COGROWTH OF REGULAR GRAPHS

S. NORTHSHIELD

(Communicated by Lawrence F. Gray)

Abstract

Let \mathscr{G} be a d-regular graph and T the covering tree of \mathscr{G}. We define a cogrowth constant of \mathscr{G} in T and express it in terms of the first eigenvalue of the Laplacian on \mathscr{G}. As a corollary, we show that the cogrowth constant is as large as possible if and only if the first eigenvalue of the Laplacian on \mathscr{G} is zero. Grigorchuk's criterion for amenability of finitely generated groups follows.

In this note, we shall relate the first eigenvalue of the Laplacian on a connected regular graph to the size of the kernel of the universal covering map. The main results have been proven in [C, G, P]. The proof presented here appears simpler; it depends on the explicit formula for minimal positive solutions of $\Delta F+\varepsilon F=-I$.

Let \mathscr{G} be a connected simple graph with constant vertex degree $d \geq 3$, T be the universal covering tree of \mathscr{G}, and θ the covering map (i.e., θ is a vertex surjection of T on \mathscr{G} that preserves adjacency and vertex degree). We let T and \mathscr{G} denote the vertex sets of the corresponding graphs. Note that T has constant vertex degree d. Since T is connected, T may be considered a metric space with the usual graph metric $\delta(\delta(x, y)$ is the length of the shortest path connecting x and y). For $x \in T$ and $n \geq 0$, let $[x]=\theta^{-1}(\theta(x))$ and $S_{n}(x)=\{y: \delta(x, y)=n\}$. For $x, y \in T$, note that

$$
\limsup _{n \rightarrow \infty}\left|[y] \cap S_{n}(x)\right|^{1 / n}=\inf \left\{\lambda>0: \sum_{z \in[y]} \lambda^{-\delta(x, z)}<\infty\right\}
$$

and is thus independent of x and y. We call this number, $\operatorname{cogr}(T, \mathscr{G})$, the cogrowth constant of \mathscr{G} in T.

For x, y vertices of a graph, we write $x E y$ if x and y are connected by an edge. For $x, y \in T$, let

$$
q(x, y)= \begin{cases}\frac{1}{d} & \text { if } x E y \\ 0 & \text { otherwise }\end{cases}
$$

Note that q is the transition matrix of the simple random walk on T. Let $q^{(n)}$ denote the nth power of q. For $a, b \in \mathscr{G}$ and $x \in \theta^{-1}(a)$, since θ takes the

[^0]Key words and phrases. Regular graph, covering tree, amenable group, random walk.
simple random walk on T to the simple random walk on \mathscr{G},

$$
\begin{equation*}
p^{(n)}(a, b)=\sum_{y \in \theta^{-1}(b)} q^{(n)}(x, y) \tag{1}
\end{equation*}
$$

where p is the transition matrix of the simple random walk on \mathscr{G}. We define $\Delta \equiv p-1, G \equiv \sum_{n \geq 0} p^{(n)}$, and for $\varepsilon \geq 0, G^{\varepsilon} \equiv \sum_{n \geq 0} p^{(n)} /(1-\varepsilon)^{n+1}$. Similarly, we define Δ_{T}, F, and F^{ε} as above with p replaced by q.
Δ and Δ_{T} are the Laplacians on \mathscr{G} and T, respectively. We call $\lambda_{\mathscr{G}}$ and λ_{T} the first eigenvalues of Δ and Δ_{T}, respectively. Since T is d-regular,

$$
\begin{equation*}
\lambda_{T}=1-2(d-1)^{1 / 2} / d \tag{2}
\end{equation*}
$$

(see [DK]). Also,

$$
\begin{equation*}
\lambda_{\mathscr{G}}=\sup \{\lambda: \exists f>0: \Delta f+\lambda f \leq 0\} \tag{3}
\end{equation*}
$$

(see [DK] or [N]). It is true that $\lambda_{\varphi} \leq \lambda_{T}$ (see [N]).
For $\varepsilon \leq \lambda_{T}$, let $a(\varepsilon)=d(1-\varepsilon) /(d-1), b=1 /(d-1)$, and $\sigma(\varepsilon) \leq \tau(\varepsilon)$ be the (real) roots of $t=a(\varepsilon)-b / t$. Note that

$$
\begin{aligned}
\sigma(\varepsilon) & =\left\{d(1-\varepsilon)-\left[d^{2}(1-\varepsilon)^{2}-4 d+4\right]^{1 / 2}\right\} / 2(d-1) \\
\tau(\varepsilon) & =\left\{d(1-\varepsilon)+\left[d^{2}(1-\varepsilon)^{2}-4 d+4\right]^{1 / 2}\right\} / 2(d-1)
\end{aligned}
$$

In particular, $\sigma(\varepsilon)$ is increasing and $\tau(\varepsilon)$ is decreasing on $\left[0, \lambda_{T}\right)$.
Lemma. For $\varepsilon \in\left[0, \lambda_{T}\right), F^{\varepsilon}(x, y)=\sigma(\varepsilon)^{\delta(x, y)} /(1-\varepsilon-\sigma(\varepsilon))$.
Proof. Let $\varepsilon \in\left[0, \lambda_{T}\right)$. For $\lambda \in\left(\varepsilon, \lambda_{T}\right)$, there exists a function $f>0$ such that $\Delta_{T} f+\lambda f \leq 0$. Let $v=-\left(\Delta_{T} f+\varepsilon f\right) /(1-\varepsilon)$ and $r=q /(1-\varepsilon)$. Note that $v>0$ and $f=v+q f$. By induction, $f=\sum_{0 \leq k \leq n} r^{(k)} v+r^{(n+1)} f \geq$ $\sum_{0 \leq k \leq n} r^{(k)} v$ since $f>0$. Letting $n \rightarrow \infty, f \geq \sum_{k \geq 0} r^{(k)} v=(1-\varepsilon) F^{\varepsilon} v$. Since $v>0, F^{\varepsilon}$ exists.

By the symmetry of T, there exists a sequence $\gamma_{0}, \gamma_{1}, \ldots$ such that for any x, if $\delta(x, y)=n$ then $F^{\varepsilon}(x, y)=\gamma_{n}$. Since $\left(\Delta_{T}+\varepsilon\right) F^{\varepsilon}=-I$, it follows that $\gamma_{k+2}=a \gamma_{k+1}-b \gamma_{k}$ and $\gamma_{1}-(1-\varepsilon) \gamma_{0}=-1$. Let $r_{k}=\gamma_{k+1} / \gamma_{k}, \mu=a / 2$, and $\nu=\left[a^{2} / 4-b\right]^{1 / 2}$. By the addition of angle formulae for hyperbolic functions, it is easy to verify that for all r_{0} there exists θ, so that

$$
r_{n}= \begin{cases}\mu+\nu \tanh (\theta+\rho n) & \text { if } r_{0} \in(\sigma, \tau) \\ \mu+\nu \operatorname{coth}(\theta+\rho n) & \text { if } r_{0} \notin[0, \tau] \\ r_{0} & \text { if } r_{0} \in\{\sigma, \tau\}\end{cases}
$$

where $\rho=\tanh (\nu / \mu)$.
Clearly, if $r_{0} \neq \sigma$ then $r_{n} \rightarrow \tau$, and thus $\lim _{n \rightarrow \infty} \gamma_{n}^{1 / n}=\tau$. It is easy to verify that $\lim _{n \rightarrow \infty} \gamma_{n}^{1 / n}$ is increasing as a function of ε (since $p^{(n)} \geq 0$). Therefore $r_{n} \equiv \sigma$ since τ is decreasing. It follows that $F^{\varepsilon}(x, y)=c \sigma^{\bar{\delta}(x, y)}$ and, since $\tau_{1}-(1-\varepsilon) \gamma_{0}=-1, c=1 /[1-\varepsilon-\sigma]$.
Theorem. (a) $\operatorname{cogr}(T, \mathscr{G}) \leq\left\{d\left(1-\lambda_{\mathscr{G}}\right)+\left[d^{2}\left(1-\lambda_{\mathscr{G}}\right)^{2}-4 d+4\right]^{1 / 2}\right\} / 2$,
(b) If $\lambda_{\mathscr{G}} \neq \lambda_{T}$ then $\operatorname{cogr}(T, \mathscr{G})=\left\{d\left(1-\lambda_{\mathscr{G}}\right)+\left[d^{2}\left(1-\lambda_{\mathscr{G}}\right)^{2}-4 d+4\right]^{1 / 2}\right\} / 2$.

Proof. (a) If $\lambda_{\mathscr{G}}=0$ then $\operatorname{cogr}(T, \mathscr{G}) \leq \lim \sup _{n \rightarrow \infty}\left|S_{n}(x)\right|^{1 / n}=d-1=$ $1 / \sigma\left(\lambda_{\varphi}\right)$.

Let $\lambda_{\mathscr{G}}>0$ and $\varepsilon \in\left(0, \lambda_{\mathscr{G}}\right)$. As in the proof of the lemma, G^{ε} exists. Since

$$
\sum_{z \in[y]} \sigma^{\delta(x, z)}=c \sum_{z \in[y]} F^{\varepsilon}(x, z)=c G^{\varepsilon}(\theta(x), \theta(y))<\infty
$$

$\operatorname{cogr}(T, \mathscr{E}) \leq 1 / \sigma(\varepsilon)$. Since $\sigma(\varepsilon)$ is increasing, the result follows by letting ε approach $\lambda_{\mathscr{E}}$.
(b) Let $\varepsilon \in\left[0, \lambda_{T}\right)$. If $\operatorname{cogr}(T, \mathscr{G})<1 / \sigma(\varepsilon)$, then

$$
G^{\varepsilon}(\theta(x), \theta(y))=\sum_{z \in[y]} F^{\varepsilon}(x, z)=\sum_{z \in[y]} \sigma^{\delta(x, z)}<\infty
$$

and thus G^{ε} exists. Fix $g \in \mathscr{G}$ and let $f(x)=G^{\varepsilon}(g, x)$. Clearly $\Delta_{T} f+\varepsilon f \leq 0$ and $f>0$ and, therefore, $\varepsilon \leq \lambda_{\mathscr{G}}$. Assume $\lambda_{\mathscr{G}} \neq \lambda_{T}$ (and thus $\lambda_{\mathscr{G}}<\lambda_{T}$). If $\lambda_{\mathscr{G}}<\lambda_{\mathscr{G}}+\kappa \leq \lambda_{T}$, then $\operatorname{cogr}(T, \mathscr{G}) \geq 1 / \sigma\left(\lambda_{\mathscr{G}}+\kappa\right)$. Since $1 / \sigma$ is decreasing on $\left[0, \lambda_{\mathscr{G}}\right], \operatorname{cogr}(T, \mathscr{G}) \geq 1 / \sigma\left(\lambda_{\mathscr{G}}\right)$.

Corollary 1. Let \mathscr{G} be connected and d-regular. Then $\operatorname{cogr}(T, \mathscr{G})=d-1$ iff $\lambda_{\mathscr{G}}=0$.

Let A be a finitely generated discrete group with k generators, F the free group with k generators, ϕ the canonical mapping of F onto A, and $K=$ $\operatorname{ker} \theta$.

The map ϕ induces a covering map θ from T onto \mathscr{G} where T and \mathscr{G} are the Cayley graphs of F and A respectively. As is well known, A is amenable iff $\lambda_{\mathscr{G}}=0$ (see [K, DK, DG]).

By [P], $\lim _{n \rightarrow \infty}\left|K \cap S_{2 n}\right|^{1 / 2 n}$ exists.
Corollary 2. A is amenable iff $\lim _{n \rightarrow \infty}\left|K \cap S_{2 n}\right|^{1 / 2 n}=2 k-1$.

References

[C] J. L. Cohen, Cogrowth and amenability of discrete groups, J. Funct. Anal. 48 (1982), 301309.
[DG] Y. Derriennic and Y. Guivarc'h, Theoreme de renouvellement pour les groupes moyennables, C. R. Acad. Sci. Paris Ser. A 277 (1973), 613-615.
[DK] J. Dodziuk and L. Karp, Spectral and function theory of combinatorial Laplacians, Contemp. Math., vol. 73, Amer. Math. Soc., Providence, RI, 1988, pp. 25-40.
[G] R. I. Grigorchuk, Symmetric random walks on discrete groups, Multi-Component Random Systems (Dobrushin and Sinai, eds.), Dekker, New York and Basel, 1980, pp. 285-325.
[K] H. Kesten, Full Banach mean values on countble groups, Math. Scand. 7 (1959), 146-156.
[N] S. Northshield, Gauge and conditional gauge on negatively curved graphs, Stochastic Anal. Appl. 9 (1991), 461-482.
[P] A. T. Paterson, Amenability, Math. Surveys Monographs, vol. 29, Amer. Math. Soc., Providence, RI, 1988.

Department of Mathematics, State University of New York at Plattsburgh, Plattsburgh, New York 12901

E-mail address: northssw@snyplava.bitnet

[^0]: Received by the editors January 25, 1991.
 1980 Mathematics Subject Classification (1985 Revision). Primary 60J15; Secondary 05C05, 05C25, 43A07.

