
Invent. math. 88, 165-182 (1987) ///ve//~/ol/es 
mathematicae 
�9 Springer-Verlag 1987 

Cohen-Macaulay modules 
on hypersurface singularities II 

R.-O. Buchweitz a'*, G.-M.  Greuel  2, and F.-O. Schreyer  2 

1 lnstitut ffir Mathematik, Technische Universit~it Hannover, Welfengarten 1, D-3000 Hannover, 
Federal Republic of Germany 

2 Fachbereich Mathematik, Universit~it Kaiserslautern, Erwin-Schradmger-Str., 
D-6750 Kaiserslautern, Federal Republic of Germany 

Egbert Brieskorn gewidmet 

Contents 

0. Introduction and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165 
l. Periodic complexes and matrix factorizations . . . . . . . . . . . . . . . . . . . .  169 
2. Construction of matrix factorizations and MCM's . . . . . . . . . . . . . . . . . .  173 
3. Proof of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  175 
4. MCM's on A~ and D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179 
5. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  182 

O. Introduction and results 

0.1. H. Kn/Srrer [ K n 6 ]  showed the following p rope r ty  of the local r ing R of 
an isola ted s imple hypersurface  s ingular i ty:  There  are only finitely many  iso- 
m o r p h i s m  classes of i ndecomposab le  maximal  C o h e n - M a c a u l a y  R-modules .  

Recall  that  a module  M - always assumed to be finitely genera ted  and 
uni ta ry  - over a local  C o h e n - M a c a u l a y  ring R is said to be maximal Cohen- 
Macaulay, if depth  M = d i m R  (M is an M C M  for short). M is called inde- 
composable if it is not  a nont r iv ia l  direct  sum. Let us call R of  finite (resp. 
countable) CM-representation type, if there are only finitely (resp. countably)  
many  i somorph i sm classes of i ndecomposab le  M C M ' s  over R. If R is not  of 
finite CM-rep resen ta t i on  type we say that  it is of infinite CM-rep resen ta t i on  
type. 

The main  object  of this paper  is to prove the converse of Kn6r re r ' s  result, 
namely  that  a non-s imple  hypersurface  s ingular i ty  is of infinite CM-represen ta -  
t ion type (cf. Theo rem A and B). This charac te r iza t ion  of the s imple hyper-  
surface s ingular i t ies  has been p roved  before by Art in  and Verdier  [A-V] ,  
Aus lander  [ A u s l ]  and  Esnaul t  [Esn]  in D i m e n s i o n 2  and by Greuel  and 
K n 6 r r e r  [ G - K ]  in Dimens ion  1. 

In add i t ion  we classify the hypersurface  s ingular i t ies  which are  of countab le  
CM-rep re sen t a t i on  type (Theorem B). Our  me thod  yields also an appl ica t ion  to 
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vector bundles on projective hypersurfaces with "no cohomology in the mid- 
dle" (Theorem C). 

In our proof we explicitly construct infinitely many non isomorphic 
MCM's. The construction uses the fact that MCM's  over a hypersurface ring R 
have periodic resolutions and that every MCM arises from a matrix factoriza- 
tion of the defining function. This was first proved by D. Eisenbud [Eis] and 
we recall the main facts in w 1. 

0.2. Let P denote a regular noetherian local ring with maximal ideal ~ and 
algebraically closed residue field k = P/~.  Let J~,% f + 0 ,  R = P / ( f )  and mul tR 
= mult ( f )  = sup { v I f e ~ } .  

We show in Proposition 3.1, that R is of finite CM-representation type if 
either 

a) dimR__>l and m u l t R > 4  or 

b) direR__>2 and m u l t R > 3 .  

The modules which we construct are parametrized in Case a) by the points 
of IPk(~/~, 2) and in Case b) by the points of a cubic in ]Pk(cC/l/~g2). In order to 
arrive at the simple hypersurface singularities we specialize to analytic hyper- 
surfaces. Suppose that P is a regular analytic k-algebra, i.e. isomorphic to a 
formal or convergent (if k is a complete non trivial valuated field) power series 
ring k<z o . . . . .  z,}. R = P / ( f ) ,  j ' ~ ,  is then called an analytic hypersurface ring 
and (X, 0) denotes the analytic hypersurface defined by R. 

Arnold introduced the notion of a simple hypersurface singularity over k 
= •  (or 1R) for a singularity which is of "finite deformation type" and he 
classified them (cf. [Arn]). The classification yields the well-known singularities 
of type A k, D k, E6, ET, E 8. Barth, Peters and van de Ven [B-P-V] obtained for 
reduced plane curve singularities the same list from a different definition which 
has the advantage that it carries over immediately to arbitrary algebraically 
closed fields: A l-dimensional reduced hypersurface ring R = k ( z o ,  Z,}/( f)  is 
called simple if m u l t ( f ) <  3 and if after any finitely many successive quadratic 
transformations, the reduced total transform of f still has multiplicity <3  in 
each point. We then also call f or (X, 0) simple. 

For the following theorem we assume that R is an n-dimensional analytic 
hypersurface ring, n > 1, k algebraically closed and char(k)4= 2. 

Theorem A. R is of finite CM-representation type if and only if R is isomorphic 
to k ( z  o . . . . .  z , } / ( f )  such that 

f ( z  o . . . . .  z.) = g(z o, z , )+  z 2 + . . .  + z, z 

where gek(z0 ,  zl} is simple. 

Remarks. 1) We need the assumption that R is an analytic hypersurface ring in 
order to apply the Weierstraf3 preparation theorem and that char(k)=t=2 in 
order to split off z Z + . . . + z  2. The assumption char(k):4=2 is superfluous if 
dim R = 1 (cf. 3.5). 

2) Equations of the simple singularities are given in [Arn], I-B-P-V] and 0.3 
for k=ll2 and in [K-S] for an arbitrary algebraically closed field. As was 
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noticed in [K-S] ,  if n = d i m  R = 2  and char(k)4=2, the singularities occurring in 
the theorem are exactly the rat ional  double points in the sense of [A-V]. 

3) As ment ioned above, the theorem was proved  before in Dimension 1 by 
[ G - K ]  for c h a r ( k ) = 0  and then extended to arbi t rary characteristic by [K-S]  
(cf. also 3.5). In Dimens ion  2 it is due to [A-V],  with different proofs also given 
in [ A u s l ]  and [Esn].  Their  result implies that  a two dimensional  normal  
analytic hypersurface singularity is of finite CM-represen ta t ion  type iff it is a 
rat ional  double point,  even in characterist ic 2. 

0.3. In the following let k=i12, fOl2{z o . . . . .  z,} (the convergent  power  series 
ring), R = C { z  o . . . . .  G)/(f)  and (X, 0) the complex space germ defined by R. In 
this case, the singularities exhibited in Theorem B are exactly the simple singu- 
larities in the sense of Arnold, ment ioned  above:  

Ak: J=~ -o'k+1+ z2 +.. .  +-,,'2 k >_ l, 

D k  : f .Tk -1  2 2 . 2  k>4,  J =~o +Zo zx +z2 + + . . ,  Z-.n~ __ 

G :  f = z ~  ~ 2 + z l + z 2 + . . . + z  n, 

E?: f=z3+ZoZal+zZ+. . .+z2, ,  

E s : f = z ~  ~ 2 72 § Z i - I -  Z 2  § . . .  § x. n . 

Notice that there are two natural  limit cases of A k resp. D k as k tends to 
infinity, namely  

A~: f = z ~ + . . . + z  2, 
. 2  D~. J = z 0 z ~ + z ~ + . . .  + , , ,  

considered as an element of 112 {z o . . . . .  z,}. 
Besides the simple ones, these two (non-isolated) singularities play a special 

role with respect to M C M ' s  (cf. Theo rem B). 
We ment ion  also that  A~ and Do~ are basic for topological  considerations 

in the deformat ion  theory of non-isolated singularities (cf. [Sie]). 
Let us call a singularity (i.e. a complex space germ) (X, 0) of  finite (resp. 

countable) deJbrmation type, if there exist a finite (resp. countable) list of 
singularities with the following proper ty:  For  any (flat) deformat ion 
(Y, 0 )~(T ,  0) of (X, 0) over a complex space germ (T, 0), there exists a repre- 
sentative Y--* T such that each fibre Yt has only singularities which are isomor-  
phic to one of the members  of the list. A hypersurface singularity of finite 
deformat ion  type is called simple. This is (a slight modificat ion of) Arnold 's  
definition and the classification leads to the singularities A k, D k (k+ oc,) and 
E 6, E7 ,  Es. 

Similarily we define an R = (gx.o-module M to be of jinite (resp. countable) 
deformation type if there exists a finite (resp. countable)  list of R-modules  such 
that  for each deformat ion  JCL of M over (T, 0) (i.e. J is a flat ~,x• 
and M=,A'|162215 there exists a representat ive T of (T, 0) and a sheaf on 
(X, 0) x T inducing ~ on (X x T, 0), (which we also call Jr such that for each 
t e T  the ~<x,o)• o-module Jr174 } is i somorphic  to a module  of the 
list. 
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Theorem B. Let R = l l ; { z  o . . . . .  z,}/( f) ,  j ' ~ -  {0}, n >  1. Then the statements (i)- 
(iii) of  (1) are equivalent and so are the statements (i)-(iv) of (2). 

(1) (i) f defines a simple hypersuJJhce singularity. 
(ii) R is of  finite CM-representation type. 

(iii) Each M C M  over R is of finite deformation type. 

(2) (i) f defines an A ~ or D ~ singularity. 
(ii) R is of countable but not finite deformation type. 

(iii) R ![~f  countable but not finite CM-representation type. 
(iv) Each M C M  over R is of countable deformation type and there exists an 

M C M  over R which is not of finite deformation type. 

Remarks. 1) See [Dur ]  for further character izat ions of simple singularities. 
2) Since the singularities A~ and D~ are not isolated, it follows already 

from a general theorem of Auslander  [-Aus2] that they are of infinite CM-  
representat ion type. The point  is, that  these are the only hypersurface singulari- 
ties which are of countable CM-represen ta t ion  type. We give a complete  
classification of all M C M ' s  over  A,~ and D~ in w 

3) For  the simple hypersurface singularities all indecomposable  M C M ' s  are 
explicitly known and their Auslander-Rei ten quivers are related to the corre- 
sponding Dynkin  d iagram of type Ak, D k or E k respectively (cf. [ K n 6 ]  for 
further references). For  A~ and D ,  the Auslander-Rei ten quiver of those 
M C M ' s  which are locally free on a punctured  ne ighbourhood  of the singularity 
are again related to the Dynkin  d iagrams A~_ and D~ respectively (cf. [Sch]). 

0.4. The  modules  M-+(_x,y) which we construct  are all of a fixed rank 2 " -y  
where n =  dim R and of a fixed minimal  number  of generators  equal to 2" (cf. 
2.5). There is an estimate,  due to W. Bruns - and obta ined  as a consequence of 
the results in [-Bru] - to the effect that  any M C M  on a hypersurface singularity 
R = P / ( f )  without  free summands  has rank at least � 89  ) 
(Sing(R) denotes the singular locus of  R). The actual  minimal  bound is not 
known. 

We offer the following: 

Conjecture A. Any maximal Cohen-Macaulay module M without free summands 
on an irreducible hypersurface singularity R sati,~es : 

rank M > 2" 

where e = [�89 R S i n g ( R ) - 2 ) ]  and [q] denotes the largest integer < q. 

Re mark  that  the guess above  is stable under taking general hypersurface 
sections, so that  it would be enough to establish it for isolated hypersurface 
singularities. 

0.5. We give an appl icat ion to projective geometry :  
Instead of the local case one may  consider the graded case. For  this replace 

P by the graded polynomia l  ring S = k [ z  o . . . . .  z,] over  an algebraically closed 
field k and assume that  f s S  is homogenous  of positive degree. 
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Let X=Projk(S/(f))clP~" denote the projective hypersurface defined by f 
= 0 .  

If n > 1, by a theorem of Grothendieck-Serre (cf. for example [K-L]), graded 
maximal Cohen-Macaulay modules M over R =P/ ( f )  correspond via sheafif- 
ication biuniquely to coherent sheaves of 6'x-modules ..# with "no coho,lology 
in the middle" i.e. 

/ j  

wit,  

Hi(X,~r for O < i < n - l = d i m X  and re7/. 

Shifting the grading of M by v corresponds to twisting the sheaf N/ by (~'n,,,(v). 
If X is smooth, these sheaves are vector bundles on X. 

We obtain : 

Theorem C. Let X be a projective hypersmfface in IPk", n> 1, k algebraically 
closed. X is a linear or quadratic hypersurfilce if and only if there are (up to 
twist) only finitely many isomorphism classes of indeconlposable locally flee 
sheaves ,~/[ of ~x-modules with vanishing cohomology in the middle: 

H i ( X , , / [ / ( v ) ) = O ,  VEZ, 0 < i < n - 1 .  

In the graded case Conjecture A implies 

Conjeeture B. Let X ~IPk" be a smooth hypersurfilce over an algebraically closed 
.field k. Let ~ be a vector bundle on X which sati.sfies 

Hi(X,~/(v))=O, v67Z, O < i < n - l = d i m X .  

rank ,.//g < 2 ~" 

, then J[  is a direct sum of line bundles 

i 

Remarks. 1) For a linear hypersurface, Conjecture B is true without assumption 
on the rank by a theorem of Horrocks (cf. [O-S-S]). Since over a regular local 
ring every MCM is free, this follows also from the Grothendieck-Serre theorem 
mentioned above. 

2) For a quadratic hypersurface, Conjecture B is also true. This follows 
from the classification of MCM's over the Al-singularities in Dimension 1 and 
2 and Kn/Srrer's periodicity theorem (cf. also 2.5 (4)). 

3) The conjecture is at least sharp in all degrees. Look at the Fermat 
hypersurface X of degree d, defined by f=zao+.. .  +z~. It follows from our 
construction in w and sheafification that there are vector bundles on X of 
rank 2 e with no cohomology in the middle and which do not contain a line 
bundle as a direct summand. 

1. Periodic complexes and matrix factorizations 

1.1. We recall the main results about periodic resolutions, maximal Cohen- 
Macaulay modules and matrix factorizations as obtained by D. Eisenbud in 
[Eis, w167 4-6]. These are essential for our construction in the next section. 
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A (right-bounded) complex 

I F . :  . . . - +  f k - +  F ~  _ , - +  . . . - +  f , - +  O , a e Z , 

is called periodic (of period 2) if there is a map of complexes t: IF.-+IF. of 
degree - 2  such that t: F~+z-+F / is an isomorphism for all i>a. Identifying F~+ 2 
with F~ by means o f t  and setting G=F.-~Fa+ 2 . . . .  and F = F . + ~  =F .+  3 . . . . .  we 
may assume that a periodic complex IF. has the form 

IF.: ~" , F  e ,i, �9 . . . .  G ~ F - - - ~ G - - ~ O .  

1.2. Special periodic complexes arise f rom matrix factorizations. Given a ring 
P and an element J'~P, a matrix factorization o f f  is an ordered pair of 
morphisms of free P-modules,  (4:  F-+G; 9if: G-+F), such that 

4~o ~u = j i  id~ and 71o 4~ = f .  id F. 

If P is local with maximal  ideal Me, the matrix factorization (4, f )  is called 
reduced iff 

Im q~ _c ~,~. G and Im 7* _ ~,,e. F. 

Two matrix factorizations (~i: F/-~Gi; ~ :  Gi-+F~), i =  1, 2, of the same element 
f e P  are equivalent iff there are P-linear isomorphisms :t: FI-+F2, fl: GI-+G 2 
such that 

fl(I)l=(~D2~ and ~ l = ~ P 2 f l .  

If we now set R = P/(f), write - f o r  reduct ion modulo  f and denote ~o = ~, 
= @, then a matrix factorization (q~, ~u) yields a periodic complex of R-modules 

I F ( q , , ~ ) :  . . . -  . . . .  , P  ~ , d - - % ~ - - % d - - - ~ 0 .  

I f f  is not a zero-divisor on P, it follows (cf. [Eis, 5.1]) that IF(q~, 7') is exact 
and hence an R-free resolution of coker ~p. Furthermore,  one has rank F 
= r a n k  G, (cf. [Eis, 5.4]). Let us also remark (cf. [Eis, 5.5]), that for f a non- 
zero divisor on P and (4, 7/) a matrix factorization of f g* is already uniquely 
determined by 4. 

1.3. Assume now that R is any local Cohen-Macau lay  ring and that 

. . . -  ~ ,G 0 ~F 'P ,G ~ M - - - - , 0  

is a periodic R-flee resolution of the R-module  M (with F and G of finite 
rank). Then M is a maximal Cohen-Macaulay R-module (MCM for short) i.e. 
depth M = dim R. 

This follows from the characterization of depth by Ext's and the obvious 
fact that M ~ k e r t p .  If R=P/( f )  for a non-zero-divisor f in P and if the 
periodic resolution comes from a matrix-factorizat ion (4, 7') of f as above, 
then IF(4,  71) is a minimal resolution of  M = c o k e r  �9 iff (4, ~) is reduced. In 
this case, M has no R-free summand  (cf. [Eis, 0.1; 6.1]). 
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1.4. F r o m  now on let P denote  a regular local ring with maximal  ideal ~,, f a 
non-zero element of  ~ and R the hypersurface ring P/(f). 

The main  result on maximal  Cohen-Macau lay  R-modules  is that  every such 
module  has a periodic free resolution and that all such resolutions arise from 
matrix factorizations o f f  More  precisely 

Theorem ([Eis, 6.1, 6.3]). 1) Every maximal Cohen-Macaulay R-module M has a 
periodic free resolution of the jorm IF(4), 7 j) Jor some matrix jactorization (4), 7 j) 
of f This resolution can be chosen minimal - and hence (4), 7 j) reduced - i f fM 
has no Jbee summand. 

2) T h e  associat ions (4), ~)~-,IF(4), 7 j) and (4), 7~)~--~Coker 4) induce btjections 
between the sets of 

(i) equivalence classes of reduced matrix Jactorizations oj f over P, 
(ii) isomorphism classes of periodic minimal jree resolutions over R, 

(iii) isomorphism classes of maximal Cohen-Macaulay R-modules without J?ee 
summands (the O-module included). 

1.5. No te  that  the proof  of this theorem (as given in [Eis]) is quite elementa-  
ry. We indicate how the circle closes by repeating the a rgument  which as- 
sociates to a maximal  Cohen-Macau lay  R-module  M a matrix factorization of 

f :  
By the Auslander-Buchsbaum-Serre  theorem one has 

proj dim~ M = dim P - depth M = 1. 

Hence there is a P-free resolution of M of length 1, 

0 - * F -  q" ,G----~M----~O,  

where M is considered as a P-module .  
Since f annihilates M, J - G _  Im 4) and hence there exists a P-linear map  q': 

G ~ F with 
4)~ ~ = f .  ida. 

Applying 4) from the right and noting that  4) is injective yields then !Po4) 
=J :  idv, so that  (4), 7 j) is a matr ix  factorization o f f  with Coker  4)= M. 

1.6. N o w  assume that  M is a maximal  Cohen-Macau lay  module  over R 
= P / ( f )  without free summand. Then, by the theorem above, there exists a 
reduced matr ix  factorizat ion (4), t/,) of J such that  M - - C o k e r  4). 

Keeping the notat ions  f rom (1.5), 4) defines a natural  m a p  F@G*~P,  given 
P 

by x |  for x~F, 2eG*.  The image of this m a p  is an ideal denoted by 
1(4)). Since (4), ~)  is reduced, it follows that  I(4))_c~. (Choosing bases for the 
free P-modules  F and G, I(4)) is just the ideal generated by the entries of the 
matr ix  of 4) with respect to these bases.) 

In the same way define I(7~)= Im(G| Then we have: 

L emma .  With the notations and hypotheses as above, 1(4)) and I(7 j) only depend 
on the isomorphism class of M = Coker  4) as an R-module. More precisely: 
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(i) I f  M is minimally generated by t~ elements then I((b)=Fu_I(M), 

(ii) I(TJ) . det (b = F I ( M  ) .J; 
(iii) .fcI((b). I(~P) a_(I((b) + 1(7')) 2 _ y~2. 

Here F , ( - )  denotes the a-th Fitting ideal of a P-module,  cf. [Kap,  App. 4- 
3(b)]. 

Proof (i) is essentially the definition of F~_ I(M), remarking that lm ( b _ ~  G just 
means / l  = rk G. 

(ii) (cf. also [Eis, 5.5]): Denote  by (bad the adjoint  morphism of (b, 

r k G  1 

(bad= /~ (Hom((b,P)).  

Then one has: 
(bo (bad = det @. ida, 

r k G - -  1 

(where /~ G is identified with G) and 

I((b ad) = F 1 (M) 

by the definition of the first Fitting ideal of M. F rom the properties of a matrix 
factorization one gets 

det (b. ((bo }P)=det (b . f .  id a = f -  (bo(b "d, 

hence, as (b is injective, 

det (b- tp = f .  (bad, 
whence (ii). 

(iii) is a direct consequence of the definitions. [ ]  

Remark. Although not explicitely required, statement (iii) above shows f e~z  2. 
The reason is of course that if f e ~ z - ~  2, the quotient  R = P / ( f )  is again local 
regular and all maximal Cohen-Macaulay  modules over R are actually free (for 
which (iii) above yields a new proof). 

1.7. To summarize the above, we have associated to every reduced matrix 
factorization ((b, ~P) an ideal - namely l((b)+ I(~P) - in P, whose square contains f 

The key to our results is the following 

Proposition. The association ( (b, ~P)--. l ( (b) + I(7 s) .f?om (reduced) matrix jhetori- 
zations of f to ideals of P yields a surjection Jkom the set of isomorphism classes 
of maximal Cohen-Macaulay modules over R (without free summands ) onto the 
set of  those (proper) ideals oJ P whose square contains f 

The p roof  of this is the content  of the next section, see especially (2.4). 
As an immediate  consequence we get 

Corollary. Let P be a regular local ring, J ' ~  a non-zero element in its maximal 
ideal and R = P/(f).  
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I f  there are infinitely many different ideals I c_ p for which f~I  2, then there 
are infinitely many isomorphism classes of indecomposable maximal Cohen-Ma- 
caulay R-modules. 

This will be exactly the criterion to prove our main results. 

Proof" of the Corollary. If M = @ M  i is a decomposition of M into indecompos- 
able summands, a matrix factorization (q~, 7/) for M may be obtained by taking 
the direct sum of matrix factorizations (#i, ~)  for the Mi. W. 1.o.g. we may 
assume that no M~ is free, hence that M has no free summand. Then, in 
particular, I(4~)+I(~ u) = ~ (l(q 0 +I(T/)). If there are only finitely many isomor- 

phism classes of indecomposable MCM's  over R, there are also only finitely 
many distinct ideals of the form I(cI))+I(70 for reduced matrix factorizations 
(q~, ~u) o f f  This, together with the proposition, establishes the corollary. 

1.8. The constructions and statements above hold similarly in the graded 
instead of the local case. For this, just replace in 1.4-1.7 the regular local ring 
P by a graded polynomial ring S = k [ z  o . . . . .  z,] over a field k and assume f to 
be a homogenous element of S+ = (z o . . . . .  z,) S instead of being in ~ .  

We leave it to the reader to define graded matrix factorizations and graded 
resolutions "periodic up to a shift of degrees" and to reformulate (1.4) up to 
(1.7) in this case. 

As mentioned in the introduction, we shall apply the graded case to 
construct vector bundles on projective hypersurfaces. 

2. Construction of matrix factorizations and MCM's 

2.1. Let P be again an arbitrary commutative ring and f 4 : 0  an element of P. 
Suppose f is given in the form 

f= ~ xiYl 
i=1 

with x i ,y ieP  for i=  1 . . . . .  r. To such a presentation of f we will associate a 
matrix factorization of f -  and hence a maximal Cohen-Macaulay module 
M(_x, y) over R = P/(f )  in case P is local regular. 

2.2. Let IK(x,P) denote the Koszul-complex associated to the sequence 
(x l . . . . .  xr) of elements in P. Then the underlying graded P-module is the 
exterior algebra A'P r, with pr a free P-module on the basis e I . . . . .  % The 
Koszul-differential will be denoted by 3_1 and is explicitly given by 

g~_ 1 ((D) -~ x i e  i .~gO 
\ i =  1 

for any o)eA'P* where ~ denotes the contraction operator (or "inner pro- 
duct") on A ' U  - (cf. [ALG,  w 9] for terminology). 
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As f is by assumption contained in the ideal generated by the sequence 
(x I . . . . .  x,) it annihilates the homology of IK(_x, P). 

But even better, multiplication with f on IK(x,P)  is zero-homotopic.  A 
homotopy  is given by the following endomorphism of degree + 1 on IK(x, P), 

for any co6A'PL 
Indeed, 

0+1(co)= yiei Aoo 
. =  i 1 

0_ 1o a+ 1 (~o) = (Z x, e.*, ) _l ( Z Yl e, ^ oJ) 

= ((X x i e*) -1 (X y, el) )/x co - (X Yi el)/x ((X x i e*) ~ co) 

= f ~ o - 0 + 1 o 6  , (e~). 

Since fur thermore 02_+1 =0,  we have statement (1) of 

2.3. Proposition. With the notations as above, set (5 = 0 +1 + 0_ 1. 
(1) 0 is an endomorphism of  the P-module A 'P  r satisfying 02=f . ida .vr .  In 

particular, (0, 0) is a matrix J'actorization o f  f 
(2) I f  P is regular local, f +O and x i, y , e ~  for all i, then: 
(i) {0,0) is reduced and M(_x,y)=coker  O is a maximal Cohen-Macaulay 

module over R = P / ( f )  without f ree  summand. 
(ii) I(0) = ( x l  . . . . .  x r ,  y l  . . . .  , yr). 

Remark. It is left as an exercise to the reader to show that M(x,_y) is actually 
free, if one of the x~ or Yi is a unit. 

Proof  Assertion (2.i) follows from (1) by (1.2), (1.3), (ii) follows immediately 
from the explicit description of 0+1. 

2.4. Proof  o f  Proposition 1.7. Proposi t ion 1.7 is now an easy consequence of 
Proposi t ion 2.3. Let  l c ~  be any ideal with f ~ I  2. Choose a set of generators 

r 

{x, . . . . .  xr} of 1. Since f e I  2 there exists a presentat ion f =  ~, x ly  , with all yieI.  
/ = 1  

Take the reduced matrix factorization (4), ~ )=(0 ,  0) of f from 2.3. Then 1(4)) 
+ I ( ~ ) = I ( 0 )  and by 2.3 (2.ii) 

1(0) = (x 1 . . . . .  xr, Yl . . . . .  y,) = I, 

which finishes the proof. 

2.5. Remarks. 1) As 0-+ 1 are graded maps of degree -t-1, 6 maps  A . . . .  P '  
= @) A l p  r into A~ @ A i u  and conversely. 

i -= 0 ( 2 )  i =- y ( 2 )  

in particular, denoting by 0 + (resp. 0 - )  the restriction of 0 to A . . . .  U (resp. 
A~ the matrix factorization (6, 0) o f f  decomposes as a direct sum 

(6, 6 )=(0  +, 6 - )@(0- ,  6+). 

Accordingly M(x, y) is a direct sum m ( _ x , y ) = M + ( x , y ) |  with m-+(_x,y) 
= coker 0-+. 
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2) Starting from the presentat ion (2.1) of f, one might of course choose 
another partition of {x 1 . . . . .  x,, yl . . . . .  y~} into two subsets of r elements such 
that every index i =  1, ..., r occurs exactly once in each subset. But it can be 
seen that the module  M obtained from this choice is then isomorphic to 
M ( x , y )  - whereas the two summands  M + and M -  might get interchanged. 

Remark also that M + and M -  are isomorphic to their own duals if 
r =  1 mod 2 and isomorphic to the dual of the other if r = 0  mod 2. 

3) If f is irreducible in the U F D  P, the rank of M(x, y) as an R-module is 
U -1. Namely  by [Eis, 5.6] one has det~=f~nk~r176162 (U a unit in P) for 
every matrix factorization (@, 7/) o f f  and by 2.3 (1) 

det ~. det ~5 = d e t ( f  idA.e~ ) =f2,-,  

whence det 6 = q - f  2~-~. 
It follows easily from this that  rank M+(_x,y)=2 ~-2 and the reader is 

encouraged to interpret this result for r = 1 ! r 
4) Assume P = k ( , x l , . . . , x , , y l , . . . , y ~ )  and f =  ~ x i y  i. Then R = P / f  is a 

singularity of type A 1 of odd dimension, i= 
If chark4=2 it can be deduced from the p roof  of H. Kn6rrer 's  periodicity 

theorem, [Kn6] ,  that  indeed the two modules M+(_x,y) are non- isomorphic  
and are the only indecomposable  non-free M C M ' s  over R. A singularity of 
type A1 of even dimension has exactly one indecomposable  non-free MCM. 
This follows again from the periodicity theorem and the obvious result for R 
= k ( x ) / x  2. 

3. Proof of the main results 

3.1. Proposition. Let  P be a regular local ring with algebraically closed residue 
class f ie ld k---P/~e, f ~ e  a non zero element and R = P / ( f ) .  Suppose 

(a) m u l t R > 4  and direR__> 1, or 

(b) m u l t R > 3  and d i r e R > 2 .  

Then R has infinite CM-representat ion type. 

Proof  By assumption j .e~3. Consider the res idue  f3E~e3/~z 4 of  f has a homo-  
genous polynomial  on re/ 2 and let C(.f3) be the variety defined by J ~ = 0  in 
IP(#,e/~2) ~ I P  "" n = d i m R .  For  every point )~eC( f )  we will construct an ideal 1~, = k ' 
c P  with f e I  2 as follows: 

Choose generators z 0 . . . .  , z, of  ~, such that in terms of the residue classes 
y/e~e/~ 2, 2 is defined by ~ . . . . .  z~=0. Then , f e ( z  I . . . . .  z,)+~z 4, since 2 e C ( f ) .  

We define 
I~: =(z~ . . . . .  z,) + ~, 2 =(el  ' ..., ~,,,~ Zo).2 

Then 1~. 4= 1, for 2 4= p and 

2 1 ~ i ~ n ,  Z 4)  I2=(ziz~,  l< i<=j<n ,  z i ' z  o, _ _ 

contains f :  
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By our  assumpt ion  we have 

(a) C(f)  = IPk" and n > 1, or 
(b) C(f)  is a cubic hypersurface in lPk" and n > 2. 

In both cases d im C(f )> 1. So C(f)  contains infinitely many  points, and there 
are hence infinitely m a n y  different ideals I with f e l  2. Now Corol lary  1.7 
implies the result. 

3.2. Proof of Theorem C. We replace P by the polynomia l  ring S 
--k[-z o . . . .  , z,], k an algebraically closed field, and f by a homogeneous  poly- 
nomials  of positive degree, finally ~ by S+ =(z  o . . . . .  z,)S, the irrelevant ideal, 
and set R = S/(f). 

As ment ioned  in 1.8, the assertions of w are still true in the graded 
category. Fur thermore ,  f rom a presentat ion 

f = ~ xl Yl 
i = 1  

by homogeneous  elements xi, YieS , the construct ion of w gives a graded 
maximal  Cohen -Macau lay  module  over  R. Hence,  if we choose in the proof  of 
Proposi t ion  3.1 correspondingly  homogeneous  generators  {z 1 . . . .  ,z,,} of the 
homogeneous  ideal S+, we obtain  for n>__2 and degree f_>_3 infinitely many  
graded M C M ' s  over R which are pairwise not isomorphic,  even if we neglect 
the grading. 

By R e m a r k  2.3 and the fact that  the ideals I~. constructed will contain $2+, it 
follows that  the associated modules  are actually locally free off R+ =S+/(f), 
the irrelevant ideal of R. Sheafification now yields T h e o r e m  C. 

If the degree of f is l or 2, then there are (up to a shift of the grading) only 
finitely m a n y  indecomposab le  graded M C M ' s  on R (cf. 2.5 (4)). 

Proof of Theorem A 

3.3. Let  P = k ( z  o . . . . .  z , )  denote now a formal  or convergent  power  series 
ring over  an algebraically closed field k of arbi t rary  characteristic.  

If  char(k) + 2  and 
f ( z  o . . . .  , z,) = g(z0, z,) + z 2 + . . .  + z~, 

where g defines a simple plane curve singularity, (0.2), then R = P / ( f )  has finite 
CM-represen ta t ion  type by [-Kn6]. In order  to prove  the converse, we establish 
the existence of infinitely many  ideals 1 with f ~ I  z for every f which does not 
decompose  into a simple plane g and a sum of squares as above. Then we can 
apply  Corol la ry  1.7. We proceed by induction on n = d im R. 

3.4. L e m m a .  f ~ k  (zo, za) defines a simple curve singularity if and only if Jor all 
x, y e ~  the following conditions are simultaneously satisfied: 

(a) f r y)4, 
(b) f q~(x 3, xZ y z, x y 4, y6), 

( c ) / r  
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Proof Note that f(~(x z) for all x e ~  iff f defines a reduced curve singularity. 
Then applying the method to classify (reduced) simple curve singularities as in 
[B-P-V, w pp. 61-65] - with modifications as in [K-S] for fields of arbi- 
trary characteristic - gives the lemma. We leave the details to the reader. 

3.5. Case n--1.  If f does not define a simple plane curve singularity, then by 
the lemma there exist x, y E ~  with either 

(a) f~(x ,  y)4, or 
(b) f e ( x  3, x 2 },2, x y4, y6), o r  

(C) ff'~(X2). 

We consider in these cases correspondingly the ideals 

(a) Ix=(2oX + 2, y)+(x,  y) 2, ,~=( .~0:~l )e lPk 1, 

(b) I x = ( x + Z y  2, y3), 2ek, 

(c) l~=(x, y~), 2 ~ N .  

Then f e I~ .  This is obvious in Case (a) and (c) and in Case (b) it follows from: 
( b l )  y6 = (y3)2 

(bz) x y g = y ( x + 2 y 2 ) y 3 - 2 y  6 
(b3) x2y2=yZ(x + )~y2)Z- 2).x yg -22y6  

and 
(b~) x3=(x + 2 y2 )3 -3~x2y2-3~2xy4- ,43y  6. 

For 24=/~, one has I x+I  . and 1.7 gives infinitely many isomorphism classes of 
indecomposable MCM's  over R = P / ( f ) .  []  

3.6. Case n > l .  We now assume char(k)=#2 and proceed by induction on n. If 
m u l t R > 3  then there exist infinitely many ideals I with f ~ I  2 by the proof of 
3.1. if m u l t R = 2  then we may apply the Weierstral3 preparation theorem and 
Tschirnhausen transformation (char(k)42) to obtain 

f (z 0 . . . . .  Z.) : g(Z 0 . . . . .  Zn-1) ~- Zt2~ 

with gek<z 0 . . . . .  Z n _ l ) ,  By the induction hypothesis there are infinitely many 
pairwise distinct ideals [~ck<z  o . . . . .  %-1} with ge[2. (Notice that this is tri- 
vially true if g = 0.) 

The ideals 
l x = [  ~ . k<zo, ..., z ,}  + ( z , ) c k < z  o . . . . .  z ,}  

are pairwise distinct and J eI~, hence 1.7 gives the result. []  

Proof of Theorem B 

3.7. From now on let 
P = r {Zo . . . . .  z,} 

denote the convergent power series ring over the complex numbers. As for the 
simple singularities in Lemma 3.4 we need a similar characterization of the 
curve singularities A~ and D~. 
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Lemma. Let f~lI?{z0,zl} satisfy (a), (b) but not (c) of 3.4. Then there is a 
coordinate system x, y6~e such that 

A~: f = x  2, or 

D~j: f = x 2 y .  

The converse is also true. 

Proof ~{Zo, zl} is a unique factorization domain, hence we may write 

J = u  f?' ... ,ff~, 

with u a unit, Jls~z the irreducible factors o f f  and e~ their multiplicities. 
Since (c) is not satisfied, e i>2  for at least one i, say e1>2. By (a) 

m u l t ( f ) < 4 ,  hence r < 2  and mu l t ( f l )= l  for all i. Set x = ] / u f l .  Then in case r 
=1, f = x  2. If r = 2 ,  set y=j2 .  The residue classes of x , y  in ~,~z/ 2 are linearly 
independent since f4 i (x3)+x2~ 2 by (b). So (x,y)=~e and f = x Z y .  Since the 
converse is obvious, the lemma follows. [] 

3.8. By the lemma we see that the construction in 3.5 and 3.6 gives countably 
many isomorphism classes of MCM's  for A~ and D~. The complete classifi- 
cation of all indecomposable MCM's  on A~ and D~ in the curve case is given 
in w There are only countably many of such modules and by [Kn~5] this 
holds in all dimensions. Moreover, in both cases the module presented by the 

matrix (x)@(x) deforms into each of the modules presented by for 

k > l ,  hence it is not of finite deformation type. Again by [Kn6]  the same 
holds in higher dimensions. 

For the other non simple singularities we constructed in 3.5 and 3.6 families 
of modules parametrized by (17 or IP~ and it is easy to see that these families 
are flat over the parameter-space. Hence none of these modules is of countable 
deformation type and in particular the singularities are not of countable CM- 
representation type. 

Putting everything together, we have almost completed the proof  of 
Theorem B. Using Theorem A, the equivalences in (1) as well as the equiva- 
lence of (i), (iii) and (iv) in (2) follow immediately. 

Now A~ deforms into the singularities of type A k and D~ into the singular- 
ities of type A k or Dk, hence these two singularities are of countable but not 
finite deformation type. 

The converse is essentially contained in Arnold's proof of the classification 
of simple singularities. A direct argument goes as follows: Let f define a 
singularity which is neither simple nor A~ or D~:. Since the deformation 
theory of fOl~ {z o . . . . .  z,} and f +  zZ+lel12 {z o . . . . .  z,+ l} is essentially the same, 
we may assume that m u l t ( f ) > 3 .  If n, the dimension of the singularity, is >2  
or if n = l  and m u l t ( f ) > 4 ,  the initial part of f defines a projective variety 
which has moduli, hence the singularity defined by f itself is not of countable 
deformation type. In case n = l ,  m u l t ( f ) = 3 ,  we may assume by Lemma 3.4 
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that, in suitable coordinates x, y, 

f ( x ,  y ) = x  3 4-ax2y  2 + b x y  4 4-c y ~ 

with a, b, cOE{x ,  y}. Replacing x 3 by x ( x +  2y 2) (x-t-2 2 y2), 2E~, gives a family 
of nonisomorphic singularities (blowing up two times exhibits exactly four 
points on a rational component  of the exceptional divisor, whose cross-ratio 
varies with )0. This completes the proof of Theorem B. 

4. MCM's  on A~ and D ~  

4.1. Let P be a two-dimensional noetherian regular local ring, ~.,~ecP the 
maximal ideal and x ,y  generators of #.~. We call a one-dimensional hyper- 
surface ring R 

A~, if R _~ P/(x2), or 

Do~, if g ~ P / (x  2 y). 

Proposition. Let M be an indecomposable MCM over A~.  Then M has a 
presentation 

O ~  P" ~ P"--+ M--+O 

with n = 1 or n = 2 and q one of  the following matrices 

n = 1: (X), (X 2) 

n = 2 :  ( ;  _yk) ,  k = 1 , 2 , 3  . . . . .  

Proof  Consider the short exact sequence 

O--, ker(x)--, M--+ x M--+O, 

where M is any MCM over A~. Both, ker(x) and x M  are torsion free L 
=P/(x)-modules.  Since L is a discrete valuation ring both modules are free L- 
modules, say 

x M~- L m , ker(x) ~ L", 
(x M may be 0). 

By a suitable choice of bases, the natural inclusion x M ~ k e r ( x )  is given by 
a diagonal matrix 

y~ n 

m 
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with O < k ~ < . . . < k  m. M is an extension of x M  by ker(x) and we obtain a 
presentation ~o 

O--, p n+m ~ p . + m  ~ M - - ,  0 

with 
yk~ 

".. 

- -X  

~176176 

n m 

m 

which shows that M is a direct sum of modules of the desired type. [] 

4.2. Proposition. Le t  M be an indecomposable MCM over Do~. Then M has a 
representat ion 

O ~  p~ ~ ~ pn ~ M__.O 

with n = 1 or n = 2 and qo one o f  the ]bl lowing matrices  

n = 1 : (x), (y), (x2),  (x y), (x 2 y) 

(0 'x)(o'  
Y k + l t ,  . . . .  

(O y --Yxk)'(0 - - xy  ! k=1 ,2 ,3 ,  

Proof. If M is any MCM over D~, it yields a short exact sequence 

O ~ k e r ( y ) ~  M ~ y M ~ O  

which exhibits M as an extension of the torsion free (hence MCM) Aoo =P/ (x2 )  - 

module y M by the free P / ( y ) - m o d u l e  ker(y). Using the classification of MCM's 
over Ao~ we obtain a presentation 

O--. p~ ~ p~ ~ M ~ O 
of M, where 

/y 

r 

1 

E 

Y 

x 0 0 

0 x yk~ 

0 - - x  

0 

P 

ykx 

0 

o/ 
- - X  
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with 0 < k  L < ... __<kr< 0% where we put y~:  =0,  yO.. = 1 and use the presentation 

coker (~ _ ; ) o f  coker(x2). The order of the generators o f y M  is chosen in 

such a way that we can apply the GauBalgori thm to E later on. q is the rank 
of ker(y) as P/(y)-module, p=2r (resp. p = 2 r + l )  in case the pairity of the 
summands  of y M isomorphic to (x) is even (resp. odd). 

Hence 

Ext~ (y M, ker y) ~ Ext~,(y M, ker y) 

~-(P/(x, y))Pq (as k= P/,~z-vectorspaces) 
,~ kP" q 

We now use the action of  Aut(ker(y))x Aut (yM)  on Ext~(yM, kery) via pul- 
lback and pushout  to simplify E:  

Claim. After suitable row and column operations on q~ the entries of  E are 
either 1 or 0 and no row and column of E contains more than one nonzero 
entry. 

Indeed: The orbits of the action of Gl(q,k)cAut(ker(y)) correspond to a 
point in the union of Grassmannians  ~ G(t,p); where t = r a n k E ,  E 
regarded as a q x p matrix. O<-t<-min(p,q) 

Hence we may assume that 

E =  

/ 0 . . .  1 * . . .  

0 . . . 0  0 . . .  

* 0 * 

* 0 * 

0 1 �9 

0 0 0 

where �9 indicates an arbitrary entry in k. 
Now use the action of Aut(yM),  i.e. row operat ions on E. For  the given 

order  of generators of  yM, the claim is easily checked, using k~ <k2<. . .<k  r 
and an induction on the cells of the Grassmannians.  

Passing now to a minimal presentation, we obtain a direct sum decom- 
position of M into modules of the desired type. E.g.: 

(i ~ )x 1 y 0 0| yk+l 
coker ~ coker . 

0 x yk - x  y 

0 0 - 
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