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1. Introduction

Let K be a field and S = K[x1, . . . , xn] the polynomial ring in n variables

over K, and let I be a squarefree Cohen-Macaulay monomial ideal in S. We

will denote the unique minimal system of monomial generators of I by G(I). Let

G(I) = {u1, . . . , um}, then we call a monomial ideal J a modification of I, if

G(J) = {v1, . . . , vm} and supp(ui) = supp(vi) for all i. By support of a mono-

mial u we mean the set supp(u) = {i : xi divides u}. A monomial ideal J is called

a trivial modification of I, if there exist nonnegative integers a1, . . . , an such that J

is obtained from I by the substitutions xi 7→ xi
ai for all i. Obviously, if J is a trivial

modification of I, then J is Cohen-Macaulay as J = ϕ(I)S where ϕ : S → S is a flat

K-algebra homomorphism with ϕ(xi) = xi
ai for all i.

Let G be a simple connected graph on the vertex set V (G) = {v1, . . . , vn} with

the edge set E(G). The vertex cover ideal IG associated to G is the ideal generated

by all monomials of the form
∏

xi∈C

xi for all minimal vertex covers C of G. Recall

that by a minimal vertex cover we mean a subset C ⊂ V (G) such that every edge

has at least one vertex in C and no proper subset of C has the same property,

IG =
⋂

{vi,vj}∈E(G)

(xi, xj).
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Dually one defines the edge ideal

I(G) = (xixj : {vi, vj} ∈ E(G))

Let ∆G be the simplicial complex whose Stanley-Reisner ideal I∆G
coincides

with I(G). Then IG = I∆∨

G
, where ∆∨

G is the Alexander dual of ∆G.

Recall that a graph G is chordal if each cycle in G of length greater than 3 has

a chord and the complementary graph G of G is the graph with V (G) = V (G)

and E(G) = {{vi, vj} : {vi, vj} 6∈ E(G)}. By using the Alexander duality and re-

sults by Eagon-Reiner [4] as well as Fröberg [5] we immediately obtain the following

statement.

Proposition 1.1 ([1]). The ideal IG is Cohen-Macaulay if and only if the com-

plementary graph G is chordal.

The purpose of this paper is to complement the results presented in the paper [1];

related questions have been studied in [2], [3] and [7].

Let us first review the concept of polarization. Given a monomial

u = xa1

1 xa2

2 . . . xan
n

we define the following monomial in a new set of variables:

up =

n
∏

i=1

ai
∏

j=1

xij .

Now let I ⊂ S be an arbitrary monomial ideal with the minimal set of monomial

generators {u1, . . . , um}. Then we set

Ip = (up
1, . . . , u

p
m).

This ideal is called the polarization of I. If we choose an arbitrary set {v1, . . . , vr}

of monomial generators of I, then we have

Ip = IpR = (vp1 , . . . , v
p
r )R,

where R is the polynomial ring over K in the variables which are needed to polarize

the monomials vi. We will also need the following rule: Suppose I = I1 ∩ I2∩ . . .∩ Ir

where each Ij is a monomial ideal, then

(1.1) Ip = IpR = (Ip1R ∩ I
p
2R ∩ . . . ∩ IprR),
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where R is again the polynomial ring over K in the variables which are needed to

polarize all the monomials involved.

Proposition 1.2 ([6], Corollary 1.6.3). Let I be a monomial ideal. The following

condition are equivalent:

⊲ I is Cohen-Macaulay.

⊲ Ip is Cohen-Macaulay.

We need some preparation to formulate the main results.

2. Modifications of first type

Let G be a simple connected graph with vertex set V (G) and edge set E(G) and

let IG be the vertex cover ideal of G,

IG =
⋂

{vi,vj}∈E(G)

(xi, xj).

In this section we consider those modifications where we take powers of both variables

in the prime ideal in IG corresponding to some edge, in the primary decomposition

of IG, i.e. of the form

J = (xm
ai
, xm

bi
) ∩

(

⋂

{aj ,bj}∈E(G), i6=j

(xaj
, xbj )

)

.

Definition 2.1. For {a, b} ∈ E(G) and m ∈ Z, m > 1, we define a new

graph Gm,ab with vertex set V (Gm,ab) = V (G) ∪ {a11, . . . , a1m−1, b11, . . . , b1m−1},

where a1i, b1i 6∈ V (G) for all i = 1, . . . ,m− 1 and edge set

E(Gm,ab) = E(G) ∪

(m−1
⋃

i=1

{{a1i, v}, {u, b1i} : u, v ∈ V (G), u 6= a, v 6= b}

)

∪

( m−1
⋃

i6=j, i,j=1

{a1i, a1j}

)

∪

( m−1
⋃

i6=j, i,j=1

{b1i, b1j}

)

With the above notation, we have the following lemma.

Lemma 2.2. Let G be a graph with |V (G)| > 4 and {a, b} ∈ E(G). If there

exist c, d ∈ V (G) \ {a, b} with {c, d} ∈ E(G) then Gm,ab contains minimal cycles

{a1i, c, b1i, d} for all i = 1, . . . ,m− 1.
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P r o o f. Suppose there exist c, d ∈ V (G) \ {a, b} with {c, d} ∈ E(G). By the

definition of Gm,ab, we know that

E(Gm,ab) = E(G) ∪

(m−1
⋃

i=1

{{a1i, v}, {u, b1i} : u, v ∈ V (G), u 6= a, v 6= b}

)

∪

( m−1
⋃

i6=j, i,j=1

{a1i, a1j}

)

∪

( m−1
⋃

i6=j, i,j=1

{b1i, b1j}

)

.

As {c, d} ∈ E(G), so {c, d} 6∈ E(Gm,ab). Also by the definition ofGm,ab it is clear that

{a1i, b1j} 6∈ E(Gm,ab) for all i, j = 1, . . . ,m−1 and {a1i, c}, {a1i, d}, {c, b1i}, {d, b1i} ∈

E(Gm,ab) for all i = 1, . . . ,m − 1. Using all these facts, we have minimal cycles

{a1i, c, b1i, d} in Gm,ab for all i = 1, . . . ,m− 1. �

Another observation regarding Gm,ab is recorded as the following lemma.

Lemma 2.3. Let G be a graph with |V (G)| > 4. If G is chordal then Gm,ab has

no minimal cycle of length not less than 5.

P r o o f. Since G is chordal, all its minimal cycles have length 3. Suppose that

Gm,ab contains a minimal cycle C of length not less than 5; as G is chordal it follows

that V (C) 6⊂ V (G). Thus there exists v ∈ V (C) such that v 6∈ V (G) and by the

definition of Gm,ab, v ∈ {a11, . . . , a1m−1, b11, . . . , b1m−1}.

If v = a1i for some i = 1, . . . ,m − 1, we know from the definition that a1i is

adjacent to every vertex in Gm,ab except b, b11, . . . , b1m−1. Thus C must contain the

edge formed by b and b1t for some t ∈ {1, . . . ,m− 1}; note that b1k 6∈ V (C) for k 6= t

because {b, b1k}, {b1k, b1j} ∈ E(Gm,ab) for all k 6= j; k, j = 1, . . . ,m− 1.

Similar reasoning shows that C also contains a and so {a, a1i}, {b, b1t} ∈ E(C).

Now for any l ∈ V (C)\{a, a1i, b, b1t}, we have {l, a1i}, {l, b1t} ∈ E(Gm,ab). Thus the

cycle must be of the following form:

a

a1i

l

b

b1t

846



As {a, b} 6∈ E(Gm,ab) and this is a cycle, we must have at least one more vertex

in this cycle, say o,

a

a1i

l

o

b

b1t

where o 6∈ {a, b, a1i, b1t, l}.

But then by the definition of Gm,ab, we must have {a1i, o}, {b1t, o} ∈ E(Gm,ab),

thus no such cycle of length not less than 5 exists in Gm,ab. The case when v = b1i

for any i = 1, . . . ,m− 1, can be proved along the same lines. �

Proposition 2.4. Let G be a chordal graph with |V (G)| > 4, then Gm,ab is not

chordal if and only if there exist {c, d} ∈ E(G) with c, d ∈ V (G) \ {a, b}.

P r o o f. If there exist {c, d} ∈ E(G) with c, d ∈ V (G) \ {a, b}, Lemma 2.2

guarantees that Gm,ab contains at least one minimal 4-cycle through c and d, thus

Gm,ab is not chordal.

Conversely if Gm,ab is not chordal and G is chordal, Lemma 2.3 ensures that

Gm,ab contains a 4 cycle, say {p, q, r, s}. As G is chordal, some of these vertices

do not belong to V (G). Moreover, {q, s} does not belong to E(G), without loss of

generality, we may assume that p = a1i for some i = 1, . . . ,m − 1, then neither q

nor s are b. Since {a1i, r} 6∈ E(Gm,ab) we have that r = b or r = b1j for some

j = 1, . . . ,m− 1. By the definition of Gm,ab, we have q 6= a, s 6= a so that {q, s} is

the requested edge, as desired. �

Theorem 2.5. Let G be a simple connected graph and let

IG =
⋂

{ai,bi}∈E(G)

(xai
, xbi)

be the Cohen-Macaulay vertex cover ideal of G. Then

J = (xm
ai
, xm

bi
) ∩

(

⋂

{aj ,bj}∈E(G), i6=j

(xaj
, xbj )

)

is Cohen-Macaulay for no m > 1 if and only if there exist an edge {c, d} ∈ E(G)

such that c, d 6∈ {ai, bi}.

847



P r o o f. The ideal IG is Cohen-Macaulay if and only if G is chordal. Using

primary decomposition and polarization we can observe that the ideal J will be

Cohen-Macaulay if and only if the graph Gm,aibi is chordal. But by Proposition 2.4,

Gm,aibi is not chordal if and only if there exist {c, d} ∈ E(G) with c, d ∈ V (G) \

{ai, bi}. Thus the ideal J will not be Cohen-Macaulay if and only if there exist

{c, d} ∈ E(G) with c, d ∈ V (G) \ {ai, bi}, completing the proof. �

Corollary 2.6. If {ai, bi} is a minimal vertex cover of G, then the ideal

J = (xm
ai
, xm

bi
) ∩

(

⋂

{aj ,bj}∈E(G), i6=j

(xaj
, xbj )

)

is Cohen-Macaulay for all m ∈ Z
+.

P r o o f. As {ai, bi} is a minimal vertex cover of G, there exists no edge

{c, d} ∈ E(G) such that c, d 6∈ {ai, bi}, so that J is Cohen-Macaulay. �

Example 2.7.

(1) Consider the graph G with the vertex set V (G) = {v1, v2, v3, v4} and edge set

E(G) = {{v1, v2}, {v2, v3}, {v3, v4}}:

v1 v2 v3 v4

Here the vertex cover ideal will be

IG = (x1, x2) ∩ (x2, x3) ∩ (x3, x4).

Now, there exists an edge {v3, v4} such that v3, v4 6∈ {v1, v2}, thus Theorem 2.5

guarantees that the ideal

J = (xm
1 , xm

2 ) ∩ (x2, x3) ∩ (x3, x4)

will not be Cohen-Macaulay for any m > 1. The same is true with {v1, v2} and

{v3, v4} interchanged. On the other hand the edge {v2, v3} is a minimal vertex cover

for this graph so by Theorem 2.5, the ideal

K = (x1, x2) ∩ (xm
2 , xm

3 ) ∩ (x3, x4)

is Cohen-Macaulay for all choices of m ∈ Z
+.

(2) Let us consider the graph G with V (G) = {v1, v2, v3, v4, v5} and E(G) =

{{v1, v2}, {v2, v3}, {v2, v5}, {v3, v4}}. Then

IG = (x1, x2) ∩ (x2, x3) ∩ (x3, x4) ∩ (x2, x5).
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By Theorem 2.5, all the following ideals are not Cohen-Macaulay for any m > 1,

J1 = (xm
1 , xm

2 ) ∩ (x2, x3) ∩ (x3, x4) ∩ (x2, x5);

J2 = (x1, x2) ∩ (x2, x3) ∩ (xm
3 , xm

4 ) ∩ (x2, x5);

J3 = (x1, x2) ∩ (x2, x3) ∩ (x3, x4) ∩ (xm
2 , xm

5 ).

On the other hand, the ideal

J4 = (x1, x2) ∩ (xm
2 , xm

3 ) ∩ (x3, x4) ∩ (x2, x5)

is Cohen-Macaulay for all choices of m > 1, m ∈ Z because {v2, v3} is a minimal

vertex cover of G.

(3) Consider the graph with vertex set {v1, . . . , vn} and edge set {{v1, vi} : 2 6

i 6 n}, the so called bouquet graph. Then

J =
⋂

{v1,vi}∈E(G)

(xmi

1 , xmi

i )

is Cohen-Macaulay for all mi > 1, mi ∈ Z.

(4) Finally, for the graph K3, all its edges are minimal vertex covers of K3. Thus

the ideal

J = (xl
1, x

l
2) ∩ (xm

2 , xm
3 ) ∩ (xn

3 , x
n
1 )

is Cohen-Macaulay for all choices of l,m, n ∈ Z
+.

3. Modifications of second type

In this section we consider the modifications of the form

J = (xm
ai
, xbi) ∩

(

⋂

{aj ,bj}∈E(G), i6=j

(xaj
, xbj )

)

.

We recall that a subset T ⊂ V (G) is called an independent set of G, if for all

vi, vj ∈ T it holds that {vi, vj} 6∈ E(G) . An independent set T is called maximal, if

it is not a proper subset of any independent set, see [8]. The set of vertices adjacent

to vi will be denoted by NG(vi). In [1], the first author proved the following result:

Theorem 3.1. Suppose that IG is Cohen-Macaulay. Let W = {vi1 , . . . , vir} be

a set of pairwise distinct vertices of G with the property that each vik belongs to

exactly one maximal independent set Tk of G, where Tk 6= Tl for k 6= l. For each
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vik ∈ W choose a nonempty subset Ak ⊂ NG(vik ) with the property that, if some

vik ∈ Aj then vij 6∈ Ak and Ak ∩ Al = ∅ for k 6= l, and let

J =
⋂

{vi,vj}

(xi, xj) ∩
r
⋂

k=1

⋂

vj∈Ak

(xik , x
aj
j ),

where the first intersection is taken over all edges {vi, vj} different from the edges

{vik , vj} with vj ∈ Ak, and where each aj is a positive integer. Then J is Cohen-

Macaulay.

We will now prove the converse.

Definition 3.2. Let G be a graph, v ∈ V (G) and w a new vertex not belonging

to V (G). We let Gv be the graph with V (Gv) = V (G) ∪ {w} and E(Gv) = E(G) ∪

{{u,w} : u ∈ V (G), u 6= v}.

Let c(G) be the maximum length of a chord-less cycle in G.

Lemma 3.3 ([1], Lemma 3.2). Suppose G is chordal. Then c(Gv) 6 4.

Definition 3.4. Let v ∈ V (G) and NG(v) = {v1, . . . , vr}. Then we define cG(v)

to be the cardinality of the set

{{vi, vj} : {vi, vj} 6∈ E(G); 1 6 i < j 6 r},

and call cG(v) the cycle number of v in G.

Remark 3.5. Note that cG(v) = 0 if and only if the restriction ofG to the vertex

set {v} ∪NG(v) ⊂ V (G) is a clique in G (a complete subgraph of G). Observe that

if {v}∪NG(v) is a clique, it is indeed a maximal clique in V (G), since it contains all

neighbors of v.

Let us see an immediate consequence of Lemma 3.3.

Lemma 3.6. Gv is chordal if and only if cG(v) = 0.

Now we are ready to state and prove our main theorem of this section.

Theorem 3.7. Let G be a graph such that the vertex cover ideal

IG =
⋂

{vi,vj}∈E(G)

(xi, xj)

850



is Cohen-Macaulay. If for some vi ∈ V (G) there exists vk, vl ∈ V (G) with {vk, vl} ∈

E(G) and {vi, vk}, {vi, vl} 6∈ E(G), then for any vm ∈ NG(vi)

J =
⋂

{vi,vj}∈E(G); j 6=m

(xi, xj) ∩ (xi, x
n
m)

is not Cohen-Macaulay, for any n > 2.

P r o o f. It is enough to prove the theorem for n = 2. Since, by assumption,

IG is Cohen-Macaulay, it follows that G is chordal. Suppose for some vi ∈ V (G)

there exists vk, vl ∈ V (G) such that {vk, vl} ∈ E(G) with {vi, vk}, {vi, vl} 6∈ E(G).

Then {vk, vl} 6∈ E(G) and {vi, vk}, {vi, vl} ∈ E(G).

As {vi} ∪NG(vi) is not a clique in G, cG(vi) 6= 0 and Gvi is not chordal.

Since

J =
⋂

{vi,vj}∈E(G); j 6=m

(xi, xj) ∩ (xi, x
2
m)

we have

Jp =
⋂

{vi,vj}∈E(G); j 6=m

(xi, xj) ∩ (xi, xm) ∩ (xi, w) =
⋂

{vi,vj}∈E(G)

(xi, xj) ∩ (xi, w).

Let H be the graph obtained from G by adding a whisker with vertex i. Then

Jp = IH , where H is the complementary graph of Gvi ; this implies that J
p is not

Cohen-Macaulay and hence J is not Cohen-Macaulay. �

Now we will formulate a complete example to demonstrate the result.

Example 3.8. Consider the graph shown in the figure:

v1 v2 v3 v4

The vertex cover ideal associated to this graph is IG = (x1, x2)∩(x2, x3)∩(x3, x4).

The complementary graph G of G is

v2 v4 v1 v3

As this graph is chordal, the ideal IG is Cohen-Macaulay. Now, {v3, v4} ∈ E(G) and

{v1, v3}, {v1, v4} 6∈ E(G). Moreover, NG(v1) = {v2}, whence by Theorem 3.7, the

ideal

IG = (x1, x
n
2 ) ∩ (x2, x3) ∩ (x3, x4)

is not Cohen-Macaulay for any n greater than 1.
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