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COHEN’S LINEARLY WEIGHTED KAPPA IS A WEIGHTED AVERAGE
OF 2 × 2 KAPPAS

MATTHIJS J. WARRENS

TILBURG UNIVERSITY

An agreement table with n ∈ N≥3 ordered categories can be collapsed into n−1 distinct 2×2 tables
by combining adjacent categories. Vanbelle and Albert (Stat. Methodol. 6:157–163, 2009c) showed that
the components of Cohen’s weighted kappa with linear weights can be obtained from these n−1 collapsed
2 × 2 tables. In this paper we consider several consequences of this result. One is that the weighted kappa
with linear weights can be interpreted as a weighted arithmetic mean of the kappas corresponding to the
2 × 2 tables, where the weights are the denominators of the 2 × 2 kappas. In addition, it is shown that
similar results and interpretations hold for linearly weighted kappas for multiple raters.

Key words: Cohen’s kappa, merging categories, linear weights, quadratic weights, Mielke, Berry and
Johnston’s weighted kappa, Hubert’s weighted kappa.

1. Introduction

The kappa coefficient (Cohen, 1960; Brennan & Prediger, 1981; Zwick, 1988; Hsu & Field,
2003; Warrens 2008a, 2008b, 2010a, 2010b, 2010d), denoted by κ , is widely used as a descriptive
statistic for summarizing the cross-classification of two variables with the same unordered cat-
egories. Originally proposed as a measure of agreement between two raters classifying subjects
into mutually exclusive categories, Cohen’s κ has been applied to square cross-classifications
encountered in psychometrics, educational measurement, epidemiology (Jakobsson & Wester-
gren, 2005), diagnostic imaging (Kundel & Polansky, 2003), map comparison (Visser & de
Nijs, 2006), and content analysis (Krippendorff, 2004; Popping, 2010). The popularity of Co-
hen’s κ has led to the development of many extensions (Nelson & Pepe, 2000, p. 479; Kraemer,
Periyakoil, & Noda, 2004), including multi-rater kappas (Conger, 1980; Warrens, 2010e), kap-
pas for groups of raters (Vanbelle & Albert 2009a, 2009b), and weighted kappas (Cohen, 1968;
Vanbelle & Albert, 2009c; Warrens 2010c, 2011). The value of κ is 1 when perfect agreement be-
tween the two observers occurs, 0 when agreement is equal to that expected under independence,
and negative when agreement is less than expected by chance.

The weighted kappa coefficient (Cohen, 1968; Fleiss, Cohen, & Everitt, 1969; Fleiss & Co-
hen, 1973; Brenner & Kliebsch, 1996; Schuster, 2004; Vanbelle & Albert, 2009c), denoted by κw ,
was proposed for situations where the disagreements between the raters are not all equally im-
portant. For example, when categories are ordered, the seriousness of a disagreement depends
on the difference between the ratings. Cohen’s κw allows the use of weights to describe the
closeness of agreement between categories. Although the weights of κw are in general arbi-
trarily defined, popular weights are the so-called linear weights (Cicchetti & Allison, 1971;
Vanbelle & Albert, 2009c; Mielke & Berry, 2009) and quadratic weights (Fleiss & Cohen, 1973;
Schuster, 2004). In support of the quadratic weights, Fleiss and Cohen (1973) and Schuster
(2004) showed that κw with quadratic weights can be interpreted as an intraclass correlation
coefficient. A similar interpretation for κw with linear weights has been lacking however.
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The number of categories used in various classification schemes varies from the minimum
number of two to five in many practical applications. It is sometimes desirable to combine some
of the ordered categories (Warrens, 2010b), for example, when categories are easily confused
(Schouten, 1986). If the agreement table has ordered categories, it is reasonable to combine cate-
gories that are adjacent in the natural order, since these are likely to be confused. If the agreement
table has n ∈ N≥3 ordered categories, we can obtain n − 1 distinct 2 × 2 tables by combining
categories 1 through � and categories � + 1 through n for � ∈ {1,2, . . . , n − 1}. For each table,
we may then calculate the κ value, denoted by κ�. Vanbelle and Albert (2009c) showed that the
components of κw with linear weights can be obtained from the n − 1 collapsed 2 × 2 tables.
In the next section we will show that with this result these authors proved that κw with linear
weights can be interpreted as a weighted arithmetic mean of the κ� values. A similar property
for Cohen’s unweighted κ is discussed in Fleiss (1981, p. 218) and Kraemer (1979) (see also
Vanbelle & Albert, 2009a). Vanbelle and Albert (2009c) thus derived a new interpretation for κw

with linear weights.
The paper is organized as follows. In the next section we revisit the result proved in Vanbelle

and Albert (2009c) and present a shorter proof. We then present a direct consequence of Vanbelle
and Albert’s result, namely that κw with linear weights is a weighted average of the κ� values,
where the weights are the denominators of the κ� values. In Sections 3 and 4 we present anal-
ogous results for weighted kappas for three raters. In Section 3 we formally prove a conjecture
by Mielke and Berry (2009) on the multi-rater weighted kappa proposed in Mielke, Berry, and
Johnston (2007, 2008). In Section 4 we formulate a weighted version of a popular multi-rater
kappa that was first considered in Hubert (1977). To keep the notation relatively simple, we only
consider the case of three raters in Sections 3 and 4. Section 5 contains a discussion.

2. Weighted Kappa

Suppose that two raters each classify the same set of objects (individuals, observations) into
n ∈ N≥2 ordered categories that are defined in advance. To measure the agreement among the
two raters, a first step is to obtain an n × n agreement table F = {fij } where fij indicates the
number of objects placed in category i by the first rater and in category j by the second rater
(i, j ∈ {1,2, . . . , n}). If we divide the elements of F by the total number of objects, we obtain the
table of relative frequencies A = {aij }, which has the same size as F. For notational convenience,
we will work with A instead of F. The row and column totals

pi =
n∑

j=1

aij and qi =
n∑

j=1

aji

are the marginal totals of A. The linearly weighted kappa coefficient (Cohen, 1968) is defined as

κw = O − E

1 − E
, (1)

where

O =
n∑∑

i,j=1

[
1 − |i − j |

n − 1

]
aij and E =

n∑∑

i,j=1

[
1 − |i − j |

n − 1

]
piqj

are, respectively, the weighted observed and chance-expected agreements. If we replace the
weights

vij =
[

1 − |i − j |
n − 1

]
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TABLE 1.
Relative frequencies of classifications of 118 slides by two pathologists.

Pathologist 1 Pathologist 2 Row

1 2 3 4 5 totals

1 0.186 0.017 0.017 0 0 0.220
2 0.042 0.059 0.119 0 0 0.220
3 0 0.017 0.305 0 0 0.322
4 0 0.008 0.119 0.059 0 0.186
5 0 0 0.025 0 0.025 0.051
Column totals 0.229 0.102 0.585 0.059 0.025 1

of κw by vij = 1 if i = j and vij = 0 if i �= j for i, j ∈ {1,2, . . . , n}, then κw is equal to Cohen’s
(1960) unweighted κ . Furthermore, for the case n = 2, κw is equivalent to Cohen’s κ .

As an example, we consider the data in Table 1. This table contains the relative frequencies
of data presented in Landis and Koch (1977) and originally reported by Holmquist, McMahon,
and Williams (1968) (see also Agresti, 1990, p. 367). Two pathologists (pathologists A and B
in Landis & Koch, 1977, p. 365) classified each of 118 slides in terms of carcinoma in situ of
the uterine cervix, based on the most involved lesion, using the ordered categories (1) Negative,
(2) Atypical squamous hyperplasia, (3) Carcinoma in situ, (4) Squamous carcinoma with early
stromal invasion, and (5) Invasive carcinoma. We have O = 0.896, E = 0.704, and κw = 0.649.

The table of relative frequencies A can be collapsed into n − 1 distinct 2 × 2 tables A� with
� ∈ {1,2, . . . , n−1} by combining the categories 1 through � and categories �+1 through n over
the rows and columns. The 2 × 2 table A� has the elements

a11(�) =
�∑∑

i,j=1

aij , a12(�) =
�∑

i=1

n∑

j=�+1

aij ,

a21(�) =
�∑

j=1

n∑

i=�+1

aij , a22(�) =
n∑∑

i,j=�+1

aij ,

and the marginal totals

p1(�) =
�∑

i=1

pi, p2(�) =
n∑

i=�+1

pi,

q1(�) =
�∑

i=1

qi, q2(�) =
n∑

i=�+1

qi.

The proportions of observed and chance-expected agreement of table A� are given by

O� = a11(�) + a22(�) and E� = p1(�)q1(�) + p2(�)q2(�).

The four collapsed 2 × 2 tables for the data in Table 1, together with the corresponding propor-
tions of observed and chance-expected agreement and κ values, are presented in Table 2.

Vanbelle and Albert (2009c) showed that O and E in κw are the arithmetic means of respec-
tively O� and E� (identities (2) and (3) below). Since Theorem 1 below is a key result in this
paper, we present the proof for completeness. Furthermore, this proof of Theorem 1 is shorter
than the original proof.
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TABLE 2.
The four 2 × 2 tables that are obtained by combining adjacent categories of Table 1. The last column contains relevant
statistics for each table.

Pathologist 1 Pathologist 2 Row Statistics

1 2–5 totals

1 0.186 0.034 0.220 O1 = 0.924
2–5 0.042 0.737 0.780 E1 = 0.652

κ1 = 0.781
Column totals 0.229 0.771 1.00

1–2 3–5

1–2 0.305 0.136 0.441 O2 = 0.839
3–5 0.025 0.534 0.559 E2 = 0.520

κ2 = 0.664
Column totals 0.331 0.669 1.00

1–3 4–5

1–3 0.763 0 0.763 O3 = 0.847
4–5 0.153 0.085 0.237 E3 = 0.718

κ3 = 0.459
Column totals 0.915 0.085 1.00

1–4 5

1–4 0.949 0 0.949 O4 = 0.975
5 0.026 0.025 0.051 E4 = 0.926

κ4 = 0.655
Column totals 0.975 0.025 1.00

Theorem 1 (Vanbelle & Albert, 2009c). Consider an agreement table with n ∈ N≥3 categories
and consider the corresponding n − 1 distinct 2 × 2 tables A�. We have

O = 1

n − 1

n−1∑

�=1

O� (2)

and

E = 1

n − 1

n−1∑

�=1

E�. (3)

Proof: We first determine the arithmetic mean of the O� values. We have

O� =
�∑∑

i,j=1

aij +
n∑∑

i,j=�+1

aij

for � ∈ {1,2, . . . , n − 1} and

1

n − 1

n−1∑

�=1

O� = 1

n − 1

n−1∑

�=1

�∑∑

i,j=1

aij + 1

n − 1

n−1∑

�=1

n∑∑

i,j=�+1

aij . (4)

Consider the first triple summation on the right-hand side of (4). As � takes on the values 1
through n − 1, the element a11 is involved n − 1 times in the summation, the elements a12, a21,
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and a22 are involved n−2 times, and so on, whereas the elements ain and ani for i ∈ {1,2, . . . , n}
are involved none of the times. Hence,

1

n − 1

n−1∑

�=1

�∑∑

i,j=1

aij = 1

n − 1

n∑∑

i,j=1

[
n − max(i, j)

]
aij . (5)

In a similar way we have

1

n − 1

n−1∑

�=1

n∑∑

i,j=�+1

aij = 1

n − 1

n∑∑

i,j=1

[
min(i, j) − 1

]
aij . (6)

Using (5), (6), and |i − j | = max(i, j) − min(i, j), (4) is equal to

1

n − 1

n−1∑

�=1

O� =
n∑∑

i,j=1

[
(n − 1) − (max(i, j) − min(i, j))

n − 1

]
aij

=
n∑∑

i,j=1

[
1 − |i − j |

n − 1

]
aij = O.

Next, we determine the arithmetic mean of the E� values. We have

E� =
�∑

i=1

pi

�∑

j=1

qj +
n∑

i=�+1

pi

n∑

j=�+1

qj =
�∑∑

i,j=1

piqj +
n∑∑

i,j=�+1

piqj

for � ∈ {1,2, . . . , n − 1}. Then, using similar arguments as for the arithmetic mean of the O�

values, we obtain

1

n − 1

n−1∑

�=1

E� =
n∑∑

i,j=1

[
1 − |i − j |

n − 1

]
piqj = E.

This completes the proof. �

As an example of Theorem 1, consider the data in Table 2. We have

1

4

4∑

�=1

O� = 0.924 + 0.839 + 0.847 + 0.975

4
= 0.896 = O

and

1

4

4∑

�=1

E� = 0.652 + 0.520 + 0.718 + 0.926

4
= 0.704 = E.

We have the following immediate consequence of Theorem 1.

Corollary 1. Consider the situation in Theorem 1 and let κw denote the κw value of the n × n

agreement table. We have

κw =
∑n−1

�=1 w�κ�
∑n−1

�=1 w�

,
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where

κ� = O� − E�

1 − E�

and w� = 1 − E�

for � ∈ {1,2, . . . , n − 1}.
Proof: Using (2) and (3), we have

∑n−1
�=1 w�κ�

∑n−1
�=1 w�

=
∑n−1

�=1(O� − E�)
∑n−1

�=1(1 − E�)
= O − E

1 − E
= κw.

�

Thus, with Theorem 1, Vanbelle and Albert (2009c) in fact showed that κw with linear
weights can be interpreted as a weighted arithmetic mean of the κ� values of the 2 × 2 tables,
where the weights are the denominators of the κ� values. As an example of Corollary 1, consider
the data in Table 2. We have

∑4
�=1 w�κ�∑4
�=1 w�

= (0.348)(0.781) + (0.480)(0.664) + (0.282)(0.459) + (0.074)(0.655)

0.348 + 0.480 + 0.282 + 0.074

= 0.649 = κw.

In Sections 3 and 4 we show that analogous results can be derived for linearly weighted kappas
for multiple raters.

3. Mielke, Berry, and Johnston’s Weighted Kappa

Suppose that three raters each classify the same set of objects into n ∈ N≥2 ordered cate-
gories that are defined in advance. Suppose the data are in a three-dimensional agreement table
F = {fijk} of size n × n × n, that is, a table with n rows, columns, and pillars, where fijk indi-
cates the number of objects placed in category i by the first rater, in category j by the second
rater, and in category k by the third rater (i, j, k ∈ {1,2, . . . , n}). We assume that the categories
of the raters are in the same order in all three directions, so that the diagonal elements fiii for
i ∈ {1,2, . . . , n} reflect the number of objects put in the same categories by all three raters. If we
divide the elements of F by the total number of objects, we obtain the three-dimensional table of
relative frequencies P, which has the same size as F. For notational convenience, we will work
with P instead of F.

The row, column, and pillar totals

pi =
n∑∑

j,k=1

pijk, qi =
n∑∑

j,k=1

pjik, and ri =
n∑∑

j,k=1

pjki

are the marginal totals of P. The marginal totals pi , qi , and ri reflect, respectively, how often
the first, second, and third raters have classified an object into category i. The linearly weighted
kappa coefficient for three raters proposed in Mielke et al. (2007, 2008) is given by

κM
w = OM − EM

1 − EM , (7)

where

OM =
n∑∑∑

i,j,k=1

wijkpijk and EM =
n∑∑∑

i,j,k=1

wijkpiqj rk,



M.J. WARRENS 477

TABLE 3.
Five slices of the three-dimensional 5 × 5 × 5 table of relative frequencies of classifications of 118 slides by three
pathologists.

Pathologist 1 Pathologist 2 Category

1 2 3 4 5 Pathologist 3

1 0.153 0.008 0 0 0 Category 1
2 0.017 0.025 0.034 0 0 Total = 0.263
3 0 0 0 0 0
4 0 0 0.017 0 0
5 0 0 0 0 0.008

1 0.034 0.008 0.017 0 0 Category 2
2 0.025 0.034 0.085 0 0 Total = 0.356
3 0 0.017 0.136 0 0
4 0 0 0 0 0
5 0 0 0 0 0

1 0 0 0 0 0 Category 3
2 0 0 0 0 0 Total = 0.314
3 0 0 0.169 0 0
4 0 0.008 0.085 0.034 0
5 0 0 0.017 0 0

1 0 0 0 0 0 Category 4
2 0 0 0 0 0 Total = 0.051
3 0 0 0 0 0
4 0 0 0.017 0.025 0
5 0 0 0.008 0 0

1 0 0 0 0 0 Category 5
2 0 0 0 0 0 Total =0.017
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0.17

and where

wijk = 1 − |i − j | + |i − k| + |j − k|
2(n − 1)

.

If we instead use

wijk =
{

1 if i = j = k,

0 else,

then κM
w is equal to Mielke, Berry, and Johnston’s unweighted κ . The latter statistic satisfies

DeMoivre’s definition of agreement (Hubert, 1977, p. 296) and is a measure of simultaneous
agreement (Popping, 2010). Simultaneous agreement refers to the situation in which it is decided
that there is only agreement if all raters assign an object to the same category (see, for example,
Warrens, 2009). The superscript M in (7) is used to distinguish this linearly weighted kappa from
the one in (1).

As an example, we consider the data in Table 3. This table contains the 5 × 5 × 5 table of
relative frequencies of classifications of 118 slides by three pathologists (pathologists A, B, and
C in Landis & Koch, 1977, p. 365). We have OM = 0.814, EM = 0.563, and κM

w = 0.574.
As pointed out by Mielke and Berry (2009), the table of relative frequencies P can be col-

lapsed into n−1 distinct 2×2×2 tables P� with � ∈ {1,2, . . . , n−1} by combining the categories
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1 through � and categories � + 1 through n over the rows, columns, and pillars. The 2 × 2 × 2
table P� has the elements

p111(�) =
�∑∑∑

i,j,k=1

pijk, p112(�) =
�∑∑

i,j=1

n∑

k=�+1

pijk,

p121(�) =
�∑∑

i,k=1

n∑

j=�+1

pijk, p211(�) =
�∑∑

j,k=1

n∑

i=�+1

pijk,

p122(�) =
�∑

i=1

n∑∑

j,k=�+1

pijk, p212(�) =
�∑

j=1

n∑∑

i,k=�+1

pijk,

p221(�) =
�∑

k=1

n∑∑

i,j=�+1

pijk, p222(�) =
n∑∑∑

i,j,k=�+1

pijk

and marginal totals

p1(�) =
�∑

i=1

pi, p2(�) =
n∑

i=�+1

pi,

q1(�) =
�∑

i=1

qi, q2(�) =
n∑

i=�+1

qi,

r1(�) =
�∑

i=1

ri , r2(�) =
n∑

i=�+1

ri .

Note that the indices of Equations (10) to (16) in Mielke and Berry (2009, p. 443) are incorrect.
The proportions of observed and chance-expected agreement of table P� are given by

OM
� = p111(�) + p222(�) and

EM
� = p1(�)q1(�)r1(�) + p2(�)q2(�)r2(�)

for � ∈ {1,2, . . . , n − 1}. The four collapsed 2 × 2 × 2 tables for the data in Table 3, together
with the corresponding proportions of observed and chance-expected agreement and κ values,
are presented in Table 4.

Mielke and Berry (2009) conjectured that OM and EM are the arithmetic means of respec-
tively OM

� and EM
� (identities (9) and (10) below). These authors presented a data example to

support this notion. The notion is formally proved in Theorem 2. Equation (8) in Lemma 1 is
used in the proof of Theorem 2.

Lemma 1. Let i, j, k ∈ R. We have

|i − j | + |i − k| + |j − k|
2

= max(i, j, k) − min(i, j, k). (8)

Proof: Without loss of generality, let i ≤ j ≤ k. We have max(i, j, k) − min(i, j, k) = k − i.
Furthermore, using |i − j | = max(i, j) − min(i, j), we have
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TABLE 4.
Four three-dimensional 2 × 2 × 2 tables that are obtained by combining adjacent categories of Table 3. The last column
contains relevant statistics for each table.

Pathologist 3

1 2–5

Pathologist 1 Pathologist 2 Pathologist 2 Statistics

1 2–5 1 2–5

1 0.153 0.008 0.034 0.025 OM
1 = 0.805

2–5 0.017 0.085 0.025 0.653 EM
1 = 0.457

κM
1 = 0.641

Pathologist 3

1–2 3–5

Pathologist 1 Pathologist 2 Pathologist 2 Statistics

1–2 3–5 1–2 3–5

1–2 0.305 0.136 0 0 OM
2 = 0.678

3–5 0.017 0.161 0.008 0.373 EM
2 = 0.233

κM
2 = 0.580

Pathologist 3

1–3 4–5

Pathologist 1 Pathologist 2 Pathologist 2 Statistics

1–3 4–5 1–3 4–5

1–3 0.763 0 0 0 OM
3 = 0.805

4–5 0.127 0.042 0.025 0.042 EM
3 = 0.652

κM
3 = 0.440

Pathologist 3

1–4 5

Pathologist 1 Pathologist 2 Pathologist 2 Statistics

1–4 5 1–4 5

1–4 0.949 0 0 0 OM
4 = 0.966

5 0.025 0.008 0 0.017 EM
4 = 0.909

κM
4 = 0.626

|i − j | + |i − k| + |j − k|
2

= 2(k − i)

2
= k − i.

This completes the proof. �

Theorem 2. Consider a three-dimensional agreement table with n ∈ N≥3 categories and con-
sider the corresponding n − 1 distinct 2 × 2 × 2 tables P�. We have

OM = 1

n − 1

n−1∑

�=1

OM
� (9)



480 PSYCHOMETRIKA

and

EM = 1

n − 1

n−1∑

�=1

EM
� . (10)

Proof: We first determine the arithmetic mean of the OM
� values. We have

OM
� =

�∑∑∑

i,j,k=1

pijk +
n∑∑∑

i,j,k=�+1

pijk

for � ∈ {1,2, . . . , n − 1}. Using similar arguments as in the proof of Theorem 1, the arithmetic
mean of the OM

� values is

1

n − 1

n−1∑

�=1

OM
� = 1

n − 1

n−1∑

�=1

�∑∑∑

i,j,k=1

pijk + 1

n − 1

n−1∑

�=1

n∑∑∑

i,j,k=�+1

pijk

= 1

n − 1

n∑∑∑

i,j,k=1

[
n − max(i, j, k)

]
pijk

+ 1

n − 1

n∑∑∑

i,j,k=1

[
min(i, j, k) − 1

]
pijk

=
n∑∑∑

i,j,k=1

[
1 − max(i, j, k) − min(i, j, k)

n − 1

]
pijk. (11)

Using (8) in (11), we obtain

1

n − 1

n−1∑

�=1

OM
� =

n∑∑∑

i,j,k=1

[
1 − |i − j | + |i − k| + |j − k|

2(n − 1)

]
pijk = OM.

Next, we determine the arithmetic mean of the EM
� values. We have

EM
� =

�∑

i=1

pi

�∑

j=1

qj

�∑

k=1

rk +
n∑

i=�+1

pi

n∑

j=�+1

qj

n∑

k=�+1

rk

=
�∑∑∑

i,j,k=1

piqj rk +
n∑∑∑

i,j,k=�+1

piqj rk.

Then using similar arguments as for the OM
� values, we obtain

1

n − 1

n−1∑

�=1

EM
� =

n∑∑∑

i,j,k=1

[
1 − |i − j | + |i − k| + |j − k|

2(n − 1)

]
piqj rk = EM.

This completes the proof. �
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As an example of Theorem 2, consider the data in Table 4. We have

1

4

4∑

�=1

OM
� = 0.805 + 0.678 + 0.805 + 0.966

4
= 0.814 = OM

and

1

4

4∑

�=1

EM
� = 0.457 + 0.233 + 0.652 + 0.909

4
= 0.563 = EM.

A comparison of the proofs of Theorem 1 (Section 2) and Theorem 2 shows that a gener-
alization of Lemma 1 is a necessary tool for a proof in the more general case of four or more
raters.

Similarly to Corollary 1, we have the following immediate consequence of Theorem 2.

Corollary 2. Consider the situation in Theorem 2 and let κM
w denote the κM

w value of the n×n×n

agreement table. We have

κM
w =

∑n−1
�=1 w�κ

M
�∑n−1

�=1 w�

,

where

κM
� = OM

� − EM
�

1 − EM
�

and w� = 1 − EM
�

for � ∈ {1,2, . . . , n − 1}.

Proof: Using (9) and (10), we have

∑n−1
�=1 w�κ

M
�∑n−1

�=1 w�

=
∑n−1

�=1(OM
� − EM

� )
∑n−1

�=1(1 − EM
� )

= OM − EM

1 − EM = κM
w .

�

Corollary 2 shows that κM
w with linear weights can be interpreted as a weighted arithmetic

mean of the κM
� values of the 2 × 2 × 2 tables, where the weights are the denominators of the κM

�

values. As an example of Corollary 2, consider the data in Table 4. We have

∑4
�=1 w�κ

M
�∑4

�=1 w�

= (0.543)(0.641) + (0.767)(0.580) + (0.348)(0.440) + (0.091)(0.626)

0.543 + 0.767 + 0.348 + 0.091

= 0.574 = κM
w .

4. Hubert’s Weighted Kappa

Various authors have proposed generalizations of Cohen’s κ for three or more raters (Hubert,
1977; Conger, 1980; Artstein & Poesio, 2005; Warrens, 2010e). A popular generalization of
Cohen’s κ is the statistic that was first considered in Hubert (1977, p. 296, 297). This multi-
rater κ has been independently proposed by Conger (1980) and is discussed in Davies and Fleiss
(1982), Popping (1983), Heuvelmans and Sanders (1993), and Warrens (2008a). Furthermore,
Hubert’s multi-rater κ is a special case of the descriptive statistics discussed in Berry and Mielke
(1988) and Janson and Olsson (2001). In contrast to Mielke et al.’s (2007, 2008) multi-rater κ
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TABLE 5.
Relative frequencies of classifications of 118 slides by two pairs of pathologists.

Pathologist 1 Pathologist 3 Row

1 2 3 4 5 totals

1 0.161 0.059 0 0 0 0.220
2 0.076 0.144 0 0 0 0.220
3 0 0.153 0.169 0 0 0.322
4 0.017 0 0.127 0.042 0 0.186
5 0.008 0 0.017 0.008 0.017 0.051
Column totals 0.263 0.356 0.314 0.051 0.017 1

Pathologist 2 Pathologist 3 Row

1 2 3 4 5 totals

1 0.169 0.059 0 0 0 0.229
2 0.034 0.059 0.008 0 0 0.102
3 0.051 0.237 0.271 0.025 0 0.585
4 0 0 0.034 0.025 0 0.059
5 0.008 0 0 0 0.017 0.025
Column totals 0.263 0.356 0.314 0.051 0.017 1

(Section 3), Hubert’s (1977) multi-rater κ is based on the pairwise agreements between the raters
(Hubert, 1977, p. 296; Popping, 2010). In the pairwise definition of agreement, an agreement
occurs if two raters categorize an object consistently. Similar to κM

w from Section 3, Hubert’s
(1977) κ can be extended by including weights.

Consider the three-dimensional table P of size n × n × n with relative frequencies for three
raters from Section 3. P has marginal totals pi , qi , and ri . We can collapse the three-dimensional
table P into three distinct two-dimensional tables by summing all elements over either the rows,
columns, or pillars (Mielke & Berry, 2009). Let A = {aij }, B = {bij }, and C = {cij } denote these
agreement tables. We have

aij =
n∑

k=1

pijk, bij =
n∑

k=1

pikj , and cij =
n∑

k=1

pkij .

For example, if we add the five slices in Table 3, that is, if we sum all elements over the direction
corresponding to pathologist 3, we obtain Table 1, the 5 × 5 cross-classification between pathol-
ogists 1 and 2. The other two collapsed tables corresponding to the three-dimensional table in
Table 3 are the two 5 × 5 tables in Table 5.

Agreement tables A, B, and C are the pairwise agreement tables between, respectively, raters
1 and 2, 1 and 3, and 2 and 3. The pi and qi are the marginal totals of table A, the pi and ri the
marginal totals of table B, and the qi and ri the marginal totals of table C.

A linearly weighted kappa coefficient analogous to Hubert’s (1977) κ for three raters is given
by

κH
w = OH − EH

1 − EH , (12)

where

OH = 1

3

n∑∑

i,j=1

[
1 − |i − j |

n − 1

]
(aij + bij + cij )
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and

EH = 1

3

n∑∑

i,j=1

[
1 − |i − j |

n − 1

]
(piqj + pirj + qirj ).

The superscript H in (12) is used to distinguish this linearly weighted kappa from the ones in (1)
and (7). If we replace the weights

vij =
[

1 − |i − j |
n − 1

]

of κH
w by vij = 1 if i = j and vij = 0 if i �= j for i, j ∈ {1,2, . . . , n}, then κH

w is equal to Hubert’s
unweighted κ for three raters (Hubert, 1977; Conger, 1980). For the three 5×5 tables in Tables 1
and 5, we have OH = (0.896 + 0.864 + 0.867)/3 = 0.876, EH = (0.704 + 0.695 + 0.726)/3 =
0.708, and κH

w = 0.574.
The tables of relative frequencies A, B, and C can each be collapsed into n−1 distinct 2×2

tables A�, B�, and C� with � ∈ {1,2, . . . , n − 1} by combining the categories 1 through � and
categories �+ 1 through n over the rows and columns. The elements, row and column totals, and
the proportions of observed and chance-expected agreement of the 2 × 2 table A� were given in
Section 2. Combining the information of A�, B�, and C�, we have

OH
� = a11(�) + a22(�) + b11(�) + b22(�) + c11(�) + c22(�)

3

and

EH
� = p1(�)q1(�) + p2(�)q2(�) + p1(�)r1(�) + p2(�)r2(�) + q1(�)r1(�) + q2(�)r2(�)

3
.

Note that the OH
� and the EH

� are based on the pairwise agreement between the raters (Hubert,
1977; Popping, 2010).

The following result follows from Theorem 1.

Corollary 3. Consider a three-dimensional agreement table with n ∈ N≥3 categories, the corre-
sponding square tables A, B, and C, and the corresponding n − 1 distinct 2 × 2 tables A�, B�,
and C�. We have

OH = 1

n − 1

n−1∑

i=1

OH
� (13)

and

EH = 1

n − 1

n−1∑

�=1

EH
� . (14)

A direct consequence of Corollary 3 is the following result.

Corollary 4. Consider the situation in Corollary 3 and let κH
w denote the κH

w value of the agree-
ment tables A, B, and C. We have

κH
w =

∑n−1
�=1 w�κ

H
�∑n−1

�=1 w�

,
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where

κH
� = OH

� − EH
�

1 − EH
�

and w� = 1 − EH
�

for � ∈ {1,2, . . . , n − 1}.

Proof: Using (13) and (14), we have

∑n−1
�=1 w�κ

H
�∑n−1

�=1 w�

=
∑n−1

�=1(OH
� − EH

� )
∑n−1

�=1(1 − EH
� )

= OH − EH

1 − EH = κH
w.

�

Corollary 4 shows that κH
w with linear weights can be interpreted as a weighted average of

the κH
� values corresponding to the three 2 × 2 tables of the pairs of raters, where the weights are

the denominators of the κH
� values.

5. Discussion

A frequent criticism formulated against the use of weighted kappa (Cohen, 1968) is that the
weights are arbitrarily defined (Vanbelle & Albert, 2009c). In support of the quadratic weights,
Fleiss and Cohen (1973) and Schuster (2004) showed that weighted kappa with quadratic weights
can be interpreted as an intraclass correlation coefficient. Similar support for the use of the linear
weights has been lacking. In this paper we showed that Vanbelle and Albert (2009c) derived
an interpretation for the weighted kappa coefficient with linear weights. An agreement table
with n ∈ N≥3 ordered categories can be collapsed into n − 1 distinct 2 × 2 tables by combining
adjacent categories. Vanbelle and Albert (2009c) showed that the components of the weighted
kappa with linear weights can be obtained from the n − 1 collapsed 2 × 2 tables. In Section 2
we proved that these authors in fact showed that the linearly weighted kappa may be interpreted
as a weighted average of the individual kappas of the 2 × 2 tables, where the weights are the
denominators of the 2 × 2 kappas (Corollary 1).

The property formalized in Corollary 1 actually preserves in some sense an analogous prop-
erty for Cohen’s unweighted κ (Kraemer, 1979; Fleiss, 1981; Vanbelle & Albert, 2009a). An
n × n agreement table with unordered categories can be collapsed into a 2 × 2 table by combin-
ing all categories other than the one of current interest into a single “all others” category. For an
individual category, the κ value of this 2 × 2 table is an indicator of the degree of agreement.
The κ value of the original n × n table is equivalent to a weighted average of the n individual κ

values of the 2 × 2 tables, where the weights are the denominators of the 2 × 2 kappas. It can
be checked with a data example that the weighted kappa with quadratic weights is not equivalent
to the weighted average using the denominators of the 2 × 2 kappas as weights. It is however
unknown whether “the weighted average” interpretation is unique to the linearly weighted kappa.

In Sections 3 and 4 we presented results and interpretations similar to Theorem 1 and Corol-
lary 1 for linearly weighted kappas for multiple raters, namely, Mielke et al.’s (2007, 2008)
weighted κ and Hubert’s weighted κ . The latter statistic extends the unweighted multi-rater κ

discussed in Hubert (1977). To keep the notation relatively simple, the definitions and the re-
sults for these statistics were formulated for the case of three raters. By extending Theorem 2,
Lemma 1, and Corollary 4, the results may also be formulated for the general multi-rater case.
Hubert’s multi-rater κ is based on the pairwise agreements between the raters (Hubert, 1977,
p. 296; Popping, 2010). In the pairwise definition of agreement, an agreement occurs if two
raters categorize an object consistently. Mielke, Berry, and Johnston’s κ is a measure of simulta-
neous agreement (Popping, 2010). Simultaneous agreement refers to the situation in which it is
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decided that there is only agreement if all raters assign an object to the same category. To calcu-
late Hubert’s kappa, we require all pairwise agreement tables between the raters. The application
of Mielke, Berry, and Johnston’s κ is slightly more restricted. For this statistic, we require the
full multidimensional agreement table between all raters. How to conduct statistical inference
on Hubert’s kappa is discussed in Hubert (1977). The variance of and confidence intervals for
Mielke, Berry, and Johnston’s weighted kappa are discussed in Mielke et al. (2007, 2008).

Another statistic that is often regarded as a generalization of Cohen’s unweighted κ is the
multi-rater statistic proposed in Fleiss (1971). Artstein and Poesio (2005), however, showed that
this statistic is actually a multi-rater extension of Scott’s (1955) π (see also Popping, 2010).
Similar to Hubert’s (1977) multi-rater κ , Fleiss’ (1971) statistic incorporates pairwise agreements
between the raters (Hubert, 1977, p. 296; Popping, 2010). Using (pi +qj )/2 instead of the pi and
qj used in Section 4, we would obtain a weighted version of Fleiss’ (1971) π (Conger, 1980;
Warrens, 2010e), which shows that Fleiss’ multi-rater π is a special case of Hubert’s κ . It is
therefore possible to formulate results analogous to Corollaries 3 and 4 for Fleiss’ π .

Acknowledgements

The author thanks four anonymous reviewers for their helpful comments and valuable sug-
gestions on an earlier version of this paper.

References

Agresti, A. (1990). Categorical data analysis. New York: Wiley.
Artstein, R., & Poesio, M. (2005). NLE technical note: Vol. 05-1. Kappa3 = alpha (or beta). Colchester: University of

Essex.
Berry, K.J., & Mielke, P.W. (1988). A generalization of Cohen’s kappa agreement measure to interval measurement and

multiple raters. Educational and Psychological Measurement, 48, 921–933.
Brennan, R.L., & Prediger, D.J. (1981). Coefficient kappa: some uses, misuses, and alternatives. Educational and Psy-

chological Measurement, 41, 687–699.
Brenner, H., & Kliebsch, U. (1996). Dependence of weighted kappa coefficients on the number of categories. Epidemi-

ology, 7, 199–202.
Cicchetti, D., & Allison, T. (1971). A new procedure for assessing reliability of scoring EEG sleep recordings. The

American Journal of EEG Technology, 11, 101–109.
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 213–

220.
Cohen, J. (1968). Weighted kappa: Nominal scale agreement with provision for scaled disagreement or partial credit.

Psychological Bulletin, 70, 213–220.
Conger, A.J. (1980). Integration and generalization of kappas for multiple raters. Psychological Bulletin, 88, 322–328.
Davies, M., & Fleiss, J.L. (1982). Measuring agreement for multinomial data. Biometrics, 38, 1047–1051.
Fleiss, J.L. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin, 76, 378–382.
Fleiss, J.L. (1981). Statistical methods for rates and proportions. New York: Wiley.
Fleiss, J.L., & Cohen, J. (1973). The equivalence of weighted kappa and the intraclass correlation coefficient as measures

of reliability. Educational and Psychological Measurement, 33, 613–619.
Fleiss, J.L., Cohen, J., & Everitt, B.S. (1969). Large sample standard errors of kappa and weighted kappa. Psychological

Bulletin, 72, 323–327.
Heuvelmans, A.P.J.M., & Sanders, P.F. (1993). Beoordelaarsovereenstemming. In Eggen, T.J.H.M., & Sanders, P.F. (Eds.)

Psychometrie in de Praktijk (pp. 443–470). Arnhem: Cito Instituut voor Toestontwikkeling.
Holmquist, N.S., McMahon, C.A., & Williams, E.O. (1968). Variability in classification of carcinoma in situ of the

uterine cervix. Obstetrical & Gynecological Survey, 23, 580–585.
Hsu, L.M., & Field, R. (2003). Interrater agreement measures: comments on kappan, Cohen’s kappa, Scott’s π and

Aickin’s α. Understanding Statistics, 2, 205–219.
Hubert, L. (1977). Kappa revisited. Psychological Bulletin, 84, 289–297.
Jakobsson, U., & Westergren, A. (2005). Statistical methods for assessing agreement for ordinal data. Scandinavian

Journal of Caring Sciences, 19, 427–431.
Janson, H., & Olsson, U. (2001). A measure of agreement for interval or nominal multivariate observations. Educational

and Psychological Measurement, 61, 277–289.
Kraemer, H.C. (1979). Ramifications of a population model for κ as a coefficient of reliability. Psychometrika, 44, 461–

472.



486 PSYCHOMETRIKA

Kraemer, H.C., Periyakoil, V.S., & Noda, A. (2004). Tutorial in biostatistics: kappa coefficients in medical research.
Statistics in Medicine, 21, 2109–2129.

Krippendorff, K. (2004). Reliability in content analysis: some common misconceptions and recommendations. Human
Communication Research, 30, 411–433.

Kundel, H.L., & Polansky, M. (2003). Measurement of observer agreement. Radiology, 288, 303–308.
Landis, J.R., & Koch, G.G. (1977). An application of hierarchical kappa-type statistics in the assessment of majority

agreement among multiple observers. Biometrics, 33, 363–374.
Mielke, P.W., & Berry, K.J. (2009). A note on Cohen’s weighted kappa coefficient of agreement with linear weights.

Statistical Methodology, 6, 439–446.
Mielke, P.W., Berry, K.J., & Johnston, J.E. (2007). The exact variance of weighted kappa with multiple raters. Psycho-

logical Reports, 101, 655–660.
Mielke, P.W., Berry, K.J., & Johnston, J.E. (2008). Resampling probability values for weighted kappa with multiple

raters. Psychological Reports, 102, 606–613.
Nelson, J.C., & Pepe, M.S. (2000). Statistical description of interrater variability in ordinal ratings. Statistical Methods

in Medical Research, 9, 475–496.
Popping, R. (1983). Overeenstemmingsmaten voor Nominale Data. Unpublished doctoral dissertation, Rijksuniversiteit

Groningen, Groningen.
Popping, R. (2010). Some views on agreement to be used in content analysis studies. Quality & Quantity, 44, 1067–1078.
Schouten, H.J.A. (1986). Nominal scale agreement among observers. Psychometrika, 51, 453–466.
Schuster, C. (2004). A note on the interpretation of weighted kappa and its relations to other rater agreement statistics

for metric scales. Educational and Psychological Measurement, 64, 243–253.
Scott, W.A. (1955). Reliability of content analysis: the case of nominal scale coding. Public Opinion Quarterly, 19,

321–325.
Vanbelle, S., & Albert, A. (2009a). Agreement between two independent groups of raters. Psychometrika, 74, 477–491.
Vanbelle, S., & Albert, A. (2009b). Agreement between an isolated rater and a group of raters. Statistica Neerlandica,

63, 82–100.
Vanbelle, S., & Albert, A. (2009c). A note on the linearly weighted kappa coefficient for ordinal scales. Statistical

Methodology, 6, 157–163.
Visser, H., & de Nijs, T. (2006). The map comparison kit. Environmental Modelling & Software, 21, 346–358.
Warrens, M.J. (2008a). On similarity coefficients for 2×2 tables and correction for chance. Psychometrika, 73, 487–502.
Warrens, M.J. (2008b). On the equivalence of Cohen’s kappa and the Hubert–Arabie adjusted Rand index. Journal of

Classification, 25, 177–183.
Warrens, M.J. (2009). k-adic similarity coefficients for binary (presence/absence) data. Journal of Classification, 26,

227–245.
Warrens, M.J. (2010a). Inequalities between kappa and kappa-like statistics for k × k tables. Psychometrika, 75, 176–

185.
Warrens, M.J. (2010b). Cohen’s kappa can always be increased and decreased by combining categories. Statistical

Methodology, 7, 673–677.
Warrens, M.J. (2010c). A Kraemer-type rescaling that transforms the odds ratio into the weighted kappa coefficient.

Psychometrika, 75, 328–330.
Warrens, M.J. (2010d). A formal proof of a paradox associated with Cohen’s kappa. Journal of Classification, 27, 322–

332.
Warrens, M.J. (2010e). Inequalities between multi-rater kappas. Advances in Data Analysis and Classification, 4, 271–

286.
Warrens, M.J. (2011). Weighted kappa is higher than Cohen’s kappa for tridiagonal agreement tables. Statistical Method-

ology, 4, 271–286.
Zwick, R. (1988). Another look at interrater agreement. Psychological Bulletin, 103, 374–378.

Manuscript Received: 19 AUG 2010
Final Version Received: 17 NOV 2010
Published Online Date: 30 MAR 2011


	Cohen's Linearly Weighted Kappa is a Weighted Average of 2x2 Kappas
	Abstract
	Introduction
	Weighted Kappa
	Mielke, Berry, and Johnston's Weighted Kappa
	Hubert's Weighted Kappa
	Discussion
	Acknowledgements
	References


