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Abstract. This paper concerns the description and the pre-

dictability of a freak event when at a certain position infor-

mation in the form of a time signal is given. The prediction

will use the phase information for an estimate of the position

and time of the occurrence of a large wave, and to predict

the measure of phase coherence at the estimated focussing

position. The coherence and the spectrum will determine an

estimate for the amplitude. After adjusting for second order

nonlinear effects, together this then provides an estimate of

the form of a possible freak wave in the time signal, which

will be described by a pseudo-maximal signal. In the excep-

tional case of a fully coherent signal, it can be described well

by a so-called maximal signal.

We give four cases of freak waves for which we com-

pare results of predictions with available measured (and sim-

ulated) results by nonlinear AB-equation (van Groesen and

Andonowati, 2007; van Groesen et al., 2010). The first case

deals with dispersive focussing, for which all phases are

(designed to be) very coherent at position and time of fo-

cussing; this wave is nearly a maximal wave. The second

case is the Draupner wave, for which the signal turns out

to be recorded very close to its maximal wave height. It is

less coherent but can be described in a good approximation

as a pseudo-maximal wave. The last two cases are irregu-

lar waves which were measured at MARIN (Maritime Re-

search Institute Netherlands); in a time trace of more than

1000 waves freak-like waves appeared “accidentally”. Al-

though the highest wave is less coherent than the other two

cases, this maximal crest can still be approximated by a

pseudo-maximal wave.

1 Introduction

In this paper we consider extreme waves that can “acci-

dentally” appear in irregular, uni-directional wave fields

with very broad spectrum and relatively low value of the

Benjamin-Feir index (BFI). These waves satisfy the common

definition (Dysthe et al., 2008; Slunyaev et al., 2005; Kharif

and Pelinovsky, 2003) of rogue, or freak, wave that the wave

height exceeds two times the significant wave height. How-

ever, different from much current research on rogue waves,

the modulational instability does not play a (dominant) role.

Instead of nonlinearly dominated waves, the extreme waves

here will appear at position and time of a high degree of

coherence, in the sense that many wave components con-

tribute to a linearly dominated constructive interference phe-

nomenon. This agrees with Gemmrich and Garrett (2008)

that many extreme waves are merely the simple consequence

of linear superposition. For realistic wind waves, this co-

herence may be just as important as nonlinear effects (which

may have played a role to obtain the coherence, and may en-

force the linear converging of group lines near the extreme

event). In fact, we will show that the well-known Draupner

(or New Year) wave (Haver, 2004), measured in the North-

Sea, shows a high degree of coherence while its BFI of ap-

proximately 0.55 (Janssen, 2003; Adcock and Taylor, 2009c)

is below the critical threshold value 1. In addition, we will

show similar extreme waves that were generated accidentally

in experiments on irregular waves in a wave tank at MARIN

hydrodynamic laboratory. In two experiments and successive

numerical calculations, with in total more than 2300 waves

that were observed evolving downstream above a flat bot-

tom over a distance of at least 30 wavelengths, 3 of such

rogue events could be identified. Measurements and numer-

ical simulations show a relatively gradual growth and decay

before and after the rogue event. This long-life character

does not satisfy the other characterization of rogue waves that

these should appear suddenly and disappear quickly. Also, as

has also been shown for four other measured freak events in

the North Sea (Slunyaev et al., 2005), the linear and non-

linear simulations show remarkable little difference in shape

and wave height, although with some difference of position

and time due to nonlinear effects in propagation speed.
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Referring to wave tank experiments by Shemer et al.

(2010); Shemer and Sergeeva (2009), it should be no-

ticed that these experiments were designed to study BFI-

dominated rogue waves. In these experiments, narrow band

Jonswap spectra with γ = 7 and some narrow Gaussian spec-

tra are considered. The coherence reported in (Onorato et al.,

2006; Shukla et al., 2006) refers to the phase coupling be-

tween free wave and the higher order bound waves due to

nonlinear wave generation. But since the free waves have

random phase, these experiments can be seen as a bridge be-

tween the pure “soliton” (Akhmediev-breather; Akhmediev

et al., 2011) rogue waves that generate a triangle spectrum

shape from an initially very narrow spectrum, and the low

valued BFI irregular waves (obtained for broad band Jon-

swap spectra with γ = 3) as will be described here.

In this paper we will characterize and discuss in various

ways the appearance of extreme events and the role played

by coherence as a constructive interference property. By this

is meant that the phase nearly vanishes for waves in a consid-

erable interval around the peak frequency. Together with the

almost linear evolution property, this fact makes it possible

to design a prediction method for this type of rogue waves.

We will show that from a given elevation signal measured

at some observation point, the position, time and profile of

the rogue event can be rather well predicted over distances

of 30 or more wave lengths. The method searches for the

freak event by looking for the position and time such that

the total phase, obtained by linear evolution of the observed

phase, has minimal variance. Supported by linear and non-

linear numerical simulations and experimental observations,

the predictions of rogue events for the Draupner and for the

MARIN waves will be investigated and compared.

The contents of the paper can be described as follows.

Sections 2 and 3 deal with the effect of partial or complete

constructive interference. In Sect. 2 we consider time sig-

nals, obtained when vanishing phases in a so-called max-

imal wave create fully constructive interference at a cer-

tain instant. For a Jonswap spectrum as example, the ef-

fect of partial interference is investigated. For fixed random

phase θ(ω) ∈ (−π,π], signals with a fraction of that phase,

so phase αθ(ω) ∈ α(−π,π], are investigated for increasing

α ∈ [0,1]. Upon increasing α until for α = 1 the irregular

signal (fully random) is obtained, the highest elevation in the

maximal signal will decrease while the background grows,

with clusters of larger and smaller waves depending on α.

The details of the full signal depend on the choice of the ini-

tial phase function θ , but the average over random phases for

fixed α, produces a so-called pseudo-maximal wave, which

is shown to be a scaled version of the maximal wave, with

scaling amplitude tending to zero for α → 1.

In Sect. 3 we show the corresponding process for lin-

ear waves, and investigate the effects of 2nd order nonlin-

ear Stokes contributions (detailed formulas are given in Ap-

pendix A). The linear propagation modifies the phase with

K(ω)x where x is the displacement, and K(ω) the wave

number related to ω. The nonlinear contributions, for real-

istic cases of wind waves in a coastal area, change the spec-

trum. But the changes are mainly in the long-wave compo-

nents (leading to wave set-down) and slightly in the higher

components but mainly in a neighbourhood of the double

peak frequency, as expected. The nonlinear effects on the

maximal wave are small, and just as well for the irregular

wave, except for some different propagation speed.

In line with these observations, we formulate in Sect. 4 the

prediction method based on the minimization of the phase

variance over time and space. And we describe in detail

4 study cases; after a specially designed experiment for dis-

persive focussing, we investigate the Draupner wave and two

irregular MARIN waves. The prediction method is shown to

be capable to detect the extreme waves reasonably well.

In the final Sect. 5 we conclude with some additional re-

marks and conclusions.

2 Signal coherence: from maximal to irregular signals

2.1 Notation

Since waves in the ocean are described at each point by a

time signal, we first consider real valued signals with zero

mean defined on a time interval [0,T ]. We introduce some

notation, and then derive a priori estimates for the highest

possible wave heights. In the following we describe the re-

lation between a function s(t) and its Fourier transform š(ω)

using notation with integrals as

s(t) =
∫ ωmax

−ωmax

š(ω)e−iωtdω and š(ω) = 1

2π

∫ T

0

s(t)eiωtdt

Here ωmax = 2π/ △ t and 2π/T =△ ω will be used because

in practical situations we deal with discrete signals sampled

with some time step △ t . From the real-valuedness of the sig-

nal we have š(ω) = š(−ω) (the bar denoting complex conju-

gation) and for the phase θ(ω) = −θ(−ω). Hence

s(t) =
∫ ωmax

−ωmax

š(ω)e−iωtdω =
∫ ωmax

−ωmax

|š(ω)|eiθ(ω)e−iωtdω

= 2

∫ ωmax

0

|š(ω)|cos(θ(ω)−ωt)dω

(1)

Parceval’s identity links the L2−norms of the signal and its

FT:
∫ T

0

s2(t)dt = 2π

∫ ωmax

−ωmax

|š(ω)|2dω = 4π

∫ ωmax

0

|š(ω)|2dω

We define the variance and standard deviation σ of the signal,

σ 2 = Var(s) = 1

T

∫ T

0

s2(t)dt

= 4π

T

∫ ωmax

0

|š(ω)|2dω = 2 △ ω

∫ ωmax

0

|š(ω)|2dω

(2)
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the significant wave height Hs as Hs = 4σ , the (one-sided)

spectrum E(ω) such that

∫ ωmax

0

E(ω)dω = var(s),

so E(ω) = 2 △ ω|š(ω)|2 = 4π
T

|š(ω)|2, and higher order mo-

ments

mn =
∫ ωmax

0

ωnE(ω)dω

2.2 Maximal signal

From

|s(t)| =2

∣

∣

∣

∣

∫ ωmax

0

|š(ω)|cos(θ(ω)−ωt)dω

∣

∣

∣

∣

≤
∫ ωmax

−ωmax

|š(ω)|dω

(3)

it is seen that the inequality is actually an equality if at some

time the cosine is identically 1. This can happen (only) if

the total phase φ(ω) = θ(ω)−ωt vanishes for all ω at that

time, say at t = Tfoc. Then the signal has its maximal possible

value:

max
t

s(t) = s(Tfoc) =
∫

|š(ω)|dω if θ(ω)−ωTfoc = 0

For this reason we will call a signal with all phases zero at

some time a maximal signal,

smax =
∫ ωmax

−ωmax

|š(ω)|cos(ω(t −Tfoc))dω; (4)

at Tfoc all wave components contribute to a constructive in-

terference. We will show maximal signals for a spectrum

given by a Jonswap spectrum that is commonly used to de-

scribe developing wind wave fields. The specific expression

is given by

EJon(ω) =Ag2
(ωp

ω

)5

exp

(

−5

4

(ωp

ω

)4
)

γ r ,

r =exp

[

− 1

2ς2

(

ω

ωp

−1

)2
] (5)

The parameter γ specifies the narrow bandedness of the spec-

trum; the choice γ = 3 is taken for most realistic coastal sit-

uations and provides a broad band spectrum. Meanwhile the

parameter A is related to the wave amplitude. We took as

illustration A = 0.0408; these values are motivated by study

cases of irregular MARIN waves in Sect. 4.2. The ς is de-

fined as ς = 0.007 if ω ≤ ωp and ς = 0.009 if ω > ωp. In

Fig. 1 the dotted, solid and dashed line corresponds with

γ = 1.5, γ = 3, and γ = 7 respectively (the narrow spectrum

for γ = 7 was used in Shemer et al., 2010).

0 0.5 1 1.5 2 2.5
0

2

4

6

8

ω/ω
p

Fig. 1. The Jonswap spectrum, EJon(ω), where A = 0.0408 and

γ = 1.5 (dotted), γ = 3 (solid), γ = 7 (dashed).
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Fig. 2. The maximal signal corresponding to Jonswap spectrum

with γ = 3.

In order to see the maximal crest height of a wave with

the Jonswap spectrum, we give an example for γ = 3. The

plot of the maximal signal of Jonswap spectrum for γ = 3

is given in Fig. 2. This maximal signal has significant wave

height about 3.4 m and the maximal possible amplitude is

approximately 19 m. From Fig. 2 we can see that the wave

is confined to an interval of length equal to 8 peak periods.

Outside the interval the wave nearly vanishes.

2.3 Phase effects

For the maximal signal above, all phases vanish at one posi-

tion. In this section we investigate the effect of non-vanishing

phases which may be partly coherent or random.

An irregular signal is obtained in case the phases are uni-

formly distributed in (−π,π]. To investigate cases in be-

tween a completely random signal and a fully coherent max-

imal signal, we will consider signals with ’cut-off’ phases.

That is, for given random function θ(ω) ∈ (−π,π ], we con-

sider for α ∈ [0,1] signals with phase θα = αθ . Although not

much can be said about an individual signal, the ensemble

averaged signal at fixed α, denoted by

[s]α =Average

∫ ωmax

−ωmax

|š(ω)|cos(θα (ω)−ω(t −Tfoc))dω

∣

∣

∣

∣

,

θα ∈αU (−π,π)

(6)

is interesting. Using the Strong Law Large Number (Ross,

2007) it can be shown that this average is a scaled version

www.nonlin-processes-geophys.net/19/199/2012/ Nonlin. Processes Geophys., 19, 199–213, 2012
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Fig. 3. Jonswap signal with significant wave height of 3.4 m and

random phases in α(−π,π] in which α = 0.6, α = 0.8, and α = 1.

of the maximal signal. We will call this average a pseudo-

maximal signal; it can be written as

[s]α = ρ(α)smax

where the scaling factor is

ρ(α) = sin(απ)

απ

For identically vanishing phases, the maximal signal was

already shown in Fig. 2. In the plots of Fig. 3 we show

for a given Jonswap spectrum EJon(ω) with γ = 3, the ef-

fect of phases. For a fixed random phase θ(ω) ∈ (−π,π ],
we illustrate the effect of adding a fraction of that phase

αθ(ω) ∈ α(−π,π], for increasing α ∈ [0,1]. Upon increas-

ing α, the extreme wave is decreasing while the background

grows. The original extreme wave may disappear com-

pletely, while in the background clusters of larger and smaller

waves are formed, depending on α and on the specific ran-

dom function θ(ω); characteristic effects are visible in Fig. 3.

3 Wave coherence and pm-waves

In this section we illustrate for synthetic cases that wave co-

herence plays an important role in the appearance of extreme

events in irregular wave trains. Extreme events will appear

at instants and positions of a high degree of coherence, to be

defined precisely in the following. This will prepare for the

examples in the next section, and will motivate the prediction

method of freak waves.

Furthermore, we will show by investigating the evolution

over longer periods and positions, that away from the fo-

cussing area, the wave has still a considerable amplitude

over a long range. Stated differently, the extreme wave is

not an isolated phenomenon on an almost flat sea, but builds

up gradually and disappears gradually back into the back-

ground. Since these phenomena are observed in linear as

well as in nonlinear irregular waves, we will investigate ef-

fects of nonlinearity, effects on the spectrum as well on the

wave evolution.

3.1 Pseudo-max waves

A wave evolution in 1-D denoted by the surface elevation

η(x,t) describes at each position x the signal t → η(x,t). In

fact, for a given elevation signal sobs(t) at one observation

point Xobs, we can describe the uni-directional linear evolu-

tion as

η(x,t) =
∫

|šobs(ω)|cos(8(t,x,ω))dω (7)

where 8(t,x,ω) = K(ω)(x −Xobs)+θobs(ω)−ωt is the to-

tal wave phase, K(ω) is the wave number related to the fre-

quency by the dispersion relation. For exact dispersion of

infinitesimal waves, K is the inverse of � given by

�(k) = sign(k)
√

gk tanh(kD)

where g is the gravitational acceleration and D is the water

depth.

We determine the focussing position and time (Xfoc,Tfoc)

at which the phase variance

PV (x,t) =V ar(8(t,x,ω))

=
∫ ωmax

0

|8(t,x,ω)|2dω

is minimal, so-called PVfoc. In practice we compute the

phase variance over an interval of the dominant frequencies

[ωmin,ωmax]. We define Ŵ as the degree of coherence,

Ŵ = 1−PVfoc.

For given random phase θα = αθ as described in the

pseudo-maximal signal from Sect. 2.3, the phase variance

can be computed to be PV(θα) = (απ)2/3. Conversely, for

Nonlin. Processes Geophys., 19, 199–213, 2012 www.nonlin-processes-geophys.net/19/199/2012/
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arbitrary phases, we will take this relation to define α to cor-

respond with the phase variance. In particular at focussing

we define

α2
foc = 3

π2
PVfoc

and then define a pseudo-maximal (pm) wave as

ηpm(x,t) = ρ(αfoc)

∫

|šobs(ω)|cos(8(t,x,ω))dω (8)

with total wave phase 8(t,x,ω) = K(ω)(x −Xfoc) −
ω(t −Tfoc). This pseudo-max wave will model the neigh-

bourhood of the extreme event.

Figure 4 shows the density plots for the linear evolu-

tion of Jonswap waves with a restricted random phase for

α = 0,0.6,0.8, and 1. Besides that, we present the density

of the variance of the total wave phase. Those density plots

are shown in a frame moving with the group velocity. From

both densities we can observe the position and the propaga-

tion of the wave with α = 0 or α = 0.6; the development of

the high wave into the focussing wave is noticeable and the

position of the minimal phase variance (PV) which shows the

focussing position is prominent. The case with α = 0.8 does

not show the high waves clearly and the position of the fo-

cussing is hardly visible. For α = 1, the Jonswap signal is

purely random and there is no clear extreme wave.

3.2 Nonlinear effects

In this section we will take into account the nonlinear wave

contributions, therefore we can investigate the importance of

nonlinearity, especially in some cases we study here. From

laboratory observation, a focussing signal has nonzero phase

at low frequencies; there is a generated nonlinear interaction

which causes a nonlinear set-down contribution. Moreover, a

second order set-up contribution might appear. The effect of

the nonlinear interaction should be involved as suggested by

Clamond and Grue (2002), especially for highly-nonlinear

phenomenon of freak wave. Therefore a nonlinear pm-wave

needs to be designed to describe an extremal wave profile

more precisely.

A nonlinear pm-wave will now be defined by adding the

second-order contributions to the linear pm-wave; we neglect

the higher order contributions. The quadratic nonlinear in-

teraction of two waves with frequencies ω1 and ω2 produces

higher-order waves with possible frequencies of 0, 2ω1, 2ω1,

ω1 +ω2, and ω1 −ω2. The general interactions for pair of

waves have been given by Dalzell (1999). For the irregular

waves we are dealing with, we sum up all the two waves in-

teractions. The full expression of the nonlinear pm-wave is

then given by:

ηpm(x,t) = ρ(αfoc)
(

I01 +I02 +Ip +Im

)

(9)

I01 =
∫

|š(ω)|cos(8(x,t))dω

I02 =
∫

|š(ω)|2(B0(k)+B2(k)cos(28(x,t)))dω

Ip =
∫ ∫

|š(ω2)š(ω2)|Bp(k1,k2)cos(81 +82)dω1dω2

Im =
∫ ∫

|š(ω2)š(ω2)|Bm(k1,k2)cos(81 −82)dω1dω2,

where 8(x,t) = K(ω)(x −Xfoc)−ω(t − Tfoc) and the co-

efficients B0, B2, Bp, and Bm are symmetric functions of

K(ω) defined in Appendix A. The first term is the linear pm-

wave defined in Eq. (8). I02 is the contribution generated by

two identical frequencies. Ip and Im are the contributions

of two different frequencies; Im gives a set-down contribu-

tion. According to (Chen, 2006) this set-down contribution

is actually much more significant than the classical Stokes

term. This set-down makes it possible for a nonlinear wave

to have a lower amplitude than the linear wave. The effect

of the second-order contributions will be shown in Jonswap

spectrum case in Sect. 3.2.1. The linear part is a so-called

“free” wave, meaning that the wave number and frequency

satisfy the dispersion relation. The other quadratic waves are

so-called bound waves: the sum or difference of the wave

numbers and the corresponding frequencies do not satisfy the

dispersion relation and hence would not satisfy individually

the wave equations, but their “bounded” connection with the

constituent free waves does satisfy the law of wave propaga-

tion.

The maximal signal corresponding to a given time signal

is symmetric in time around the time of focussing Tfoc. Since

a pseudo-maximal signal is just a scaled version of a maxi-

mal signal, the same holds true for a pseudo-maximal signal.

Similarly, a (linear) maximal and a pm-wave is symmetric in

time around Tfoc, and just as well symmetric in space around

position Xfoc. From the nonlinear interactions shown above,

it follows that even nonlinear corrections will respect these

symmetry properties.

3.2.1 Effects on spectrum

A Jonswap spectrum is a spectrum that is supposed to de-

scribe realistic random sea waves, thereby neglecting long

waves. Consequently the spectrum contains contributions

from free and bound waves. To see the contribution of the

bound waves, we plot in Fig. 5 an example of a Jonswap

spectrum (solid). Then we construct and plot the spectrum

obtained by removing the second order bound waves and

long waves (dashed line), so-called free-wave Jonswap. The

subtraction of bound waves changes the original Jonswap

spectrum by short wave removal that starts at 1.65 times the

peak frequency, and annihilates practically all waves above

2ωp. If we then add second order nonlinear contributions

to this free-wave spectum, we almost precisely recover the

original Jonswap spectrum; a small overshoot near 2.3 ωp is

www.nonlin-processes-geophys.net/19/199/2012/ Nonlin. Processes Geophys., 19, 199–213, 2012
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Fig. 4. In successive rows we show plots of the linear evolution of Jonswap waves with a random phase restricted for α = 0,0.6,0.8 and 1,

respectively. At the left density plots are shown of the evolution in a frame moving with the group velocity (horizontal axis, time vertical

axis with normalized units). At the right, with the same axis the evolution of the density of the phase variance is shown.

Nonlin. Processes Geophys., 19, 199–213, 2012 www.nonlin-processes-geophys.net/19/199/2012/
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Fig. 5. Top: The original Jonswap spectrum (solid), the free-wave

Jonswap spectrum without bound waves (dashed), and the free-

wave spectrum with nonlinear contributions (dotted). Bottom: The

zoomed version.
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Fig. 6. The maximal signals corresponding to the original Jonswap

spectrum (solid), the free-wave spectrum (dashed) and correspond-

ing to the free-wave spectrum with nonlinear contributions (dotted,

behind the solid line).

the only difference. This is visible in the enlarged lower plot

in Fig. 5.

To investigate the nonlinear effects on the signals, we con-

sider the maximal signals corresponding to the 3 spectra

above. In Fig. 6 we plotted the maximal signal of the original

Jonswap (solid), the maximal signal of the free-wave Jon-

swap (dashed) and the maximal signal of the free-wave spec-

trum with the nonlinear additions (dotted, invisible behind

the solid line). The plots show that the high frequency con-

tributions make only little difference for the maximal signal.

3.2.2 Effects on wave evolution

In this section we present the nonlinear wave evolution of

the four cases of Jonswap signal as shown in Fig. 7. In

the extreme case of the Jonswap signal with zero phases,

the difference of the linear (see Fig. 4) and nonlinear evo-

lution shows itself mainly in the propagation speed and wave

height. The highest amplitude in the nonlinear evolution ap-

pears earlier than in the linear evolution; a similar behaviour

is seen for the case of the Jonswap signal with random phases

in 0.6(−π,π].
For Jonswap signal with α = 0 which is a maximal wave,

the density plot of the nonlinear evolution is not as smooth as

the linear evolution. Around the focussing position and for

α = 0.6 we can observe the symmetry of the waves. The am-

plitude of the nonlinear wave is higher than the linear wave,

as can be observed from the color bar in Fig. 7. For Jon-

swap signal with α = 0.8 or α = 1 which is mostly random,

the difference between linear and nonlinear evolution is more

difficult to see.

4 Freak wave prediction method and study cases

The description in the previous section leads to a simple and

direct strategy to make predictions of the highest wave that

will occur during the wave evolution. In the first subsec-

tion we describe the method for linear dispersive evolution

to which we will restrict. This strategy will then be applied

in four study cases in Sect. 4.2.

4.1 Linear Prediction method

Starting point is a given time signal sobs(t) at a given posi-

tion Xobs. The length of the time interval of the signal is

essential; despite some dispersive broadening of that inter-

val while evolving away from Xobs, predictions can only be

made within this (with distance shifted) time interval.

From the phase information of sobs(t) we determine the

variance of the total wave phase, and look at its minimal

value in space and time, finding (Xfoc,Tfoc), PVfoc and the

coherence Ŵfoc. Using the spectrum of sobs(t), and calculat-

ing the phase band αfoc related to Ŵfoc, we obtain the pseudo-

maximal wave with parameter αfoc.

It will be shown in the study cases that this pm-wave will

approximate the highest wave that occurs in the linear wave

evolution from the observed signal η(x,t) in a neighbour-

hood of (Xfoc,Tfoc); in particular (Xfoc,Tfoc) estimates the

position and time of the appearance of this highest wave.

But also the shape of the time signal at Xfoc : t → η(Xfoc,t)

for times near Tfoc will be well approximated by the pseudo-

maximal signal. We can actually reconstruct a more reliable

signal prediction ηfoc which is the signal of the linear wave

evolution at position Xfoc:

ηfoc(t) =
∫

|š(ω)|cos(8(t −Tfoc,Xfoc,ω))dω (10)
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Fig. 7. Similar as Fig. 4 left column, but now for nonlinear

evolution, the waves with Jonswap spectrum and restricted phase

α(−π,π] with α = 0,0.6,0.8 and 1.

In the following we will compare predictions with numer-

ical simulations. Although the numerical results are not cru-

cial for the main results presented here, we use linear and

nonlinear simulations to compare with the linear-based pre-

dictions. When we talk about linear simulations in the fol-

lowing, this refers to simulations for the linear evolution with

the exact dispersion relation (using a spectral method). Sim-

ulations with the AB-model refer to a nonlinear spectral code

that has been described in various publications (van Groesen

and Andonowati, 2007; van Groesen et al., 2010; van Groe-

sen and Andonowati, 2011). Specifically, in (van Groesen

and van der Kroon, 2012) the freak wave of the study case

IW12 and in (van Groesen et al., 2011) the freak wave of the

study case IW9 have been described in detail.

4.2 Study cases

The four study cases, for which measurements are avail-

able to test our descriptions and predictions of appearance of

freak waves, are a dispersive focussing wave in a wave tank,

MARIN experiment 202002, the Draupner wave with eleva-

tion measurement obtained from Sverre Haver of Statoil, and

two irregular waves of Jonswap type, which were measured

at MARIN but scaled (1 : 50 in space) to geophysical dimen-

sions. For the irregular waves, the first case is IW12, Marin

experiment 103001 with peak period 12 s and the second case

is IW9, Marin experiment 102003 with peak period 9 s.

For each case we follow the same strategy and show plots

to illustrate the findings, which are summarized in a conclu-

sive table at the end. From elevation heights at a certain po-

sition Xobs we predict the pseudo-maximal wave: its coher-

ence Ŵ, the position Xfoc and time Tfoc of focussing, and de-

termine from that the maximal crest height and the maximal

wave height at the moment of focussing. For the Draupner

wave and the irregular waves we also provide the significant

wave height and the Benjamin Feir index BFI as calculated

at Xfoc. The BFI is a measure of the quotient of nonlinear-

ity and spectrum width. Various versions were described in

the literature (Shemer, 2010); we will use the definition from

Janssen (2003), BFI=
√

2ǫ
△ω/ωp

. Since we are dealing with de-

terministic waves, we define the nonlinearity ǫ by karms (arms

is the root mean square amplitude) as suggested in (Kharif

et al., 2009; Osborne et al., 2005; Slunyaev, 2006). The

spectral width △ω is defined according to the energy level

that corresponds to half of the spectral peak value (Shemer,

2010) and ωp is the peak frequency.

4.2.1 Dispersive focussing

This first study case is a designed wave at MARIN based

on the principle of dispersive wave focussing. The maximal

wave height is more than five times the highest waves at the

generation position. As we will show, at time and position

of focussing, the wave is almost perfectly a maximal wave

that can be accurately predicted from the initial signal at the
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Fig. 8. Measured time signal at Xobs = 10 m of the focussing wave.

Table 1. Parameters for the dispersive focussing wave.

CASE Focussing wave

Depth 1 m

Position Xobs 10 m

Prediction Simulation Meas

Meas position linear AB 50

Xfoc 50.05 50.1 50.2

Tfoc 109.3 109.34 109.4 109.3

Ŵ (coherence) 1 0.99 0.99 0.99

Max Crest height 0.061 0.053 0.057 0.055

Max Waveheight 0.086 0.081 0.081 0.08

observation position. In this case, the observation position is

Xobs = 10 m. The initial signal is shown in Fig. 8.

First we compute the coherence by minimizing the vari-

ance of the total wave phase. Using spectrum and phase in-

formation of the initial signal, the variance of the total wave

phase by choosing ωmin = 1.26 and ωmax = 8.85 is found to

be minimal for Tfoc = 109.3 and Xfoc = 50.05 ; the minimal

value is PVfoc = 0.001; the value of coherence Ŵ is 0.999

(nearly fully coherent). Thus the extremal wave profile at

focussing can be described well by a maximal signal.

The left Fig. 9 shows the linear and nonlinear maximal

signal; the right one compares the time signal of the AB-

simulation result at focussing and the nonlinear maximal sig-

nal (the highest crests are fitted at t = 109.4 s), including the

spectrum and the phase. We use the spectrum and the phase

to show the differences caused by nonlinear effect. In this

case the nonlinear correction does not significantly affect the

amplitude of the linear maximal signal. The effect of adding

the second-order nonlinear corrections is almost invisible.

The right Fig. 9 shows that the nonlinear maximal signal fol-

lows the actual focussing behaviour and perfectly models the

extremal wave profile at focussing. For both low frequen-

cies and high frequencies the spectrum is lifted up similar to

the actual evolution by AB-simulation, although a bit lower.

By observing the phase, we know the nonlinear correction in

maximal signal yields long waves set down with phase π or

−π in about ω < 1 as in the actual evolution.

The minimal variance of the total wave phase is obtained

at (50.05;109.3): the linear prediction leads to a focussing

point at x = 50.05 m and focussing time of t = 109.3 s. This

can be seen from Fig. 10 showing the density plot of the

phase variance as a function of x and t : the minimal phase

variance is quite well visible since the area of minimal phase

variance is very small and is surrounded by much higher val-

ues. To validate the predicted focussing position, the actual

evolution is calculated by nonlinear AB simulation. The val-

idation at the precise focussing position could not be done by

measurement because of the limited number of the measured

positions, but the nearby measurement at 50 m confirms the

simulation results. Some other results of the AB-simulation

are shown in Fig. 11. In the nonlinear AB simulation for

which the density of the evolution is shown in the lower

plot of Fig. 11, the extreme wave occurs at x = 50.2 m with

the time focussing at t = 109.4 s. The upper plot of Fig. 11

presents the maximal temporal amplitude (the highest ampli-

tude at each position during the time evolution) of the linear

and nonlinear evolution by AB model, showing that the lin-

ear and nonlinear AB simulations do not differ significantly.

The detailed comparison is presented in Table 1, confirming

that the linear prediction agrees very well with the nonlinear

evolution.

4.2.2 Draupner wave

The Draupner wave (also called New Year wave) is a point

measurement at approximately 70 m depth under the Draup-

ner platform (16/11-E) in the North Sea off the coast of Nor-

way. The measurement of this time signal is 20 min long. We

will first show that the wave shape at the Draupner position

XDr is well approximated by a pm-signal by adjusting the

height to the observed crest height.

To compare the Draupner wave with a pm-wave, we ob-

serve that the maximal wave corresponding to the spectrum

would have crest height 37.5 m, instead of the actual height

of 18.5 m. The ratio 18.5/37.5 = 0.49 is taken as multiplica-

tion factor of the maximal wave, which is precisely a pm-

wave with α = 0.6 and coherence Ŵ = 0.88. The plots of the

Draupner wave (solid) and the shifted pm-wave (dashed) are

shown in Fig. 13.

Using the observed signal at XDr we predict that actually

an even higher wave has occurred at a few meters distance. In

the following we take for convenience XDr = 0. To test pre-

diction capacity over longer distances, we simulate a back-

ward (nonlinear) evolution to a synthetic observation posi-

tion Xsynth = XDr −400, and use the (nonlinearly corrected)

linear prediction method to determine the pm-wave from the

signal information at Xsynth.

To predict from Xsynth the position of the extreme wave,

the minimal value of the phase variance is computed; Fig. 15

shows the density plot of the phase variance. In this case, we

restrict the frequencies to calculate the phase variance to the

interval ω ∈ (0.25;1) as the linear wave contribution seems to

be dominant in this interval. Then the minimal value of the

phase variance is PVfoc = 0.12, which leads to α = 0.6. This
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Fig. 9. We show in the left column the comparison between properties for the linear (solid) and the nonlinear maximal signal (dashed), and

in the right column a comparison between properties of the nonlinear maximal signal (solid) and AB-simulations started at X = 10 m of the

signal at X = 50.2 m (dashed). In the upper row for the signals, in the middle row for the spectrum, and in the lower row for the phase.

Fig. 10. The zoomed density plot of the variance of the total wave

phase PV(x,t). The minimal value PVfoc is shown in black.

value of α is related to a pseudo-maximal wave with scaling

factor of 0.5.

With the linear prediction, the most coherent wave is found

at x = 9 m and t = 1.1 s which is shown in Fig. 13, approxi-

mately the position of the Draupner wave with 1.1 s shifted.

The plot of the signal prediction from Xsynth is also shown

in Fig. 13. Table 2 provides parameters of the prediction and

the AB evolution using the initial time signal at Xsynth, and

of the measurement.

Fig. 11. Top: Maximal Temporal Amplitude of linear (dashed) and

nonlinear (solid) AB simulation; Bottom: Density plot of the non-

linear AB simulation.
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Fig. 12. The Draupner signal, with time of highest wave crest put

at t = 0
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Fig. 13. Draupner Wave (solid), Pm-signal (dashed), and Signal

prediction (dotted line) which has been shifted so that the highest

peak is at t = 0.

4.2.3 Irregular waves

The last two study cases of irregular waves provide a more re-

alistic situation than the Jonswap example treated in Sect. 3.

Although there are measurement positions more or less close

to the highest wave appearance, we used simulations to com-

pare the prediction results and compare wave shapes at the

focussing.

The examples presented here show that irregular wave can

generate freak events. In the laboratory experiment the freak

wave appeared accidentally in a time record of about 30 min.

Actually, at the end of the tank there was a 1:20 slope to study

coastal effects, but we will restrict here to the waves above

the flat part of the tank; reflections from the slope (and tank

boundaries) were small and not relevant for our considera-

tions.

In our description below, the dimensions and results are

scaled to a geophysical situation with a spatial factor of 50,

and corresponding temporal factor of
√

50.

4.2.4 Irregular wave IW12

We use as initial time signal the surface elevation of an ir-

regular wave as measured 39.15 m from the wave maker in

the wave tank, similar to 1957.7 m in geophysical dimension.

Further on we always use the geophysical dimension. The

initial time signal has total length of more than 3 h, with sig-

nificant wave height of 3.14 m and is shown in Fig. 16. We

Fig. 14. The density of the elevation of Draupner wave using initial

signal at Xsynth = −400 m.

Fig. 15. The density plot of the variance of the total wave phase for

the Draupner wave.

will predict the position, time and characteristics of the most

extreme wave downstream and describe the extremal wave

profile.

To predict the extreme wave, we compute the minimal

value of the variance of the total wave phase; the density

plot of the phase variance, PV(x,t) is shown in Fig. 17. In

this case we computed the phase variance for frequencies be-

tween ωmin = 0.3 and ωmax = 0.7, and obtain PVfoc = 0.22

at (5089.5;1994). The calculated value of coherence is

Ŵ = 0.78, and the corresponding pseudo-maximal signal has

α = 0.81 (scaling factor of 0.22). The pseudo-maximal sig-

nal has linear maximal amplitude of 4.30 m. Adding the

second order contributions, the maximal amplitude becomes

4.32 m. For validation, we performed nonlinear simulations

with the linear and the (nonlinear) AB-model of the complete

time signal at positions downstream the observation point.

For these numerical simulations we predicted the position

and time of the highest wave as listed in Table 3.

The plots in Fig. 18 show the time signal of the elevation at

the point of maximal amplitude as calculated by the nonlin-

ear AB-model (solid), with superimposed on it (dashed) the

profile of the pseudo-maximal wave as predicted by our pre-

diction method but shifted in time some 5 s to let the crests
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Table 2. Parameters for the Draupner wave.

CASE Draupner wave

Depth 70 m

Data position Xsynth -400 m

Hs at Xsynth 12

Prediction Simulation Meas

Meas position linear AB 0

Xfoc 9 3 3

Tfoc 1.1 0.47 1.3 0

Ŵ (coherence) 0.88 0.87 0.81 0.85

Max Crest height 20.22 19.09 19.32 18.5

Max Waveheight 27.42 26.5 28.28 25.6

Hs at Xfoc 11.64 11.9 13.5 11.92

BFI 0.49 0.48 0.61 0.55

2000 4000 6000 8000 10000 12000

−2

0

2

t[s]

Fig. 16. Time signal of the irregular wave IW12 at 1957.5 m. This

isa measured signal that will be used to forecast the freak wave

downstream.

coincide. The predicted signal is also plotted in Fig. 18. Even

though the maximal crest height of the pseudo-maximal sig-

nal is higher than the AB-simulation, it still describes the

freak wave well around the highest crest. The results of the

predicted position of the pseudo-maximal wave and the nu-

merically simulated highest wave are presented in Table 3.

4.2.5 Irregular wave IW9

The second case of irregular wave has smaller period;

Tp ≈ 9 s. In this case we also use the time signal at

Xobs = 1957.5 m as initial signal for both prediction and AB-

simulation. This initial signal is shown in Fig. 19.

The same strategy is executed to this initial signal to get

the description and the prediction of a freak wave. Similar to

the irregular wave IW12, this case is also approximated well

by pseudo-maximal wave. According to the prediction, the

coherence of the irregular wave IW9 is less than IW12. The

maximal crest height of IW9 at focussing is a bit higher than

the IW12, even though their significant wave heights at the

observation point Xobs are almost the same.

In the minimization of the phase variance, we chose ω ∈
[0.5;1] for integration. Then the coherence of IW9 is Ŵ ≈
0.72 at x = 2618.5 and t = 8562. The focussing position is

Fig. 17. The density plot of the variance of the total wave phase for

IW12.
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Fig. 18. Time signal as calculated by nonlinear AB at focussing

position (solid), nonlinear pm-wave predicted from time signal at

Xobs (dashed), and Signal prediction (dotted line) for IW12.

difficult to be identified in the density plot of the phase vari-

ance Fig. 20. The maximal wave at focussing by a nonlin-

ear pseudo-maximal signal with scaling factor about 0.1 is

shown in Fig. 21. We also compare it by the time signal at

focussing computed by nonlinear AB-model. The parame-

ters of the prediction and the AB-simulation are presented

in Table 4. We do not have measurement data close to the

focussing position, so for this case we only compare the pre-

diction and the AB-simulation.

5 Conclusions

This paper has discussed the description and the predictabil-

ity of extreme waves by investigating the phase coherence

using the power spectrum and the phase information at a cer-

tain position. The extreme profile can be described in a small

neighbourhood by a (pseudo-)maximal wave. Moreover, we

have shown that the position and time of an extreme wave is

predicted well by minimizing the variance of the total wave

phase. It should be noted that this minimization requires the

choice of a suitable frequency interval to which the variance

is restricted, but that the precise choice is not yet well moti-

vated.

Because of the symmetry in both linear and nonlinear evo-

lution, extreme waves (in the linear and nonlinear maximal

signal wave) appear at approximately the same position; ex-

cept for some shift (in time and consistently in space) the
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Table 3. Parameters for irregular wave IW12.

CASE IW12

Depth 30 m

Data position Xobs 1957.5 m

Hs at Xobs 3.14

Prediction Simulation Meas

Meas position linear AB 5106

Xfoc 5089.5 5112.5 5143.9

Tfoc 1994 1995 1999 2004.8

Ŵ (coherence) 0.78 0.76 0.78 0.76

Max Crest height 4.32 3.83 4 3.5

Max Waveheight 6.26 6.73 6.4 6.79

Hs at Xfoc 3.14 3.1 3 3.2

BFI 0.17 0.19 0.17 0.16
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Fig. 19. Time signal of the irregular wave IW9 at 1957.5 m from

the wave maker.

linear prediction gives a good estimation for the nonlinear

evolution. In the four different applications, the focussing

signal for which the phases are highly or moderately coherent

could very well be modeled by a nonlinear maximal signal

or by a pseudo-maximal signal; the parameters of the waves

could be predicted to a good degree of accuracy from mea-

surement data at a position upstream.

A final remark concerns the difference of the concept of

pseudo-maximal wave with the concept of the New Wave

model proposed by Walker et al. (2004); the (pseudo)-

maximal wave can be designed completely by knowledge of

the spectrum, without the necessity as for the New Wave to

determine the amplitude based on the probability of appear-

ance.

Appendix A

Stokes corrections

Second order wave-wave interaction leads to nonlinear con-

tribution as derived by Dalzell (1999). The form of second

order solution is applied to define the nonlinear wave profile

here. The final solution for the wave elevation, up to second

Fig. 20. The density plot of the variance of the total wave phase for

IW9.
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Fig. 21. Time signal as calculated by nonlinear AB at X =
2626 m (solid), shifted nonlinear pm-signal predicted from time sig-

nal at Xobs (dashed), and Signal prediction (dotted line) for IW9.

order, for the superposition of two waves is given by:

η(x,t) =
2

∑

j=1

aj cos(ϕj )+
2

∑

j=1

a2
j B0(kj )

+
2

∑

j=1

a2
j B2(kj )cos(2ϕj )+a1a2Bp(k1,k2)cos(ϕ1

+ϕ2)+a1a2Bm(k1,k2)cos(ϕ1 −ϕ2)

(A1)

The first term of Eq. (A1) is the linear contribution. The rest

are the second order contributions. The coefficients of the

second order contributions depend on the wave number and

frequency. These are defined by:

B0(kj ) = |kj |
4tanh(|kj |h)

[

2+ 3

sinh2(|kj |h)

]

B2(kj ) =− |kj |
2sinh(2|kj |h)
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Table 4. Parameters for irregular wave IW9.

CASE IW9

Depth 30 m

Data position Xobs 1957.5 m

Hs at Xobs 3.1

Prediction Simulation

linear AB

Xfoc 2618.5 2478.5 2626

Tfoc 8562 8542 8560

Ŵ (coherence) 0.72 0.71 0.73

Max Crest height 4.67(2nd order) 4.3 5.23

Max Waveheight 6.62(2nd order) 7.78 8.45

Hs at Xfoc 3.10 3.18 3.05

BFI 0.27 0.18 0.21

Bp(k1,k2) = 1

2g

[

ω2
1 +ω2

2 −ω1ω2(1−P1)

· (ω1 +ω2)
2 +�2(|k1 +k2|)

(ω1 +ω2)2 −�2(|k1 +k2|)
+ (ω1 +ω2)P2

(ω1 +ω2)2 −�2(|k1 +k2|)

]

Bm(k1,k2) = 1

2g

[

ω2
1 +ω2

2 +ω1ω2(1+P1)

· (ω1 −ω2)
2 +�2(|k1 −k2|)

(ω1 −ω2)2 −�2(|k1 −k2|)
+ (ω1 +ω2)P2

(ω1 −ω2)2 −�2(|k1 −k2|)

]

in which j = 1,2, ϕj = kjx −ωj t is the phase, aj is the am-

plitude, kj = K(ωj ) is wave number, ωj is the frequency,

and h is water depth. For simplification we write

P1 = 1

tanh(|k1|h)tanh(|k2|h)

P2 =
[

ω3
1

sinh2(|k1|h)
+

ω3
2

sinh2(|k2|h)

]

.

The dispersion relation between ωj and kj is given by

ω2
j = �2(kj ) = g|kj |tanh(|kj |h).
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