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COHEN-MACAULAY BINOMIAL EDGE IDEALS

VIVIANA ENE, JÜRGEN HERZOG, and TAKAYUKI HIBI

Abstract. We study the depth of classes of binomial edge ideals and classify

all closed graphs whose binomial edge ideal is Cohen-Macaulay.

Binomial edge ideals were introduced in [5]. They appear independently,

and at about the same time, also in [6]. In simple terms, a binomial edge

ideal is just an ideal generated by an arbitrary collection of 2-minors of a

2 × n-matrix whose entries are all indeterminates. Thus, the generators of

such an ideal are of the form fij = xiyj − xjyi, with i < j. It is then natural

to associate with such an ideal the graph G on the vertex set [n] for which

{i, j} is an edge if and only if fij belongs to our ideal. This explains the

naming for this type of ideals. The binomial edge ideal of graph G is denoted

by JG. In [5], the relevance of this class of ideals for algebraic statistics is

explained.

The goal of this paper is to characterize Cohen-Macaulay binomial edge

ideals for simple graphs with vertex set [n]. Similar to ordinary edge ideals,

which were introduced by Villarreal [7], a general classification of Cohen-

Macaulay binomial edge ideals seems to be hopeless. Thus, we have to

restrict our attention to special classes of graphs. In Section 1, we first

consider the class of chordal graphs with the property that any two max-

imal cliques of it intersect in at most one vertex. These graphs include, of

course, all forests. We show in Theorem 1.1 that for these graphs we have

depth S/JG = n + c, where n is the number of vertices of G and c is the

number of connected components of G. As an application we show that the

binomial edge ideal of a forest is Cohen-Macaulay if and only if each of its

connected components is a path graph, and this is the case if and only if

S/JG is a complete intersection.
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In Section 3, we use the results of Section 2 to give in Theorem 3.1 a

complete characterization of all closed graphs whose binomial edge ideal is

Cohen-Macaulay. Surprisingly, this is the case if and only if its initial ideal

is Cohen-Macaulay. Even more is true: if, for a closed graph G, the ideal JG

is Cohen-Macaulay, then the graded Betti numbers of JG and its initial ideal

coincide. For a closed graph whose binomial edge ideal is Cohen-Macaulay,

the Hilbert function and the multiplicity of S/JG can be easily computed.

Then by using the associativity formula of multiplicities in combination with

the information given in [5] concerning the minimal prime ideals of binomial

edge ideals, we deduce in Corollary 3.6 certain numerical identities.

The term closed graph is not standard terminology in graph theory. It

was introduced in [5] to characterize those graphs that, for certain label-

ing of their edges, do have a quadratic Gröbner basis with respect to the

lexicographic order induced by x1 > · · · > xn > y1 > · · · > yn. It is easy to

see, as shown in [5], that any closed graph must be chordal. But by far not

all chordal graphs are closed. In Theorem 2.2 we give a description of the

closed graphs, which is then used in the proof of Theorem 3.1.

§1. Classes of chordal graphs with

Cohen-Macaulay binomial edge ideal

Recall that, by a result of Dirac [2] (see also [4]), a graph G is chordal if

and only if it admits a perfect elimination order, that is, its vertices can be

labeled 1, . . . , n such that for all j ∈ [n], the set Cj = {i : i ≤ j} is a clique

of G. A clique is simply a complete subgraph of G.

There is an equivalent characterization of chordal graphs in terms of its

maximal cliques. To describe it we introduce some terminology. Let Δ be a

simplicial complex. A facet F of Δ is called a leaf if either F is the only facet

or there exists a facet G, called a branch of F , that intersects F maximally.

In other words, for each facet H of Δ with H �= F , one has H ∩ F ⊂ G ∩ F .

Each leaf F has at least one free vertex, that is, a vertex that belongs only

to F . On the other hand, if a facet admits a free vertex, it needs not to be

a leaf.

The simplicial complex Δ is a called a quasi-forest if its facets can be

ordered F1, . . . , Fr such that for all i > 1 the facet Fi is a leaf of the simplicial

complex with facets F1, . . . , Fi−1. Such an order of the facets is called a leaf

order. A connected quasi-forest is called a quasi-tree.
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Now let G be a graph. The collection of cliques of G forms a simplicial

complex, called the clique complex of G, denoted Δ(G). The equivalent

statement to Dirac’s theorem now says that G is chordal if and only if

Δ(G) is a quasi-forest.

In this section we will compute the depth of S/JG for a very special class

of chordal graphs. This class includes all forests. As a consequence, it will

be shown that a forest has a Cohen-Macaulay binomial edge ideal if and

only if all its components are path graphs.

We will need a few results from [5]. The following fact is shown in [5,

Corollaries 3.9 and 3.3]. Suppose that G is connected. Let S ⊂ [n], and

let G1, . . . ,GcG(S) be the connected components of G[n]\S . For each Gi we

denote by G̃i the complete graph on the vertex set V (Gi). If there is no

confusion possible we simply write c(S) for cG(S), and set

PS(G) =
(

⋃

i∈S

{xi, yi}, JG̃1
, . . . , JG̃c(S)

)

.

Then JG =
⋂

S⊂[n] PS(G), and PS(G) is a minimal prime ideal of JG if

and only if S = ∅, or S �= ∅ and for each i ∈ S one has c(S \ {i}) < c(S).

Moreover, heightPS(G) = n + |S| − c(S), and hence dimS/JG = max{(n −

|S|) + c(S) : S ⊂ [n]}.

Theorem 1.1. Let G be a chordal graph on [n] with the property that

any two distinct maximal cliques intersect in at most one vertex. Then

depthS/JG = n + c, where c is the number of connected components of G.

Moreover, the following conditions are equivalent:

(a) JG is unmixed,

(b) JG is Cohen-Macaulay,

(c) each vertex of G is the intersection of at most two maximal cliques.

Proof. Let G1, . . . ,Gc be the connected components of G, and set Si =

K[{xj , yj }j∈Gi
]. Then S/JG

∼= S1/JG1 ⊗ · · · ⊗ Sc/JGc , so that depthS/JG =

depthS1/JG1 + · · · +depthSc/JGc . Thus, in order to prove the desired result,

we may assume that G is connected.

Let Δ(G) be the clique complex of G, and let F1, . . . , Fr be a leaf order

on the facets of Δ(G). We make induction on r. If r = 1, then G is a simplex

and the statement is true. Let r > 1; since Fr is a leaf, there exists a unique

vertex, say, i ∈ Fr, such that Fr ∩ Fj = {i} for some j. Let Ft1 , . . . , Ftq be

the facets of Δ(G) that intersect the leaf Fr in the vertex i.
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Let M(G) denote the set of all sets S ⊂ [n] such that PS(G) is a minimal

prime ideal of JG. We have JG = Q1 ∩ Q2, where Q1 =
⋂

S∈ M(G),i/∈S PS(G)

and Q2 =
⋂

S∈ M(G),i∈S PS(G).

Consider the exact sequence

(1) 0 → S/JG → S/Q1 ⊕ S/Q2 → S/(Q1 + Q2) → 0.

The ideal Q1 is the binomial edge ideal associated with the graph G′ that is

obtained from G by replacing the facets Ft1 , . . . , Ftq and Fr by the clique on

the vertex set Fr ∪
(
⋃q

j=1 Ftj

)

. Note that G′ is a connected chordal graph

that has, again, the property that any two cliques intersect in at most

one vertex, and it has a smaller number of cliques than G. Therefore, by

induction, we have depth(S/Q1) = depth(S/JG′ ) = n + 1.

In order to determine Q2, we first observe that for all S ⊂ [n] with i ∈ S we

have that PS(G) = (xi, yi) + PS\{i}(G′ ′), where G′ ′ is the restriction of G to

the vertex set [n] \ {i}. From this we conclude that Q2 = (xi, yi)+JG′′ . Let Si

be the polynomial ring S/(xi, yi). Then S/Q2
∼= Si/JG′′ . Hence, since G′ ′ is a

graph on n − 1 vertices and with q +1 components satisfying the conditions

of the theorem, our induction hypothesis implies that depthS/Q2 = (n −

1) + q + 1 = n + q.

Next we observe that Q1 + Q2 = JG′ + ((xi, yi) + JG′′ ) = (xi, yi) + JG′ .

Thus, S/(Q1 + Q2) ∼= Si/JH , where H is obtained from G′ by replacing the

clique on the vertex set Fr ∪
(
⋃q

j=1 Ftj

)

by the clique on the vertex set Fr ∪
(
⋃q

j=1 Ftj

)

\ {i}. Thus, our induction hypothesis implies that depthS/(Q1 +

Q2) = n. Hence, the depth lemma applied to the exact sequence (1) yields

the desired conclusion concerning the depth of S/JG.

For the proof of the equivalence of statements (a), (b), and (c), we may

again assume that G is connected. Let JG be unmixed. Then dim(S/JG) =

n + 1 since JG has a minimal prime of dimension n + 1, namely, P∅(S).

Since depth(S/JG) = n + 1, it follows that JG is Cohen-Macaulay, whence

(a) ⇒ (b). The converse, (b) ⇒ (a), is well known.

(a) ⇒ (c): Let us assume that there is a vertex i of G where at least

three cliques intersect. Then, for S = {i}, we get a minimal prime PS(G) of

JG of height strictly smaller than n − 1, which is in contradiction with the

hypothesis on JG.

(c) ⇒ (a): Let {i1, . . . , ir−1} be the intersection vertices of the maximal

cliques of G, and let PS(G) be a minimal prime of JG. Let H1, . . . ,Ht

be the connected components of G[n]\S . Suppose that there exists i ∈ S \
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{i1, . . . , ir−1}. We have c(S \ {i}) < c(S). This implies that there exists

Ha,Hb, two connected components of G[n]\S , such that i is connected to

Ha and Hb. Let u ∈ V (Ha), and let v ∈ V (Hb), such that {i, u} and {i, v}

are edges of G. Since i ∈ S \ {i1, . . . , ir−1}, it follows that u, v, and i belong

to the same clique of G, which implies that {u, v} is an edge of G. Therefore,

Ha and Hb are connected, a contradiction. By induction on the cardinality

of S, we see that c(S) = |S| + 1. Therefore, all the minimal primes of JG

have the same height.

As a consequence of Theorem 1.1, we obtain the following.

Corollary 1.2. Let G be a forest on the vertex set [n]. Then depth(S/

JG) = n+ c, where c is the number of the connected components of G. More-

over, the following conditions are equivalent:

(a) JG is unmixed,

(b) JG is Cohen-Macaulay,

(c) JG is a complete intersection,

(d) each component of G is a path graph.

Proof. The implications (c) ⇒ (b) ⇒ (a) are obvious, while (a) ⇒ (d) fol-

lows from Theorem 1.1. For the proof of (d) ⇒ (c), we may assume that G is

a path with vertices labeled in such a way such that E(G) = {{i, i+1} : i =

1, . . . , n − 1}. Then in<(JG) = (x1y2, x2y3, . . . , xn−1yn), where < is the lex-

icographic order induced by x1 > x2 > · · · > xn > y1 > y2 > · · · > yn. Since

the initial ideal of JG is a complete intersection, JG itself is a complete

intersection.

The depth formula that we proved in Theorem 1.1 is not valid for arbi-

trary chordal graphs. For example, for the graph G displayed in Figure 1,

we have depthS/JG = 5 (and not 6 as one would expect by Theorem 1.1).

It is also an example of a graph for which JG is unmixed but not Cohen-

Macaulay.

§2. Closed graphs

In [5], the concept of closed graphs was introduced, and a simple graph G

on the vertex set [n] was called closed with respect to the given labeling if

the following condition was met:

• for all {i, j}, {k, l} ∈ E(G) with i < j and k < l, one has {j, l} ∈ E(G) if

i = k but j �= ℓ, and {i, k} ∈ E(G) if j = l but i �= k.
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• •

•

•

•

Figure 1: JG unmixed

The definition was motivated by the result in [5, Theorem 1.1]: G is closed

with respect to the given labeling if and only if JG has a quadratic Gröbner

basis with respect to the lexicographic order induced by x1 > x2 > · · · >

xn > y1 > · · · > yn.

It is shown in [5, Proposition 1.4] that the graph G on [n] is closed with

respect to the given labeling if and only if for any two integers 1 ≤ i < j ≤

n the shortest walk {i1, i2}, {i2, i3}, . . . , {ik−1, ik } between i and j has the

property that i = i1 < i2 < · · · < ik = j. In particular, for each i < n one has

that {i, i + 1} ∈ E(G).

Definition 2.1. We say a graph is closed if there exists a labeling for

which it is closed.

The question arises regarding characterizing the closed graphs. It is known

from [5, Proposition 1.2] that if G is closed, then G is chordal.

Theorem 2.2. Let G be a graph on [n]. The following conditions are

equivalent:

(a) G is closed;

(b) there exists a labeling of G such that all facets of Δ(G) are intervals

[a, b] ⊂ [n].

Moreover, if the equivalent conditions hold and the facets F1, . . . , Fr of Δ(G)

are labeled such that min(F1) < min(F2) < · · · < min(Fr), then F1, . . . , Fr is

a leaf order of Δ(G).

Proof. (a) ⇒ (b): Let G be a closed graph on [n], let F = {j : {j,n} ∈

E(G)}, and let k = min{j : j ∈ F }. Then F = [k,n]. Indeed, if j ∈ F with

j < n, then as observed above, it follows that {j, j + 1} ∈ E(G), and then

because G is closed we see that since {j,n} ∈ E(G), then also {j + 1, n} ∈

E(G). Thus, j + 1 ∈ F .

Next observe that F is a maximal clique of G, that is, a facet of Δ(G).

First of all, it is a clique because i, j ∈ F with i < j < n; then, since {i, n}
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and {j,n} are edges of G, it follows that {i, j} is an edge as well, since G is

closed. Second, it is maximal, since {j,n} /∈ E(G), if j /∈ F .

Let H �= F be a facet of Δ(G) with H ∩ F �= ∅, and let ℓ = max{j : j ∈

H ∩ F }. We claim that H ∩ F = [k, ℓ]. There is nothing to prove if k = ℓ.

So now suppose that k < ℓ, and let k ≤ t < ℓ and s ∈ H \ F . Then s, t < ℓ,

and {s, ℓ} and {t, ℓ} are edges of G. Hence, since G is closed, it follows that

{s, t} ∈ E(G). This implies that s ∈ H , as desired.

It follows from the claim that the facet H for which max{j : j ∈ H ∩ F }

is maximal is a branch of F . In particular, F is a leaf. Let H ∩ F = [k, ℓ],

where H is a branch of F , and denote by Gℓ the restriction of G to [ℓ]. Since

Gℓ is again closed and since ℓ < n, we may assume, by applying induction on

the cardinality of the vertex set of G, that all facets of Δ(Gℓ) are intervals.

Now let F ′ be any facet of Δ(G). If F = F ′, then F is an interval, and if

F �= F ′, then, as we have seen above, it follows that F ′ ∈ Δ(G′). This yields

the desired conclusion.

(b) ⇒ (a): Let {i, j} and {k, ℓ} be edges of G with i < j and k < ℓ. If i = k,

then {i, k} and {i, ℓ} belong to the same maximal clique, that is, a facet of

Δ(G), which by assumption is an interval. Thus, if j �= ℓ, then {j, ℓ} ∈ E(G).

Similarly, one shows that if j = ℓ, but i �= k, then {i, k} ∈ E(G). Thus, G is

closed.

Finally, it is obvious that the facets of Δ(G) ordered according to their

minimal elements are a leaf order, because for this order Fi−1 has maximal

intersection with Fi for all i.

§3. Closed graphs with Cohen-Macaulay binomial edge ideal

With the description of closed graphs given in Theorem 2.2, it is not hard

to classify all closed graphs with Cohen-Macaulay binomial edge ideal.

Theorem 3.1. Let G be a connected graph on [n] that is closed with

respect to the given labeling. Then the following conditions are equivalent:

(a) JG is unmixed;

(b) JG is Cohen-Macaulay;

(c) in<(JG) is Cohen-Macaulay;

(d) G satisfies the condition that whenever {i, j+1} with i < j and {j, k+1}

with j < k are edges of G, then {i, k + 1} is an edge of G;

(e) there exist integers 1 = a1 < a2 < · · · < ar < ar+1 = n and a leaf order of

the facets F1, . . . , Fr of Δ(G) such that Fi = [ai, ai+1] for all i = 1, . . . , r.
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Proof. We begin by proving (a) ⇒ (e). By Theorem 2.2, Δ(G) has facets

F1, . . . , Fr where each facet is an interval. We may order the intervals Fi =

[ai, bi] such that 1 = a1 < a2 < · · · < ar ≤ br = n. Since G is connected, it

follows that ai+1 ≤ bi for all i. Let S = [ar, br−1]; then c(S) = 2, and so height

PS(G) = n + (br−1 − ar + 1) − 2 = n + (br−1 − ar) − 1. On the other hand,

heightP∅(G) = n − 1, since G is connected. Thus, our assumption implies

that n+(br−1 − ar) − 1 = n − 1, which implies that br−1 = ar. Let G′ be the

graph whose clique complex Δ(G′) has the facets F1, . . . , Fr−1. Let PS(G′)

be a minimal prime ideal of G′. Then br−1 /∈ S. Therefore, cG′ (S) = cG(S),

and hence PS(G) is a minimal prime ideal of JG of same height as PS(G′).

Thus, we conclude that JG′ is unmixed as well. Induction on r concludes

the proof.

In the sequence of implications (e) ⇒ (d) ⇒ (c) ⇒ (b) ⇒ (a), the second

follows from the proof of [5, Proposition 1.6.], and the third and the fourth

are well known for any ideal.

We prove (e) ⇒ (d). Let i < j < k be three vertices of G such that {i, j+1}

and {j, k + 1} are edges of G. Then i and j + 1 belong to the same facet

of Δ(G), let us say, to Fℓ. Then k + 1 must belong to Fℓ as well since it is

adjacent to j. Therefore, the condition from (d) follows.

Closed graphs with Cohen-Macaulay binomial edge ideal have the follow-

ing nice property.

Proposition 3.2. Let G be a closed graph with Cohen-Macaulay binomial

edge ideal. Then βij(JG) = βij(in(JG)) for all i and j.

Proof. For a graded S-module W we denote by BW (s, t) =
∑

i,j βij(W )sitj

the Betti polynomial of W .

Since in(JG) is Cohen-Macaulay, it follows from Theorem 3.1 that [n] =
⋃r

k=1[ak, ak+1] with 1 = a1 < a2 < · · · < ar < ar+1 = n and such that each

Fk := G[ak,ak+1] is a clique. It follows that in(JG) is minimally generated

by the set of monomials
⋃r

k=1 Mk, where Mk = {xiyj : ak ≤ i < j ≤ ak+1}

for all k. Since for all i �= j the monomials of Mi and Mj are monomials

in disjoint sets of variables, it follows that Tork(S/(Mi), S/(Mj)) = 0 for all

i �= j and all k > 0. From this we conclude that

BS/in(JG)(s, t) =
r

∏

i=1

BS/(Mi)(s, t).
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Since Tork(S/(Mi), S/(Mj)) = 0 for all k > 0 and since in<(JFi
) = (Mi) for

all i, we see that Tork(S/JFi
, S/JFj

) = 0 for all k > 0 as well. Thus, we have

BS/JG
(s, t) =

r
∏

i=1

BS/JFi
(s, t).

Hence, it remains to be shown that if G is a clique, then βij(JG) = βij(in(JG))

for all i and j. By the subsequent Lemma 3.3 and by Fröberg’s theorem [3],

we have that in<(JG) has a 2-linear resolution. Therefore, JG has a 2-linear

resolution as well. Thus, for JG and for in<(JG), the Hilbert function of the

ideal determines the Betti numbers. It is well known that S/in<(JG) and

S/JG have the same Hilbert function. Hence, we conclude that the (graded)

Betti numbers of JG and in<(JG) coincide.

Lemma 3.3. Let G be a finite bipartite graph on {x1, . . . , xn} ∪ {yn, . . . , yn}

with the edges {xi, yj } with 1 ≤ i ≤ j ≤ n. Then the complementary graph Ḡ

of G is a chordal graph.

Proof. Let X = {x1, . . . , xn}, and let Y = {y1, . . . , yn}. Let C be a cycle

of Ḡ of length at least 5. Then C contains either three vertices belonging

to X or three vertices belonging to Y . Since {xi, xj } and {yi, yj } are edges

of Ḡ for all i �= j, it follows that C possesses a chord.

Now, let C = (a, b, c, d) be a cycle of Ḡ of length 4. If a, c ∈ X , b, d ∈ X ,

a, c ∈ Y , or b, d ∈ Y , then c possesses a chord. Suppose that a ∈ X , c ∈ Y ,

b ∈ X , and d ∈ Y , say, C = (xi, xj , yk, yℓ). Then k < j and ℓ < i. If j < i,

then k < i. Thus, {xi, yk } is a chord of C. If i < j, then ℓ < j. Thus, {xj , yℓ}

is a chord of C. Hence, Ḡ is chordal, as desired.

Proposition 3.2 yields the following.

Corollary 3.4. Let G be a closed graph with Cohen-Macaulay binomial

edge ideal, and assume that F1, . . . , Fr are the facets of Δ(G) with ki =

|Fi| for i = 1, . . . , r. Then the Cohen-Macaulay type of S/JG is equal to
∏r

i=1(ki − 1). In particular, S/JG is Gorenstein if and only if G is a path

graph.

Proof. Due to Proposition 3.2, it suffices to show that if G is a clique

on [n] (with n ≥ 2), then the Cohen-Macaulay type of S/JG is equal to

n − 1. In this particular case, JG is the ideal of 2-minors of a 2 × n-matrix

whose resolution is given by the Eagon-Northcott complex. The type of

S/JG is the last Betti number in the resolution, which is n − 1.
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Let G be a closed graph with Cohen-Macaulay binomial edge ideal, and

assume that F1 = [a1, a2], . . . , Fr = [ar, ar+1], where 1 = a1 < a2 < · · · < ar <

ar+1 = n are the facets of Δ(G) and ki = |Fi| for i = 1, . . . , r. By using the

well-known fact that S/JG and S/in(JG) have the same Hilbert series, one

easily gets the Hilbert series of S/JG,

HS/JG
(t) =

∏r
i=1[(ki − 1)t + 1]

(1 − t)n+1
.

In particular, the multiplicity of S/JG is e(S/JG) = k1 · · · kr, and the a-

invariant is a(S/JG) = r − n − 1.

By using the associativity formula for multiplicities, we obtain an expres-

sion for the multiplicity different from the one given above. This is a conse-

quence of the following.

Proposition 3.5. PS(G) is a minimal prime of JG if and only if S is

empty or of the form S = {aj1 , . . . , ajs } for some 2 ≤ j1 < j2 < · · · < js ≤ r

such that ajq+1 − ajq ≥ 2 for all 1 ≤ q ≤ s − 1.

In this case, the multiplicity of S/PS(G) is

e
(

S/PS(G)
)

= (aj1 − 1)(aj2 − aj1 − 1) · · · (ajs − ajs−1 − 1)(n − ajs).

Proof. For any s, if S = {aj1 , . . . , ajs } with 1 ≤ j1 < j2 < · · · < js ≤ r − 1

such that ajq+1 − ajq ≥ 2 for all 1 ≤ q ≤ s − 1, then the number of the

connected components of the restriction G[n]\S of G is s + 1. This implies

that for such S, PS(G) is a minimal prime ideal of JG.

Conversely, let S �= ∅, S ⊂ [n] such that PS(G) is a minimal prime of G.

In the first place, we claim that S is contained in {a2, . . . , ar }. Indeed, let

us suppose that there exists j ∈ S \ {a2, . . . , ar }, and let H1, . . . ,Ht be the

connected components of G[n]\S . Since PS(G) is a minimal prime, we have

c(S \ {j}) < c(S). This implies that there exist some integers a �= b such

that j is connected to Ha and Hb. Let u ∈ V (Ha), and let v ∈ V (Hb), such

that {u, j} and {v, j} are edges of G. Then u, v, and j belong to the same

clique of G; thus, {u, v} is an edge of G and Ha,Hb are connected, which is

impossible. Consequently, S is a subset of {a2, . . . , ar }. Let S = {aj1 , . . . , ajs }

with 2 ≤ j1 < j2 < · · · < js ≤ r, and assume that there exists 1 ≤ q ≤ s − 1

such that ajq+1 = ajq + 1. This means that Fjq = {ajq , ajq + 1}. In this case,

it is easy to check that c(S \ {ajq }) = c(S), which leads to a contradiction

with the minimality of PS(G).

The formula for the multiplicity follows easily if we recall that the mul-

tiplicity of JC is m if C is a clique with m vertices.
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By comparing the two formulas for the multiplicity of S/JG, we get the

following.

Corollary 3.6. Let b1, . . . , br ≥ 1 be some integers. Then

(b1 + 1) · · · (br + 1) = 1 +

r
∑

i=1

bi

+
r−1
∑

s=1

∑

1≤j1<· · ·<js ≤r−1

[

(b1 + · · · + bj1)

×
s−1
∏

i=1

(bji+1 + · · · + bji+1 − 1)(bjs+1 + · · · + br)
]

.

In particular, we have the following identity:

2r =

⌊r/2⌋
∑

s=0

∑

(x1,...,xs+1)∈P (r−s+1|s+1)

x1 · · · xs+1,

where P (r − s+1 | s+1) stands for the set of all partitions of r − s+1 with

s + 1 parts.

From Proposition 3.2 we see that for a closed graph G whose binomial

edge ideal JG is Cohen-Macaulay, the graded Betti numbers of JG and

in<(JG) coincide. Computational evidence indicates that the graded Betti

numbers of JG and in<(JG) coincide for all closed graphs. More generally,

we conjecture that if G is a chordal graph whose clique complex Δ(G) has a

leaf order F1, . . . , Fr such that Fi−1 is the unique branch of Fi for i = 2, . . . , r,

then JG and in<(JG) have the same graded Betti numbers.

We call chordal graphs with the above property on the leaf order a chain

of cliques. Each closed graph is a chain of cliques, as we have seen in Theo-

rem 2.2. The converse is not true, as Figure 2 shows.

•

•
•

•

• •

Figure 2: Nonclosed graph
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Based on explicit calculations and general arguments in special cases,

we believe that, in general, for all graphs G, the extremal Betti numbers

(see [1]) of JG and in<(JG) coincide.
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