.

As shown in Figure 3 and the objective function in Eq. (7),

we aim to propagate the information among the image-

label matrix R, image-to-image matrix S and label-to-label

matrix C by sharing some low-rank matrices U and V.

The first three terms in Eq. (7) control the loss in matrix

factorization, the fourth and fifth term control the information

from semantic-based image similarity and visual-based label

cooccurrence to help the first term find more interpretable

representations, and the last 4 terms help the regularization

over the factorization matrices to prevent overfitting.

IV. OPTIMIZATION PROCESS AND IMAGE

ANNOTATION VIA CG-CNMF

In this section, we will investigate the solution for Eq. (1).

In general, the objective function in Eq. (7) is not jointly

convex to all the variables, and we cannot obtain a closed-

form solution by minimizing this equation with respect to

U, V, P and Z. Therefore, we will optimize the objective

function by an alternating scheme, in which optimizing one

variable can be achieved by fixing the others and repeating

this procedure until convergence.

A. THE OPTIMIZATION PROCESS OF CG-CNMF

In this subsection, we iteratively solve one variable while

fixing all others.

1) UPDATE FOR U

If we fix V, P and Z at the current iteration step, the objective

function in Eq. (7) with respect to U can be written as

L(U ) =
1

2

∥

∥

∥
Y ⊙ (R− UV T )

∥

∥

∥

2

F
+

α

2

∥

∥

∥
S − UPT

∥

∥

∥

2

F

+
λU

2
Tr(UTLUU )+

λ

2
‖U‖2F

s.t. U ≥ 0

By taking the first derivative of L(U ), we have

∂L(U )

∂U
= −Y ⊙ RV + Y ⊙ (UV T )V − αSP

+αUPTP+ λULUU + λU

Considering LU may take any signs, following [51], we

introduce LU = L+U+L
−
U , andM

+
ij = (

∣

∣Mij

∣

∣+Mij)
/

2,M−ij =

(
∣

∣Mij

∣

∣−Mij)
/

2. Then, we set the above partial derivation to

zero by using the Karush-Kuhn-Tucker (KKT) complemen-

tary condition [52] and attain the following multiplicative

updating rule:

Uij← Uij

√

[Y ⊙ RV + αSP+ λUL
−
UU ]ij

[Y ⊙ (UV T )V + αUPTP+ λUL
+
UU + λU ]ij

(8)

2) UPDATE FOR V

Considering V only, we need to solve the following problem:

L(V ) =
1

2

∥

∥

∥
Y ⊙ (R− UV T )

∥

∥

∥

2

F
+

β

2

∥

∥

∥
C − VZT

∥

∥

∥

2

F

+
λV

2
Tr(V TLVV )+

λ

2
‖V‖2F

s.t. V ≥ 0
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Considering the symmetry of U and V in Eq. (7), the solu-

tion of the updating rule with respect to V is analogous to that

of U. We can obtain the following updating rule

Vij← Vij

√

[(Y ⊙ R)TU + βCTV + λVL
−
V V ]ij

[Y ⊙ (UV T )TU + βVZTZ + λVL
+
V V + λV ]ij

(9)

3) UPDATE FOR P AND Z

Similarly, we fix other variables for P and Z, and we can

obtain the following equations

L(P) =
1

2

∥

∥

∥
S − UPT

∥

∥

∥

2

F
+

λ

2
‖P‖2F

L(Z ) =
1

2

∥

∥

∥
C − VZT

∥

∥

∥

2

F
+

λ

2
‖Z‖2F

Then, we calculate the first derivatives of P and Z,

∂L(P)

∂P
= −STU + PUTU + λP

∂L(Z )

∂Z
= −CTV + ZV TV + λZ

By setting the first derivatives to zero, we will obtain the

following updating rules for P and Z

Pij ← Pij

√

√

√

√

[

STU
]

ij
[

PUTU + λP
]

ij

(10)

Zij ← Zij

√

√

√

√

[

CTV
]

j
[

ZV TV + λZ
]

jj

(11)

These updating rules are derived one-by-one by fixing

the other three variables. They are analogous to those of

NMF [53]. The difference is how to update the image fea-

ture factors U and the label feature factor V. In Eq. (8),

the update of U mainly depends on two sources of data:

the image-label matrix R and the image-to-image similarity

matrix S. Similarly, the update of V depends on two sources

of data: the image-label matrix R and the label cooccurrence

matrix C.

The successive iterations will lead the objective function

to converge. After convergence, we can easily recover the

image-label matrix by the learned matrices and recommend

the labels for the unlabeled images.

B. THE CONVERGENCE OF CG-CNMF

The objective function in Eq. (7) is not a strict convex function

with respect to U, V, P and Z together; however, it is a convex

function with respect to U, V, P and Z separately. Therefore,

we can solve the optimization problem by the alternative

multiplicative updating rules. To prove the convergence of

Eq. (7), we can obtain the following theorem.

Theorem 1: The objective function in Eq. (7) is nonin-

creasing under the updating rules of Eq. (8)-(11); hence,

it converges to a local minimum.

For a better flow of this paper, we provide the proof of

Theorem 1 in the Appendix. This theorem guarantees the

objective function in Eq. (7) always decreases and hence

converges.

C. IMAGE ANNOTATION VIA CG-CNMF

After learning all the feature matrices U, V, P and Z, we

perform the annotation by reconstructing the image-label

matrix R. We use R̂ to denote the recovered matrix, which

is the product of the image feature matrix U and label feature

matrix V. Each image is labeledwith the top 5 labels bymatrix

R̂. The process is summarized as follows:

Algorithm 1 Image Annotation via CG-CNMF

Input: image-label matrix R with labeled and unlabeled

images, image-to-image semantic similarity matrix WU

and visual-based similarity matrix S, label-to-label seman-

tic cooccurrence matrix C and visual-based cooccur-

rence matrix WV , loss error ε, regularization parameters

α, β, λU , λV , λ > 0, number of images m, number of total

labels n, and number of latent features k;

Output: U ≥ 0,V ≥ 0,Z ≥ 0,P ≥ 0, R̂ ≥ 0

Initialize: U0 ≥ 0,V0 ≥ 0,P0 ≥ 0,Z0 ≥ 0

1: Construct weight matrix Y according R, Yij = 1 if Rij
can be observed; otherwise, Yij = 0;

2: Construct image visual-based similarity matrix S;

3: Construct image semantic-based similarity matrix WU ;

4: Construct label semantic cooccurrence matrix C;

5: Construct label visual-based cooccurrence matrix WV ;

6: while the loss error of Eq. (7) > ε do

7: t := t + 1;

8: update U t+1 according to Eq. (8);

9: update V t+1 according to Eq. (9);

10: update Pt+1 according to Eq. (10);

11: update Z t+1 according to Eq. (11);

12: end while

13: Take R̂ as the approximation of R;

14: Return a tag recommendation list of top 5 tags with

the largest 5 values in the recovered matrix R̂ for each test

image.

The image annotation process via CG-CNMF is summa-

rized in Algorithm 1. In steps 8–11, the algorithm updates U ,

V ,P and Z iteratively until convergence. The optimal solution

of the objective function in Eq. (7) can be obtained simul-

taneously. After the optimization process, we can obtain the

approximate image-label matrix R̂ from the learned feature

matrices U and V according to R̂ = UV .

Then, we take the top 5 entries in a row of the image-label

matrix R̂ as the recommended labels for an image.

D. TIME COMPLEXITY OF CG-CNMF

In this subsection, we discuss the time complexity of the pro-

posed method. We use big O to express the complexity. The

time complexity of Algorithm 1 dominates two parts: matrix

factorization and reconstruction. In the first part, the main

cost is the multiplicative updating rules and the constructions
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TABLE 1. Statistics of datasets.

of the following matrices: image-image visual-based and

sematic-based similarity matrices, label-label visual-based

matrix and semantic-based cooccurrence matrix. We sup-

pose the multiplicative updates stop after tin iterations. The

time cost of the multiplicative updates is O(tinFk (mkn) +

tinmk + tinkn), where Fk denotes the number of the observed

entries in the image-label matrix R. Because k and n are

much smaller than m, the time complexity of updates is

approximate to O(tinFkm). The construction of the image

semantic-based and label visual-based cooccurrence graphs

spend O(2m2 + 2n2). In the recovering step, the time com-

plexity is O(mkn), which is approximate to O(m). Therefore,

the overall time complexity of Algorithm 1 is approximate to

O(tinFkm+ 2m2 ++2n2 + m).

V. EXPERIMENTS AND EVALUATIONS

In this section, we will investigate the effectiveness of the

proposed method by comparing it with other multilabel

approaches. Furthermore, we will analyze the results and

show the influence of related parameters used in this paper.

A. DATASETS AND PREPROCESSING

To evaluate the performance of the proposed method and

make it easy to compare with other annotating meth-

ods, we choose three popular and publicly available mul-

tilabel datasets: Corel5K [54], IAPR TC12 [55] and

ESP-GAME [56]. Corel5k is the standard multilabel dataset

and has been the most common dataset employed for tag-

based image annotation. It has 4,500 training sets and

500 testing sets. The tag per image (TPI) is 3.4. IAPR

TC12 has 19,627 images covering several scenes such as

landscape shots, animals, and city pictures, and the TPI is 5.7.

The last dataset is constructed from an online game. It con-

sists of 18, 689 training images and 2,081 testing images, and

the TPI is 4.7. We summarize the statistics of these datasets

in Table 1.

B. EVALUATION METHODOLOGY

For performance evaluation, we adopt the widely used per-

formance metrics, mean precision (P%), mean recall (R%),

F1 score and N plus (N+). The precision measures the per-

centage of images correctly annotated in the total images.

The recall rate refers to images that are correctly annotated

relevant to the ground-truth annotations. It is a commonly

used metric in the image annotation field. The F1 score is

the harmonic mean of precision and recall. N plus reports the

number of tags with nonzero recall. Similar to other works,

we first automatically annotate each image with 5 tags and

then compute precision and recall for each tag. After that,

we calculate the F1 score and N plus measures. The precision,

recall and F1 score are defined as follows:

precision(li) =
Ncorrect

Nlabeled
, recall(li) =

Ncorrect

Nall

F1 − score(li) = 2
Pr ecision(li)× Re call(li)

Pr ecision(li)+ Re call(li)

where Ncorrect denotes the number of images that are cor-

rectly annotated, Nlabeled is the number of correct images

relevant to the ground-truth annotations and Nall is the total

number of images to be automatically annotated. To reduce

the errors caused by inappropriate sampling, the experiments

were cross-validated on 10 sets of randomly chosen samples.

C. COMPARISON WITH OTHER APPROACHES

To evaluate the annotation performance of CG-CNMF,

we compare it against several other annotation approaches.

The compared methods are summarized as follows:

• TagProp [41]: This is a KNN-based method that uses

the tag propagation to learn a weighted nearest-neighbor

model. It integrates the metric learning by directly max-

imizing the log-likelihood of the tag predictions in the

training set.

• NMF-KNN [35]: NMF-KNN represents a query-

specific generative model, which learns the features

of nearest-neighbors and tags using a weighted exten-

sion of the multiview nonnegative matrix factorization

method.

• 2PKNN [42]: 2PKNN is a two-phase method, in which

the first pass is to address the class imbalance by con-

structing a balanced neighborhood for each test image,

and the second pass is to assign the actual tag impor-

tance based on image similarity. This method uses

‘‘image-to-label’’ similarities in the first step, while it

uses ‘‘image-to-image’’ similarities in the second step,

thus combining the benefits of both. Our method simul-

taneously utilizes three relations including these two

similarities, which is very helpful to the performance of

image annotation.

• FastTag [57]: FastTag recasts a supervised multilabel

classification problem as unlabeled multiview learning.

It jointly learns two classifiers for images and text.

To trade off complexity in the classifiers, it utilizes a

nonlinear mapping for features, which can efficiently

deal with sparsely tagged training data and rare tags.

• CCA-KNN [58]: CCA-KNN is a canonical correla-

tion analysis (CCA) framework with k-nearest neigh-

bor (CCA-KNN) clustering for image annotation. This

method makes use of convolutional neural network

(CNN) features and word embedding vectors to rep-

resent the associated tags of images. It extracts CNN

features for images using a pretrained VGG-16 [59]

network. Meanwhile, the word embedding vectors are

extracted using a pretrained ship-gram architecture

word2vec. Both networks are publicly available.
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• MLDL [60]: MLDL describes a multilabel learning

method by using label consistency regularization and

a partial-identical label embedding method for image

annotation. It incorporates the dictionary learning tech-

nique into multilabel learning in the input feature space.

Moreover, in the output label space, it uses the label

embedding to cluster the samples with the same label

set and collaboratively represents the label set for the

partial-identical samples.

• JEC [61]: This method treats image annotation as a

retrieval issue. It uses a greedy algorithm to transfer a

label from neighbors by using multiple global features.

In Joint Equal Contribution (JEC), each feature con-

tributes equally toward the image distance. It scales the

distances for each feature such that they are bounded

by 0 and 1.

• RMLF [62]: RMLF is a method of late fusion for image

annotation based on rank minimization. It obtains an

optimal matrix by solving a minimization optimization

problem and gives the final prediction of tags with this

matrix.

These eight state-of-the-art algorithms are employed as

benchmark baselines. Considering the three matrices used

in the proposed method, we first construct the image-label

matrix, image-image visual-based similarity and label-label

semantic-based cooccurrence matrix for each dataset. The

image-label matrix shows the relationship between images

and labels. We use the rows as the different images, and

the columns as the different labels. The image-image visual-

based similarity matrix demonstrates the interrelationships

among images. We construct this matrix by CNN features

offline. With respect to the label-label semantic-based cooc-

currence matrix, we use the label frequency for each dataset

to construct the matrices.

To evaluate the effectiveness of the proposed method,

we construct a set of experiments with the three multilabel

datasets to compare with the 8 state-of-the-art algorithms.

The parameters of these compared methods are set according

to their papers or their codes. For fairness, we perform param-

eter tuning in advance for the proposed method and use the

best setting to compare with other methods. Table 2 lists the

parameters used in the experiments.

All these approaches are executed on a desktop computer

with an Intel Core7 2.4 G CPU and 16 GB memory.

D. EXPERIMENTAL RESULTS AND DISCUSSION

In this subsection, we report the image annotation

performance of the proposed method by comparing it with

the existing image annotation approaches for three datasets.

To evaluate the robustness of the method, we conduct the

experiments on different ratios of labeled images. We ran-

domly select 20%, 50%, and 80% of the ratings as the training

data, and the rest of the data is used as the test data to evaluate

the performance of these methods. Table 3, 4 and 5 exhibit

the precision (P), recall (R), F1 score (F1) and N+ for the

three datasets. Because F1 is the harmonic mean of recall and

TABLE 2. Parameters used for experiments.

precision, it is more reliable than the analysis of preci-

sion or recall performed separately. Thus, we just analyze the

F1 score for these methods.

First, we compare the performance among TagProp,

NMF-KNN, 2PKNN, CCA-KNN and the proposed

CG-CNMF on the Corel5K dataset, of which the training

dataset consists of 20%. In these methods, the former four

approaches are all KNN-based methods and show promis-

ing results. Among these methods, the proposed method

completely and significantly outperforms the other methods.

It attains 3.4% achievement under F1 score for Corel5k,

1.6% achievement for IAPR TC12 and 0.7% for ESP when

compared with CCA-KNN. We believe the reasons are the

CNN features that we used to construct the visual-based

image similarity and the three relations we employed. These

techniques help to reduce the semantic gap and enhance the

related information. Moreover, CCA-KNN achieves the best

results compared with the other three KNN-based methods.

This method utilizes visual features extracted by a convolu-

tional neural network (CNN) from images along with word

embedding vectors for semantic concepts. It incorporates

both CNN features and text features. The significant per-

formance proves the efficiency of CNN features used in this

method. NMF-KNN is the second best KNN-based method,

which is better than the traditional weighted nearest neighbor-

based approaches such as TagProp. TagProp addresses the

class imbalance problem by wrapping a logistic discriminant

model over the weighted KNN method. This improves the

performance of the image annotation by boosting the impor-

tance of infrequent labels and suppressing frequent labels

among neighbors. A two-step k-nearest neighbor method

2PKNN works slightly worse than NMF-KNN and a slightly

better than TagProp on Corel5k. This method does not need

to choose the parameter of the neighborhood dimension, but

it implicitly defines this by exploring the most similar images

per label. This advantage is obvious in the ESP dataset, which

has more labels per image, but it fails to achieve promising

results for the IAPR TC12 dataset. We believe that this is

due to the TPI of this dataset, which is higher than that of

Corel5k. The recall is hard to improve on this dataset. Among

these KNN-based methods, FastTag performs the worst.

We think the reason is that it focuses more on the speed of

VOLUME 7, 2019 88347



J. Zhang et al.: CG-CNMF for Multilabel Image Annotation

TABLE 3. Experimental results for the three datasets with 20% training data.

TABLE 4. Experimental results for the three datasets with 50% training data.

TABLE 5. Experimental results for the three datasets with 80% training data.

the tagging rather than the accuracy. Fortunately, CG-CNMF

achieves a 3.4% gain compared with CCA-KNN in the F1

score, and CCA-KNN does better than other KNN-based

methods. This improved performance is due to the advantage

of employing all the word2vec vectors as text features used

in CCA-KNN, which has been proven to be better than a

binary vector of labels [58]. However, our method makes full

use of three relationships among images and labels, which

not only considers the visual-based and semantic-based

image similarities but also utilizes the visual-based label

cooccurrence and semantic-based label cooccurrence. Fur-

thermore, we combined CNN features to calculate the visual-

based image similarity, and the results have proven that

CNN features are better than handcrafted features. All

these techniques help us to achieve a good performance in

annotation.

Second, we compare CG-CNMF with FastTag, MLDL,

JEC and RMLF. Among these methods, JEC performs the
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worst. Even more, it is also the worst among all the meth-

ods. To our knowledge, JEC depends heavily on the features

of images and weights these features equally. It could not

perform any better than using equal weights. This is due to

the limitations of the classification-based metric learning that

they used for annotation. It is interesting that FastTag almost

aligns with TagProp, which is similar in [57]. Moreover, this

method achieves 8.4% gains compared with JEC in F1 on

Corel5k. This improvement occurs because of using two

co-regularized linear mappings in a joint convex function.

RMLF achieves a large margin (7%) in F1 compared with

JEC on Corel5k. Even more, it performs slightly better than

TagProp and FastTag, which is likely because of the rank

minimization-based late fusion method that provides more

useful information for annotation. Due to the use of the label

consistency regularization and partial-identical label embed-

ding method, MLDL achieves the second-best performance

in the F1 score measure, which is slightly worse (0.3%) than

the proposed approach. This proves that label consistency

and label embedding are helpful to the image annotation

inMLDL. Even more, in the output space, theMLDLmethod

employs the label embedding and collaboratively predicting

of the labels for the partial-identical samples, which further

improves the performance of image annotation. CG-CNMF

performs slightly better than MLDL on the Corel5K dataset

when the training set is set at 20%. Moreover, it is also better

than CCA-KNN on the ESP dataset and IAPR TC12 datasets.

We determine there are two reasons for this difference in

performance. On the one hand, CNN feature-based image

similarity is more accurate than handcrafted features-based

similarity. On the other hand, the use of multiple relationships

provides much useful information for the matrix factorization

and affects the annotation performance in turn. Moreover,

the proposed method is much more efficient in computation,

which is due to the low-rank representation solution of NMF.

Third, we deploy the experiments on the 50% and 80%

training datasets. It is not surprising that the performance of

each method is improved as the ratios of training datasets

increase. When the ratio of the training dataset size increases

to 50%, MLDL also performs the best among all the methods

on the Corel5k dataset, and the proposed method is the sec-

ond best approach. Different from this, considering the ESP

dataset, the proposed method achieves the best performance

for the measures of FI and N+. This performance difference

occurs because ESP has a higher TPI than Corel5K. It can

achieve better precision in ESP. We also believe that more

images and more labels provide more useful information

for image annotation. Moreover, the proposed method can

scale well on larger datasets than other methods due to the

neural networks. However, the high computation cost is its

shortcoming, which needs not only the hardware support but

also the algorithm support. Thus, we calculate the CNN fea-

tures offline. With the ratio of the training dataset increasing,

more useful information can be provided. As the training

set continues to increase, the performances of most of these

methods will improve in turn, but due to their limitations, the

performances will be stable to some extent. As the training

set increases to 80% for the three datasets, our method can

achieve the best results under most measures among these

methods. On the one hand, more labeled images can provide

more useful information for our method which can make full

use of such information to improve the performance. More

labeled images not only make the semantic-based image sim-

ilarity more accurate but also provide more meaningful infor-

mation to construct the semantic-based label cooccurrence,

although the visual-based image similarity and visual-based

label cooccurrence is stable. On the other hand, the CNN

features help the method to find the most similar images from

the view of visual features. All of these techniques can boost

the annotation performance.

By summarizing the performances of the above approaches,

we find that nearest-neighbor-based methods usually have

promising results in annotation. However, they depend heav-

ily on how visual features are compared, which is a truly

time-consuming issue. Although MLDL and CCA-KNN

methods achieve better performance than other methods, they

have their own shortcomings. The MLDL model explores

the underlying correlation among labels by using a mul-

tilabel dictionary learning algorithm, which puts the label

correlation in the input space rather than in the output

space. It depends too much on the labeled images. More-

over, a dictionary learning method is a practical time-

consuming method. Additionally, the proposed method and

CCA-KNN model both use the CNN features. The experi-

mental results of the proposed method are slightly better than

that of CCA-KNN. We think there are three reasons for this.

First, the CNN features we used to construct the image simi-

larity matrix can accurately display the similarity of images.

Second, the three relationships we used to factorize make full

use of the relations of images and semantic concepts, further

reducing the semantic gap. Third, we also consider the visual-

based label cooccurrence and semantic-based image simi-

larity, which can help to find some latent features between

images and labels. These promising results have proven the

efficiency of the combination of these techniques.

E. PARAMETER TUNING

In this method, there are 6 important hyperparameters.

These parameters include 5 regularization parameters,

α, β, λU , λV , λ, and the latent rank of the factor matrices K .

In this subsection, the effects of these parameters will be

studied and evaluated.

1) IMPACT OF THE IMAGE-TO-IMAGE VISUAL INFORMATION

The parameter α controls the contribution of image-to-image

visual information to the objective function in Eq. (7).

To study the impact of this information, we vary the value

of α by fixing other parameters. In this study, we fix β =

100, λU = 100, λV = 100, λ = 10 and K = 20. We also set

the ratio of the training set to 20%. Moreover, we implement

these experiments on the three datasets. In this way, we make
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FIGURE 4. Impact of α in different datasets.

sure that both image-label and visual-based image similarity

can contribute to the objective function.

As shown in Figure 4, the F1 score of the proposed method

first increases and later decreases as α increases. This occurs

becausewhen α is too small, themodel cannot fully utilize the

information from the image-image visual-based similarity to

find the most visually similar image features. However, when

α is too large, the image-image visual-based information will

dominate the objective function in Eq. (7), thus overwhelming

the label information from image-label matrix R and label-

label cooccurrence matrix C. Additionally, matrix R is the

relation matrix between images and labels, which mainly

describes the semantic relation of image-to-label. Therefore,

visual-based image information is helpful and necessary for

the factorization. Note that, when α = 0, the method is

equal to only exploiting other additional information sources,

i.e., the label-label information. Thus, the performance at

α = 0 is lower than the performance at α > 0. From Figure 4,

we can see that CG-CNMF achieves the best performance at

the range of α = 90 ∼ 300.

2) IMPACT OF THE LABEL-LABEL COOCCURRENCE

INFORMATION

In this part, we will study the impact of parameter β, which

controls the contribution of the label cooccurrence informa-

tion to the objective function. In this study, we fix α =

200, λU = λV = 100, λ = 10 and K = 40 according to the

previous study. Then, we search the parameter β within the

set {0,0.01,0.1,1,10,30,50,70,90,100,200,300,500,800,1000}

and show the results in Figure 5.

As shown in Figure 5, we similarly observe the method’s

performance, which first increases and later decreases as

β increases. As we know, with β increasing, increasingly

more label-label semantic-based cooccurrence information

can be added to help the matrix factorization to find more

interpretable latent feature factors. However, to some extent,

the information will be saturated; thus, the performance will

be hard to improve. Even more, after saturated, more infor-

mation becomes noisy information that causes a decrease in

performance. In Figure 5, when α ≥ 100, the performance

FIGURE 5. Impact of β in different datasets.

FIGURE 6. Impact of parameter λ.

will decrease. When β = 90 ∼ 100, the method will achieve

a better performance.

3) IMPACT OF REGULARIZATION PARAMETER λ

In this method, the parameter λ has two effects. On

the one hand, it increases the robustness of themethod. On the

other hand, it prevents the method from overfitting when the

other parameters are too small. We conduct the experiment

considering the 20% training set and evaluate the impact of λ.

The other parameters are α = 200, β = λU = λV = 100 and

K = 40. The F1 results are shown in Figure 6.

We can see from the figure that when λ increases, the

performance can be improved slightly. When 10 ≤ λ ≤ 50,

the method can achieve the best performance on the three

datasets. However, a too-large λ cannot improve the perfor-

mance significantly but can introduce much computation and

cause the model to converge slowly. Thus, we take λ = 10

for a tradeoff.

4) IMPACT OF NUMBER OF LATENT FEATURES

This method is based on the low-rank matrix factorization.

Thus, the number of latent features K is an important parame-

ter for the performance. Here, we conduct a set of experiments

on the 20% training sets to evaluate the effect of K. We set

other parameters as α = 200, β = 100, λU = λV = 100
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FIGURE 7. Impact of number of latent features K.

FIGURE 8. Impact of λU and λV on the Corel5K dataset.

and λ = 10. Then, we change the value of K within the fol-

lowing set {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and show

the F1 results in Figure 7.

It is worth noting that the higher the dimensionality

of the latent features, the better the performance is. This

is because the more useful information can be obtained

from images or labels. However, when the dimensional-

ity increases to some extent, the performance will be sta-

ble or even worse. In our empirical study, the range in

Corel5K is K ≥ 50, in IAPR TC12 is K ≥ 40 and ESP is

also K ≥ 40. These results indicate that more labels for each

image can provide more information for the factorization and

there is no need for large dimensionality of latent features.

However, the higher the dimensionality, the more computa-

tion cost will be needed. Consequently, in our experiments,

we set K = 40 to obtain a tradeoff.

5) IMPACT OF REGULARIZATION PARAMETERS λU AND λV

The parameter λU denotes the importance of semantic-based

image similarity, while λV weights the importance of visual-

based label similarity; therefore, they should be set with

nonnegative values. We evaluate these parameters by empir-

ically fixing others and implement the experiments on the

20% training sets for three datasets. Because there is no

prior knowledge about the importance of image or label

FIGURE 9. Impact of λU and λV on the IAPR TC12 dataset.

FIGURE 10. Impact of λU and λV on the ESP dataset.

similarity, we set one of them to a fixed value within the

set {0.01, 1, 10, 30, 50, 70, 90, 100, 200, 300, 500} and iter-

atively increase the value to reach a better result. Moreover,

we fix the other parameters as α = 200, β = 100, λ = 10

and K = 40. The results for the three datasets are shown

in Figure 8, 9 and 10, respectively.

From these figures, we can see that optimal value can

be achieved when λU and λV increase to some extent. The

region is approximately at λU = 90 ∼ 100 and λV =

70 ∼ 90 for the three datasets. Moreover, the results also

indicate that semantic-based image similarity information is

slightly more important than visual-based label similarity

in this collaborative-based image annotation method. This

proves that the performance can benefit from useful visual-

based label cooccurrence information, which compensates

the label information from another view.

6) IMPACT OF REGULARIZATION PARAMETERS α AND β

In our method, if α = 0, λU = 0, we only utilize label

cooccurrence information. When β = 0, λV = 0, we only

use the information from the image visual-based similarity

matrix to help to factorize the image-label matrix. Further-

more, if α = β = 0, λU , λV 6= 0, it is a standard

graph nonnegative matrix factorization (GNMF). To obtain

the best performance, we will search for the best combination
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FIGURE 11. The performance of CG-CNMF by varying the bias terms α and β in Corel5k.

FIGURE 12. The performance of CG-CNMF by varying bias terms α and β in IAPR TC12.

FIGURE 13. The performance of CG-CNMF by varying bias terms α and β in ESP dataset.

of α and β for our method. We fix other parameters as

λU = 100, λV = 90, λ = 10 and K = 40. The results are

shown in Figure 11, 12 and 13 for the three datasets.

From these figures, we can observe that when α = 0

and β = 0, the performance is obviously not satisfactory

since less image and label information is involved. However,

the performance improves as α and β increase. It is worth

noting that there is a region where the optimal values of α

and β ensure the best annotation performance. The region

is approximately at α = 100 ∼ 200 and β = 90 ∼ 100.

Moreover, the results also indicate that image-image visual-

based similarity information plays a more important role

than label-label semantic-based cooccurrence information for

image annotation in this collaborative-based method; due to
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the image-label matrix and label-label cooccurrence, both

provide some semantic information and visual-based infor-

mation for images. Thus, the visual-based information is

relatively more important in the proposed method.

VI. CONCLUSIONS

In this paper, we present a novel method, named CG-CNMF,

for multilabel image annotation. We cast the image anno-

tation problem as a label recommending problem. The first

step of our method is factorizing the incomplete image-label

matrix into two latent feature matrices: the latent image factor

matrix and latent label factor matrix. To fully utilize much

information from images and labels and address the sparsity

of the image-label matrix, we consider multiple sources from

the data to help the matrix factorization procedure find the

most interpretable latent features. By sharing some variables,

this method investigates two other relationships: the image-

to-image relation and the label-to-label relation. These rela-

tions can effectively address the issues of sparsity, semantic

gap, weak labeling and class imbalance, which can boost the

performance of image annotation in turn. To further narrow

down the semantic gap, we use a deep neural network archi-

tecture to extract high-level visual features and then construct

the visual-based image similarity matrix. The results have

proven the efficiency of the CNN features.

In the second step, the image annotation task can be

achieved by recovering the image-label matrix. We recon-

struct the image-label matrix by the product of the learned

latent image matrix and label matrix. Finally, we recommend

the labels for each test image according to the recovered

matrix. Thus, the performance of annotation mainly depends

on the latent image feature matrix and label feature matrix.

To find the most proper latent image and label features,

we not only employ the semantic-based and visual-based

similarity for images but also consider the visual-based and

semantic-based cooccurrence for labels. It is obvious that

such meaningful information can efficiently boost the anno-

tation performance. Experimental results have proven this.

There are remaining issues for us to address. In the future,

wewill investigate how to accelerate the multiplicative updat-

ing process and reduce the time complexity of the method.

Furthermore, we will consider the word embedding model

in our method to further improve the annotation accuracy.

We believe our work will provide a more efficient image

annotation framework.

APPENDIX

To prove Theorem 1, we will show that the objective function

in Eq. (7) is nonincreasing under the steps in Eqs. (8)-(11)

separately and hence converges to a local minimum under

each updating rule. To achieve this, we employ an auxiliary

function that was first used in [53]. First, let us introduce the

following definition and lemmas:

Definition 1: K (A,A′) is an auxiliary function of L(A) if

the following conditions are satisfied:

K (A,A′) ≥ F(A), and K (A,A′) = F(A).

Lemma 1: If K (A,A′) is an auxiliary function of F(A), then

F(A) is nonincreasing under the following updating rule:

At+1 = argmin
A

K (A,At )

where At is the t th update iteration of A.

Because F(At+1) ≤ K (At+1,At ) ≤ K (At ,At ) =

F(At ), thus F(A) is decreasing monotonically. Consequently,

to prove F(A) converges to a local minimum, we can find

an auxiliary function for it. First, we construct the auxiliary

functions for the objection function in Eq. (7) with respect to

U, V, P and Z. The following lemmas will be utilized.

Lemma 2 [63]: For any matrices D ∈ R
m×r
+ ,E ∈

R
m×r
+ ,E ′ ∈ R

m×r
+ , we have the following inequality:

Tr(DTE ′) ≥
∑

ij
DijEij(1+ log

E ′ij

Eij
)

Lemma 3 [64]: For any nonnegative matrices A ∈

R
n×n
+ ,B ∈ R

k×k
+ ,Q ∈ R

n×k
+ ,Q′ ∈ R

n×k
+ , where A and B

are symmetric matrices, we have the following inequality:

∑

ij

(AQ′B)ijQ
2
ij

Q′ij
≥ Tr(QTAQB)

Lemma 4 [63]: For any symmetric matrix O ∈ R
r×r
+ , and

any matrices W ∈ Rm×r+ ,W ′ ∈ Rm×r+ , we have the following

inequality:

∑

ij

(WO)ijW
′2
ij

Wij
≥ Tr

(

W ′
T

W ′O
)

Lemma 5 [63]: For Q ∈ Rm×r+ ,W ∈ Rm×r+ ,W ′ ∈ Rm×r+ ,

we have the following inequality:

Tr(W ′TW ′Q) ≥
∑

ijl
BjlWijWil(1+ log

W ′ijW
′
il

WijWil
)

In the following, we will prove each updating rule leads the

objective function to converge to a local minimum. We first

prove Eq. (8) leads Eq. (7) to converge and define the follow-

ing function.

K (U ,U ′) = −
∑

ij
(Y ⊙ RV )ijU

′
ij(1+ log

Uij

U ′ij
)

+
1

2

∑

ij

(Y ⊙ (U ′V T )V )ijU
2
ij

U ′ij

−α
∑

ij
(SP)ijU

′
ij(1+ log

Uij

U ′ij
)

+
α

2

∑

ij

(U ′PTP)ijU
2
ij

U ′ij

+
λU

2

∑

ij

(L+UU
′)ijU

2
ij

U ′ij
−

λU

2

∑

ijk

× (L−U )jkU
′
jiU
′
ki(1+ log

UjiUki

U ′jiU
′
ki

)

+
λ

2

∑

ij

(U ′)ijU
2
ij

U ′ij

VOLUME 7, 2019 88353



J. Zhang et al.: CG-CNMF for Multilabel Image Annotation

Then, we prove K (U ,U ′) is an auxiliary function of L(U ),

furthermore, it is a convex function in U and its local mini-

mum is Uij = U ′ij

√

[Y⊙RV+αSP+λUL
−
UU ]ij

[Y⊙(UV T )V+αUPTP+λUL
+
UU+λU ]ij

.

It is obvious that K (U ,U ′) = L(U ) when U ′ = U . Thus,

we only need to prove K (U ,U ′) ≥ L(U ). From K (U ,U ′)

, we can find that: (a) due to Lemma 2, the first term in

K (U ,U ′) is always smaller than the first term in L(U ) ; (b)

due to Lemma 3, the second term inK (U ,U ′) is always larger

than the second term in L(U ) ; (c) due to Lemma 2, the third

term in K (U ,U ′) is always smaller than the third term in

L(U ) ; (d) due to Lemma 3, the fourth term in K (U ,U ′)

is always smaller than the fourth term in L(U ) ; (e) due to

Lemma 4, the fifth term in K (U ,U ′) is always larger than

the fifth term in L(U ) ; (f) due to Lemma 5, the sixth term

in K (U ,U ′) is always smaller than the sixth term in L(U ) ;

and (g) the seventh term in K (U ,U ′) is always larger than the

seventh term in L(U ) due to Lemma 4. By summing over all

the bounds, we obtain K (U ,U ′) ≥ L(U ). Thus, K (U ,U ′) is

an auxiliary function of L(U ) according to Definition 1.

Third, we can find a local minimum of minU K (U ,U ′) by

calculating the partial derivative of K (U ,U ′) and setting it to

zero.

0 =
∂K (U ,U ′)

∂Uij
= −(Y ⊙ RV )ij

U ′ij

Uij

+
(Y ⊙ (U ′V T )V )ijUij

U ′ij
− α(SP)ij

U ′ij

Uij

+α
(U ′PTP)ijUij

U ′ij
+ λU

(L+UU
′)ijUij

U ′ij

− λU (L
−
UU
′)ij
U ′ij

Uij
+ λ

(U ′)ijUij

U ′ij

By solving the above equation for Uij, we obtain the fol-

lowing minimum

Uij = U ′ij

√

[Y ⊙ RV + αSP+ λUL
−
UU ]ij

[Y ⊙ (UV T )V + αUPTP+ λUL
+
UU + λU ]ij

Set U t+1 = U and U ′ = U t according to Lemma 1; then,

we recover Eq. (8). Thus, L(U ) deceases monotonically and

converges to a local minimum.

To prove K (U ,U ′) is convex with respect to U, we derive

the following Hessian matrix,

∂K 2(U ,U ′)

∂Uij∂Ukl

= σikσjl





















(Y ⊙ RV )ij
U ′ij

U2
ij

+
[Y ⊙ (U ′V T )V ]ij

U ′ij

+α(SP)ij
U ′ij

U2
ij

+
(U ′PTP)ij

U ′ij

+λU
(L+UU

′)ij

U ′ij
+ λU (L

−
UU
′)ij
U ′ij

U2
ij

+ λ
(U ′)ij

U ′ij





















where

3ij =
[Y ⊙ RV + SP+ λU (L

−
UU
′)]ijU

′
ij

U2
ij

+
[Y ⊙ (U ′V T )V + U ′PTP+ λUL

+
UU
′ + λU ′]ij

U ′ij

is a diagonal matrix with positive diagonal elements and σik
is a function such that σik = 1 if i = k; otherwise, σik = 0.

Therefore, K
(

U ,U ′
)

is a convex function with respect to U .

Analogous to Eq. (8), we can prove the updating rules in

Eq. (9), (10) and (11) lead Eq. (7) to converge to a local

minimum.

In summary, we have proven Theorem 1.
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