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A general theory of coherent behavior (“locking”) in a globally coupled ensemble of pulse-emitting
units is presented. Each unit is modeled as a dynamic threshold device with arbitrary excitability
function and noise. The interaction is described by a general linear-response kernel that includes
a transmission delay. In the bulk limit, the dynamics is solved exactly. Two types of solutions are
studied, viz., coherent states with synchronous activity of all units and incoherent stationary states,
and their stability is analyzed in the low-noise limit.
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Large ensembles of simple dynamic units can spon-
taneously switch into a state of collective synchronized

activity. This “locking” effect [1] is known in fields as -

different as statistical physics [2-9], chemistry [10], and
biology [11]. More recently the synchronized blinking of
fireflies [12,13] and the coherent activity of neurons in
the brain [14,15] have attracted an increased amount of
theoretical interest [16-19]. Here, we present and ana-
lyze a general model of these phenomena with several
new aspects. First, in contrast to most other models of
ensemble locking, a single unit of the network is not de-
scribed by a phase variable or nonlinear oscillator, but
rather by a stochastic threshold element with a recovery
cycle. Such a pulse-emitting element is similar to, but
different from, the integrate-and-fire units which have re-
cently been studied in the context of collective synchro-
nization [8,9,13]. Second, the interaction between units
is given by a general linear-response kernel e(s) which
includes transmission delays and can be adapted to de-
seribe various model systems. Third, a new stability cri-
terion for locked oscillations is given which is different
from the one discussed by Mirollo and Strogatz [13]. Fi-
nally, the stability analysis yields a regime of bistability
in which fast and slow oscillations coexist. This result is
illustrated by simulations.

We start by considering a network of IV linearly cou-
pled threshold elements. Each unit 1 < i £ N is de-
scribed by an internal variable A;(¢). If, at time t;fe , the
field h; reaches the threshold 8, a short signaling pulse is
transmitted to all other elements of the network. At the
same time a predominantly negative contribution 7(s) is
added to h; that resets the internal variable

hi(t) = R$(E) +n(t — t]), (1)

where h§*t(t) describes the external field due to the sig-
nals from other units j # 4.

The excitability function n(s) describes the (usually re-
duced) excitability immediately after signal emission at
s = 0. In other words, it represents a refractory behavior.
Typically, it is given by a dead time A? with 7(s) = —o0
for 0 < s < A9, followed by a period of reduced ex-

citability, described by, e.g., n(s) = —[no|/(s — A%). On
the other hand, it may also include one or more periods of
increased excitability, e.g., n(s) = —|no| exp(—s/s0) cos s,
favoring bursts of pulses [20]. In case of a constant ex-
ternal field, A$**(t) = ho > 0, the behavior of a single
unit can be described as a cyclic process of signal emis-
sion and recovery with a period T}, given by the threshold
condition Ty = inf[s|ho + n(s) = 6].

Noise is included by the introduction of the probability
Pg of signal emission

Pg(h; 6t) = 6t/7(h), (2)

where 6t is an infinitesimal time interval. The time con-
stant 7(h) depends on the variable A and a noise param-
eter 8, ie., 7(h) = moexp[—0G(h — 6)]. In the noiseless
case (8 — 00), we recover the strict threshold condition:
The unit does not emit a signal if b < 8 (v — co), but it
does so immediately if A > 0.

After a transmission delay, a signal emitted by unit ¢
is received by all other elements j # ¢ of the ensemble
where it evokes some excitatory or inhibitory response.
The time dependence of the response is described by the
response function €(s) which vanishes for s < A*™ where
A¥ is the signal transmission time. The actual shape
of e(s) depends on the specific model of a physical sys-
tem under consideration. The simplest case is a delayed
& pulse €(s) = 6(s — A¥™). In their model of firefly ac-
tivity, Mirollo and Strogatz [13] consider the Heaviside
function ¢(s) = ©(s). If a sinusoidal function is cho-
sen, e.g., €(s) = sin(27s/Ty), the model becomes simi-
lar to but is not identical with the Kuramoto model [2].
In the context of neural nets, a delayed o function [21]
€(s) = [(s — A%) /72 exp[—(s — A¥)/75] for 5 > A¥
can describe the time course of a neuron’s response to a
presynaptic signal. For the sake of simplicity we assume
throughout the paper that €(s) is the same function for
all units. Using the concept of sublattice (see below) it is
straightforward to introduce a finite number of different
response functions by assigning a specific characteristic
to each neuron.

Apart from the time course e(s), we also include
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weights J;; which model the amplitude of the response.
Here we assume that the J;; depend only on local proper-
ties of the sender j and the receiver ¢ and not on topologi-
cal distance. Then all elements with identical local prop-
erties x can be gathered into a common class, the sub-
lattice L(x) [22]. The number of elements in a given sub-
lattice will be denoted by Np(x). Thus, if ¢ € L(x) and
j € L(y), then J;; can be written as J;; = N~1J(x,y).
With these abbreviations, the total external field on a
receiving element ¢ € L(x) is

N (%)
Rt () =S Ty > et —tf)
j=1 f=1
—ZN—lJ xy) > Ze(t—tf) (3)

JEL(y) f=1

Connection weights of the form N~1J(x,y) are widely
used in the context of neural nets [23,24]. The simplest
case, J(x,y) = Jo, describes a uniform coupling of all
elements in the ensemble.

Analytic solution—Equations (1)—(3) describe the dy-
namics of signal emission and reception in an ensemble
of stochastic threshold elements. Using the concept of
sublattice magnetization [22], one can obtain the gen-
eral solution which describes the macroscopic dynamics
of the ensemble. Let A(x,t)At denote the mean number
of signals emitted in a time interval At by the units in
sublattice L(x). In the limit of N — oo, the activity
A(x) is given by

Axt) = [ " s,y A s tlds,  (4)

where p(x, s, t) is the probability to find a unit i € L(x)

which has been quiescent during a time s after the last

firing and 77 [h(x, s,t)]6t = Pg[h(x,s,t)] is the proba-
bility of signal emission. It is determined by the field

Ak s8) = 3 760) | % (& )p(y)Aly,t — ')ds’

_I_nref ( S) ) ( 5)
The first term on the right is the external field (3) and
the second term represents the excitability of a unit that
has spent a time s without firing,.
The time evolution of units which have been quiescent
during a time s > 0 is governed by

pt05,8) == (e, 0]+ o ) pxs,8). (O

The factor 77 1[h(x, s, t)] describes the decay due to sig-
nal emission and d/ds is a drift term. Integration of (6)
combined with (4) allows us to derive a solution to the

global dynamics of the system in terms of the activity
A(x, 1),

A(x,t) = /ooo ds A(x,t — )1 1[h(x, 5, )]

X exp (—/ 77 Hh(x, ', t — s+ s’)]ds') ,
0

n

with h given by (5).

Note the dependence of A upon the history of the sys-
tem which is represented by three integrations over time.
To discuss the nature of the solutions we consider two
special cases, synchronous (coherent) and asynchronous
(incoherent) signaling. .

Stationary states; incoherent signal emission. n.—Inco-
herent signal emission can be defined by the condition
A(x,t) = A(x). In this case, the integrals in (7) and (5)
can be done exactly. What remains is a normalization
condition which states that the acitivity A(x) of a sub-
lattice L(x) is equal to the mean rate of szgna,l emission

~ f of a unit with field h**(x), i.e.,

Alx) = [he"t(X)]— (ZP(Y)IIEIIJ(X,Y)A(y)> (8)

with |l¢]| = [, e(s)ds. Expression (8) is a fixed-point
equation. Its solutions describe the stationary states of
incoherent signal emission. Though Eq. (8) is equivalent
to a naive mean-field solution of the network, it is de-
rived here from a genuinely dynamical approach. Note
that neither the response €(s) nor the excitability n(s)
enter (8) explicitly. The function f(h) is the gain func-
tion of a single unit and summarizes the effects of signal

" emission and recovery in terms of a single output param-

eter f. For a given set of model parameters, f is given
by

Fho) = [ /0 ~ dsexp (— /0 sTfl[n(s') + hext]d‘s")] -
o ' )

That is, the rate f is the inverse of the mean interval
between two subsequent signals. In the noiseless case,
one finds f(R°*t) = T, where T, = inf[s|h®* +n(s) = 6]
is the period of signal emission of a single unit driven by
the field hext,

We now turn to a stability analysis for the incoherent
state. Since we have delays we must consider dynamic
fluctuations. We restrict ourselves to the noiseless case
and J(x,y) = Jo. Linearization of (7) in the neighbor--
hood of the fixed point A yields the continuity equation

AW - A6 -T) =~ 2 A -T)o],  (10)
where the “veloc1ty” v is given by the perturbation Ah(t) '
and the excitability, viz., v(t) = Ah(t)[(d/ds)nlT,] ™. As
before, T}, is the period of signal emission in a,‘sta.tionary
state. A standard ansatz A(t) = A + A; exp(iwt) yields
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the bifurcation points

2| sin(wTp/2)| = J“"“‘(‘*’)l“ w, (11)
E
with the phase condition
wlp/2=a for 2kn <wlp/2<(2k+ 1w, (12)

and wTp/2 =o — 7 otherwise. Here |&(w)|exp(—ia) =
I e(s)yexp(— zws)ds ‘denotes the Fourier transform of
the response function. In a weakly coupled system the
right-hand side of (11) is small. Thus, dynamic instabil-
ities may occur at a frequency w, = n(2r/Tp)(1 + kp)
with kK, < 1 and n a positive integer.

For a given shape of the response function, i.e., fixed
|é(w)], the phase equation (12) can be used to derive con-
ditions on the transmission delay A'* that guarantee the
dynamic stability of an incoherent state. It turns out
that for all delays A% the incoherent state is unstable
with respect to at least one of the oscillatory modes wy,;
see Fig. 1. Since, however, in realistic systems higher
harmonics are suppressed by noise, only the modes with
low frequencies need to be considered. By increasing the
noise one destabilizes even these and the incoherent state
becomes stable.

Locked oscillations; coherent signal emission.—The

above stability analysis does not predict the form of os--

cillatory solutions beyond the linear regime. It is, how-
ever, possible to start at the other end, guess a coher-
ent solution, verify its stability, and find that it is a
completely different state. As above, we restrict our-
selves to the noiseless case (8 — oo) and a uniform
network J(x,y) = Jy. Coherent activity can be de-
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FIG. 1. Top: The negative of the excitability function
—1(s) (dashed line) and the response function e(s) (solid
line) for various transmission delays (left: A = 2.0; middle:
AY = 3.4; right A = 7.0). We assume © = 0. In this case,
the crossing point ¢(sq) = —n(so) yields the period of coherent
oscillatory activity, Tosc = so. The oscillation is stable only if
(d/ds)e(s0) > O as for the right curve (arrow). It is unstable
for the left curve and critical for A* = = 3.4. Bottom:
Stability in the noiseless case as a function of A%. Locking
is stable for A* > A, (locking regime, grey). Whatever A",
the incoherent state is always unstable. The frequency wy, of
the dominant oscillatory mode is indicated (w; = 27/T}).
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fined by the condition that all units emit signals at the
same time. We assume that synchronous signaling is re-
peated with a period Togc, i.€., the solution is of the form
A(t) = D07 58(t + ndese) for t < 0. Tose is.then ob-
tained self-consistently and determmed by the threshold
condition

T9§c = inf {s l (JO i e(ns)) +n(s) = 6] . (13)

n=1

If e(s) is a fast decreasing function so that
| > o €(nTosc)| K |6(Tose)|, then (13) allows a simple
graphical interpretation. The first crossing point of e(s)
with —n(s) (shifted by 6) yields the period of the coher-
ent oscillations (Fig. 1). Higher harmonics can be found
by a similar argument.

To study the stability of coherent oscillations we as-
sume that all units have fired synchronously at times .
t = —nTese, wWith n = 0,1,2,..., except unit § which
did not fire at ¢ = 0 but has been late by a time At. This
is a local fluctuation. Stability then requires that the de-
lay be reduced during the next period; i. e if j emits the
next signal at time t:{ we should have tJ — Toge < At
From the threshold condition (13} we find to first order

in At
-1
b
TOSC )

(14)

t_{ _Tosc _ i
At ds!

d

T

nTosc

~ d
O

n=1.

which should be less than 1. For a typical excitability
function we have (d/ds)n(s) > 0 for all s > 0. In caseof a
quickly decaying response function, the locking condition
is thus simply -& €lT,,. > 0, that is, at Tosc the response -
function € should have an upward slope.. A graphical
" “interpretation of this result is given in Fig. 1.

We note that, in contrast to the argument of Mirollo
and Strogatz [13], concavity of the excitability function
is not required. The elegant reasoning of these authors is
limited to the case of a Heaviside response function, i.e.,

€(s) = O(s). In this case (d/ds)e(s) = 0 holds for all s >
0 and, to first order, no locking occurs. A second-order
expansion in At then yields the concavity requirement.

Summarizing, we have presented an analytical solution
for the macroscopic states in a globally coupled network
of stochastic pulse-emitting elements. Both the internal
excitability n(s) and the response to external signals e(s)
are modeled by arbitrary functions which can be adjusted
to fit specific requirements. The shape of these func-
tions, the delay AY, and the initial conditions determine
whether the system will end up in an incoherent state of
asynchronous activity or rather in a coherent state of pe-
riodic, synchronous firing. As an example we consider the
response function €(s) = [(s — A¥)/8] exp[—(s — A¥)/2]
for s > A" (and 0 for s < AY) combined with an
excitability n(s) = (4 — s)~! for s > 4 (and —oco for
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FIG. 2. Simulation of an ensemble of 1000 units (parame- (1988). B

ters as in Fig. 1 with A% = 7.0; noise 8 = 20). Depending on
the initial conditions, the system either relaxes into a locked
coherent oscillation (Tosc = 7.3) or into a fast small-amplitude
oscillation (n = 3) around the incoherent state.

0 < s < 4); see Fig. 1. The results of a stability analysis
as a function of A% have been plotted in the lower part of
Fig. 1. Given a delay of A = 7.0, locking into a coherent
oscillation is possible. The stationary state, however, is
unstable with respect to the n = 3 oscillatory mode, and
we expect a much faster oscillation. This type of bista-
bility is shown in two simulation runs with an identical
set of parameters but different initial conditions (Fig. 2).
If the system is prepared suitably, locking occurs despite
the noise (@ = 20) and the system oscillates coherently.
On the other hand, the n = 3 instability shows up as
a fast small-amplitude oscillation around the incoherent
stationary state.

The general approach of our theory allows a description
of locking phenomena in various ensembles of pulse-emit-
ting units—independent of the type of signaling, be it
optical, acoustical, electrical, or biochemical. All param-
eters of the model are, in principle, susceptible to experi-
mental measurement. The theory can also be adapted to
include a distribution of transmission delays and internal
parameters. Thus a whole range of phenomena can be
described from a unifying point of view.
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