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Coherence and stochastic resonance in a two-state system

Benjamin Lindner and Lutz Schimansky-Geier
Humboldt-University at Berlin, Invalidenstrasse 110, D-10115 Berlin, Germany

~Received 15 December 1999!

The subject of our study is a two-state dynamics driven by Gaussian white noise and a weak harmonic
signal. The system resulting from a piecewise linear FizHugh-Nagumo model in the case of perfect time scale
separation between fast and slow variables shows either bistable, excitable, or oscillatory behavior. Its output
spectra as well as the spectral power amplification of the signal can be calculated for arbitrary noise strength
and frequency, allowing characterization of the coherence resonance in the bistable and excitable regimes as
well as quantification of nonadiabatic resonances with respect to the external signal in all regimes.

PACS number~s!: 05.40.Ca
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I. INTRODUCTION

Additive noise can have quite different effects when a
ing on oscillatory, excitable, or bistable dynamical system
In the deterministic case an oscillatory system, e.g., a
monic oscillator or limit cycle dynamics already posses
an eigenfrequency, which can be modified by random fo
ing @1#. In contrast to that, the influence of noise in excitab
or bistable systems is more dramatic. Without any pertur
tion there is no response of the system at all, while too la
fluctuations just result in a noisy output. In the case of
excitable system driven by an appropriate~moderate! amount
of noise, however, the trajectory of the system can beco
quite regular, a phenomenon known asautonomous stochas
tic resonance@1,2# or coherence resonance~CR! @3–9#. It
can either be understood as a noisy precursor of a bifurca
@4#, e.g., a Hopf bifurcation, or be explained by means of
presence of different scaling behavior for the two time sca
and their variance in excitable systems@3#. The trajectory in
this case may be looked upon as the motion on astochastic
limit cycle @10,11# with a corresponding noise-induce
eigenfrequency. For a given noise level, it might thus
impossible to distinguish between the excitable and the
cillatory system.

Bearing this in mind, we consider the response of b
dynamics to additive weak periodic forcing. The oscillato
system driven by small fluctuations certainly displays a re
nance with respect to the driving frequency. The same ho
true for the excitable system in the case of a distinct eig
frequency, i.e., in the case of CR. Since the considered
tems are stochastic, this resonance results in a nonmono
dependence of the spectral power amplification~SPA! h as a
function of driving frequency.

On the other hand, stochastic systems driven by a s
threshold signal can also exhibitstochastic resonance~SR!
@12#, i.e., the response of the system to a signal, e.g.,
SPA, goes through a maximum as a function ofnoise
strength. In particular, in excitable systems this has be
verified for aperiodic driving~aperiodic SR! @13,14# and for
harmonic driving@15–19#. In the latter case and from th
point of view of SR the above supposed dependence of
SPA results in an additional improvement of SR by an
propriate tuning of the driving frequency. This has be
shown by means of numerical simulations of an excita
PRE 611063-651X/2000/61~6!/6103~8!/$15.00
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FitzHugh-Nagumo model driven by periodic force and no
@6#. A similar effect known as ‘‘time scale matching’’ wa
found by approximations and numerical studies of the lea
integrate-and-fire model@20–23# with periodic driving,
which is a simple model for neuronal excitations.

In order to provide some insights into the interplay b
tween the mentioned resonance effects in different dyna
cal regimes we consider in this study a simple two-state
namics resulting from the limit case of a well-know
stochastic system—the FitzHugh-Nagumo~FHN! model@24#
driven by a weak harmonic signal and noise. The simplifi
tions of the FHN model that we utilize are~a! a piecewise
linear version of the widely used cubic null cline of the vo
age variable,~b! a perfect time scale separation between f
and slow variables, and~c! a discretization of the voltage
variable into two values representing the firing and the re
ing state, respectively. While~a! is rather a matter of taste
because the FHN model itself is just a ‘‘model of a mode
@25#, the latter two assumptions actually imply neglect
subthreshold oscillations that are not relevant for the m
excitation mechanism and its response to a weak signal if
voltage is considerably faster than the recovery variable.
resulting two-state dynamics may be regarded as a for
generalization of the model of a stochastic Schmitt trigg
@26–28# but, in contrast to this device, displays not on
bistable but also excitable or oscillatory behavior depend
on system parameters and corresponding to various reg
of the FHN model. Using a method developed by Melnik
@28#, spectral quantities of this system can be calculated a
lytically for arbitrary driving frequency and noise strength

We start out with the reduction scheme for the FH
model yielding the two-state model. Then coherence re
nance is quantified by means of the output spectrum in
absence of an external signal. Finally, we calculate the S
in linear response theory@29# and discuss both resonances

II. DERIVATION OF TWO-STATE DYNAMICS;
FOKKER-PLANCK EQUATIONS

We consider the FHN model in a piecewise linear vers
@25#. With v being the fast voltage andu the slow recovery
variable, this dynamics reads
6103 ©2000 The American Physical Society
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t v̇5F~v !2u1c~ t !,

u̇5gv2u1b~ t !1A2Qj~ t !, ~1!

F~v !5H 212v, v<21/2

v, 21/2,v,1/2

112v, v>1/2.

Variables and parameters as well as all functions in the
lowing are considered to be dimensionless. In Eqs.~1! j(t) is
Gaussian white noise,t is the~small! time scale ratio of the
two variables, andb,c are parameters~possibly time depen-
dent, see below! determining the positions of the null cline
u5F(v)1c and u5gv1b. Depending on the intersectio
points of these null clines~stable or unstable fixed points!,
we obtain either the bistable~two stable and one unstab
fixed points!, the excitable~one stable fixed point!, or the
oscillatory regime~one unstable fixed point! of the system
~cf. Fig. 1, left side!.

A weak signal f̃ (t)5e cos(Vst) can enter the system~1!
in different ways, additive in the equation of the recove
variableu @15–17# or in that of the voltage variablev @18,6#,
i.e., either

FIG. 1. Reduction of the two-dimensional dynamics to a tw
state system. Possible transitions are indicated by arrows.~a! The
bistable dynamics is mapped to a system with two stable states~b!
One stable fixed point~excitable regime! leads to one stable an
one unstable state.~c! the limit cycle dynamics corresponds to
system without any stable state.
l-

~ I! b~ t !5b01 f̃ ~ t !, c50,
~2!

or ~II ! b5b0 , c~ t !5 f̃ ~ t !.

By means of the simple transformationũ5u2c(t) Eqs.~1!
can be recast into

t v̇5F~v !2ũ,
~3!

u̇̃5gv2ũ1b~ t !2c~ t !2 ċ~ t !1A2Qj~ t !.

From these equations it becomes apparent that a differe
between the two driving modes occurs for high frequenc
only since in case~II ! the effective amplitude of the signa
scales with driving frequencyVs due to the temporal deriva
tive, whereas in case~I! it does not.

The system we shall study is obtained fort→0, i.e., in
the case of a perfect time scale separation ofv and ũ. This
limit is justified if one is not interested in subthreshold o
cillations and other features occurring for a finite and not
small t. It was recently shown@7# that for t→0 the two-
dimensional dynamics ~3! separates into two one
dimensional subsystems for the slow variableũ. In other
words, an adiabatic elimination of the fast variablev can be
performed yielding a three-valued functionv(ũ). Since the
middle branch is unstable the relevant values are those
responding to the left and right stable branches, i.e., to
mentioned subsystems. For these one-dimensional syste
linear force or a parabolic potential, respectively, is obtain
due to ~piecewise! linearity of the null clines. The points
where thev null cline becomes unstable (61/2,61/2) are
converted to absorbing boundaries~sink points!, allowing
transitions to the points with the sameũ coordinate on the
respective opposite branch~source points!.

Introducing a new time scalet→t/(g11) as well as new
variables for the two subsystems

x5ũ2
b02g

11g
2e f ~ t !, f ~ t !5A~vs!e

2 ivst1A* ~vs!e
ivst

corresponding to the left branch and

y52ũ1
b01g

11g
1e f ~ t !

for the right branch leads to the dynamics

ẋ52x1A2Dj~ t !,
~4!

ẏ52y1A2Dj~ t !.

Here, a rescaled driving frequencyvs5Vs /(11g) and
noise strengthD5Q/(11g) have been used. By our choic
of variables the time dependent force is transformed t
modulation of the sink and source points, where the effec
amplitude of the signal is modified by the prefactor

-
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~I! AI5
1/2

~11g!~12 ivs!
,

~5!

or ~II ! AII 52
1

2

1/~11g!1 ivs

~12 ivs!
.

We note that forg>0 the absolute value of this prefactor
less than unity in both cases. The time dependent sink
source points of the system are given by

x22e f ~ t !52
1

2
2

b02g

11g
2e f ~ t !,

x12e f ~ t !5
1

2
2

b02g

11g
2e f ~ t !,

~6!

y21e f ~ t !52
1

2
1

b01g

11g
1e f ~ t !,

y11e f ~ t !5
1

2
1

b01g

11g
1e f ~ t !,

where x2 ,y2 ,x1 ,y1 are the~time independent! points of
the unperturbed system (e50). In the subsequent section
we will consider the bistable and oscillatory case to be sy
metric with respect to states (x25y2 ,x15y1). Excitable
systems are in this sense necessarily asymmetric. In par
lar, we choose

Regime g b0 → x2 y2 x1 y1

bistable 2/3 0 → 20.1 20.1 0.9 0.9
excitable 1 2/5 → 20.2 0.2 0.8 1.2
oscillatory 7/3 0 → 0.2 0.2 1.2 1.2

In the limit considered, the voltage variablev(t) depends on
ũ and on the branch the system is currently occupying. T
latter dependence carries the biophysically relevant infor
tion; it is thus justified to consider a discretized variables(t)
with two statess561 for the excited~right branch! and
resting state~left branch!, respectively, instead of the var
able v(t) itself. In the following we study the dynamics o
this variables(t) and its spectral properties.

Without signal(e50) the dynamics can be regarded
the motion of a Brownian particle jumping between tw
parabolic potentials. This is realized by absorption at
boundariesx2 or y2 ~sink points! and by resetting toy1 or
x1 , the source points in the respective opposite state.
particle thus follows a circular flowx1→x2 jumping to
y1→y2 and jumping back tox1 ~cf. Fig. 1! and generates
the aforementioned two-state trajectorys(t). A state, e.g.,
the states521 corresponding to variablex, is left by re-
laxation from source to sink point if no potential minimum
present in this state, i.e., ifx2.0. Then the states521 is
unstable and in case of vanishing noise strength is left
deterministic time. If there is a minimum, i.e., ifx2,0, the
nd

-

u-

e
a-

e

e

a

particle can escape from this stable states521 only by the
action of noise due to the finite potential barrier at the s
point.

In principle, there are three different possibilities corr
sponding in a natural way to the three different regimes
the FHN model ~see also Fig. 1!: ~a! two stable states
~bistable regime!, ~b! one stable and one unstable state~ex-
citable regime!, and ~c! two unstable states~oscillatory re-
gime!.

Case~a! coincides forg5b050, i.e., x15y152x25
2y2 , with a bistable symmetric Schmitt trigger~ST! driven
by exponentially correlated noise and harmonic sign
which has been treated by Melnikov@28#. The formulas we
shall present here are valid for the asymmetric Schmitt t
ger as well@30#, whenx25y212d andx15y112d with
d as an asymmetry parameter. The reduction of the F
model, however, results in a more general bistable beha
than this case. Consider, e.g., Fig. 1~a! where for an appro-
priate noise level a situation is realized for which relaxati
into the potential minimum inboth states takes a fairly long
time compared to the escape time over the relatively sm
potential barrier atx2 andy2 . Clearly, this possibility is a
consequence of the fact that the FHN model is a nonpoten
system. For case~b! we note that the unstable state in th
excitable case may be interpreted as the firing state of
system, whereas the ‘‘nonfiring’’ stable state represents b
recovery~relaxation into the minimum! and resting state~po-
sition close to the minimum!. In both cases~a! and ~b!, a
finite noise strength is required in order to obtain a nonz
current in the system. This does not hold true in case~c!—
with two unstable states the system works even without no
and switches periodically betweens511 ands521 and
back withTx5 ln(x1 /x2) andTy5 ln(y1 /y2), respectively.

With signal, the boundaries are modulated in time so th
transitions are enhanced in one and suppressed in the
state for a given time. In this work, a signal is referred to
weak if it does not alter the currents of the system mu
consequently, it should be subthreshold in cases~a! and ~b!.
This definition also applies to case~c! where the system
reaches the thresholds even in the absence of a signal.

Note that the system works like two coupled lea
integrate-and-fire~IF! models driven by external signal an
noise where the absorption in one IF model is followed
reset to the other, and vice versa. A single IF model
recently been studied by different research groups@20–23#.
In contrast to the common IF model, here the firing state
taken into account as a second state, allowing a well-defi
approximation of the different regimes of the FHN mod
Moreover, the reduction of the FHN model yields a line
dynamics of the slow variable in each state, whereas by
IF model the fast voltage variable is modeled. We would li
to point out that Melnikov’s method of calculating the spe
trum and the SPA applies to the IF model too, without a
suming an unphysiological reset of the signal phase afte
absorption event as in@20,22#.

The corresponding Fokker-Planck equations for Eq.~4!
are given by

] tPx~x,t !5]x~x1D]x!Px~x,t !,
~7!

] tPy~y,t !5]y~y1D]y!Py~y,t !.
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The densitiesPx ,Py obey certain boundary and jump cond
tions. The probabilities vanish at the sink points,

Px~x,t !ux22e f (t)[0, Py~y,t !uy21e f (t)[0. ~8!

Furthermore, continuity at the source points is required:

@Px~x,t !#x12e f (t)[0, @Py~y,t !#y11e f (t)[0, ~9!

where the brackets denote the jump of a functiong(x):
@g#x5g(x10)2g(x20).

Equations~7! are actually coupled by the condition th
the probability efflux out of one state equals the influx in
the other state, yielding

@]xPx~x,t !#x12e f (t)52]yPy~y,t !uy21e f (t) ,

~10!

@]yPy~y,t !#y11e f (t)52]xPx~x,t !ux22e f (t) .

The total probability of both states is conserved and norm
ized to 1:

E
x22e f (t)

`

dx Px~x,t !1E
y21e f (t)

`

dy Py~y,t !51. ~11!

The processs(t) is entirely determined by these equation
The problem of computing its output spectrum in the abse
and the SPA in the presence of a signal can be solved
similar way as in@28#. Therefore, we shall just give the ma
results and refer the interested reader to@28# for details.

III. SYSTEM WITHOUT SIGNAL: COHERENCE
RESONANCE

If no signal is applied to the system (e50) the stationary
solution of Eq.~7! can readily be calculated. Normalizatio
of this solution yields the stationary current

J05S E
x2 /A2D

x1 /A2D
dzez2

erfc~z!1E
y2 /A2D

y1 /A2D
dzez2

erfc~z! D 21

/Ap.

~12!

which on the one hand is identical with the stationary ex
tation rate~pulse rate! of the system and on the other han
coincides with the inverse of the sum of the mean first p
sage timesx1→x2 and y1→y2 . The time scale given by
this rate can be expressed by a frequency

vm52pJ0 . ~13!

The output power spectrum for the processs(t) is given by
the characteristic functions@31#, i.e., the Fourier transform
wx(v),wy(v) of the waiting time distributions of the state
s521 ands511:
l-

.
e
a

-

-

N~v!5E
2`

`

dt^s~ t !s~ t1t!&eivt

5
8J0

v2
ReS @12wx~v!#@12wy~v!#

12wx~v!wy~v! D . ~14!

These waiting time distributions can be calculated
Laplace transformation of Eq.~7! and appropriate initial con-
ditions as in@28#, yielding

wx~v!5
Cx1

~v!

Cx2
~v!

5
e(x1

2
2x2

2 )/4DU~2 iv2 1
2 ,x1 /AD !

US 2 iv2
1

2
,x2 /AD D ,

~15!

wy~v!5
Cy1

~v!

Cy2
~v!

5
e(y1

2
2y2

2 )/4DU~2 iv2 1
2 ,y1 /AD !

US 2 iv2
1

2
,y2 /AD D ,

where the numerators and denominators defineCz6
and

U(a,z) denote the parabolic cylinder functions@32#.
The spectrum thus reads

N~v!

5
8J0

v2
ReS @Cx2

~v!2Cx1
~v!#@Cy2

~v!2Cy1
~v!#

Cx2
~v!Cy2

~v!2Cx1
~v!Cy1

~v! D .

~16!

For the bistable case of a symmetric Schmitt trigger (x1

5y152x252y2) treated by Melnikov this spectrum ex
hibits a Lorentz-like shape for arbitrary noise strength. Th
is no maximum at a finite frequency. In contrast, for t
above mentioned bistable case of long lasting relaxation
small barriers for both states, i.e.,x1.ux2u and y1.uy2u,
the output spectrum displays for an intermediate no
strength a peak at finite frequency~Fig. 2!, indicating a regu-

FIG. 2. Output spectrum of the bistable system~without signal!
versus frequency for different noise levels~a!–~e!: D
50.0024,0.0031,0.0089,0.1226,1.0. Inset: Contour plot of spec
density versusD andv compared with the mean frequencyvm(D)
~thick line! from Eq. ~13!.
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lar behavior. This is an example of coherence resonance
bistable system caused by large quasideterministic time
relaxation in both states. Consequently, it is a result of
nonpotential character of the FHN model. The noise-indu
eigenfrequency, i.e., the position of the peak, nearly co
cides with the mean frequency of the system given by
~13! ~cf. the contour plot in Fig. 2!. Of course, the height an
width of the observed peak can be improved by decrea
the distances of the minima to the sink pointsux2u anduy2u.

The spectrum of the excitable system forx2,0, y2.0
is depicted in Fig. 3. It starts at small noise intensity at a l
level for all frequencies. The intensity of the process va
ishes for decreasing noise in contrast to the same limit in
bistable regime. For increasing noise a peak appears, shi
first to larger and then back to lower frequencies, wher
vanishes for large noise intensity. The peak height as a fu
tion of D goes through a maximum which is again a ma
festation of coherence resonance. Clearly, the effect is m
pronounced than in a comparable bistable system~e.g., for
y2→2uy2u) due to the presence of only one barrier in t
system. Comparison of the contour lines of the spectral d
sity with the mean frequencyvm from Eq.~13! shows that—
within the relevant parameter range—the induced eigen
quency is larger than the mean frequency. If the system
‘‘more easily excitable,’’ i.e., ifx2→0 relevant contribu-
tions to higher harmonics are also obtained, and the spec
looks very similar to that of the oscillatory system for sm
noise.

The spectrum for the symmetric oscillatory case (x2

5y2.0, y15x1) is shown in Fig. 4 as a function of fre
quency and for different noise strength. Note that the spec
density is scaled logarithmically. For low noise intensity w
obtain high peaks close to the~deterministic! fundamental

FIG. 3. Output spectrum of the excitable system~without signal!
versus frequency and different noise levels~a!–~f!: D
50.004,0.009,0.033,0.094,0.207,0.769. Inset: Contour plot of s
tral density versusD and v compared with the mean frequenc
vm(D) ~thick line! from Eq. ~13!.
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frequencyv05p/ ln(x1 /x2) and its ~odd! harmonics. The
mean frequency~cf. the contour plot in Fig. 4! does not
vanish forD→0 as in bistable or excitable systems but ten
to v0. With growing noise the peaks are shifted towa
higher frequencies, an effect that was found numerically
@1#, and then peaks at higher harmonics vanish. Finally,
peak close to the fundamental frequency also disappears
a Lorentz-like shape of the spectrum is observed for la
noise strength.

IV. SYSTEM WITH SIGNAL: STOCHASTIC RESONANCE

The amplification of a small signale f (t)5e(Ae2 ivst

1c.c.) can be calculated in linear response using
asymptotic solutionsPx(x,t), Py(y,t) for which the follow-
ing ansatz is made:

Px~x,t !5Px
0~x!1e expS x1

2 2x2

4D D @Ae2 ivstr x~x!1c.c.#,

and likewise forPy(y,t). Here, c.c. denotes the comple
conjugate andPx

0(x) the stationary solution of Eq.~7!. By
insertingPx(x,t) and Py(y,t) into Eq. ~7! the general solu-
tions for r x(x) andr y(y) are found, again, in terms of para
bolic cylinder functions. A linear expansion of the bounda
and jump conditions in Eqs.~8–10! then fixes the free con
stants of these solutions. The current between the sta
which can be calculated from these solutions, contains a t
dependent part proportional to the external signal. This p
leads to ad function at the driving frequency with the am
plitude e2h, where the SPAh after a lengthy calculation is
obtained as

c-

FIG. 4. Output spectrum of the oscillatory system~without sig-
nal! versus frequency for different noise levels~a!–~e!: D
50.0018,0.006 84,0.0195,0.0558,0.35. Inset: Contour plot of sp
tral density versusD and v compared with the mean frequenc
vm(D) ~thick line! from Eq. ~13!.
h~vs ,D !5
8J0

2uAu2p

D U~Cy1
2Cy2

!~Fx2
2Fx1

!1~Cx1
2Cx2

!~Fy2
2Fy1

!

Cx2
Cy2

2Cx1
Cy1

U2

. ~17!
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The functionsFz in Eq. ~17! differ from Cz just by the first
argument2 ivs11/2. For the prefactorA either AI or AII

~according to the driving mode under consideration! has to
be inserted. SinceuAII u2 and uAI u2 differ by the factor@1
1(11g)2vs

2#, a larger value of the SPA is expected f
harmonic driving of the fast variable@case~II !# than for that
of the slow variable@case~I!#. It turns out that all observed
effects of the SPA frequency dependence are much m
pronounced in the former case. This is remarkable becau
periodic signal in the equation for the voltage variable@case
~II !# seems to be more justified from a neurobiological po
of view.

We now consider the amplification as a function of no
strength and driving frequency for the regimes discusse
the preceding section for both driving modes.

For the bistable symmetric system we find a we
pronounced maximum with respect toD which manifests the
occurrence of SR~Fig. 5!. For any finite driving frequency
the common stochastic resonance curveh(D) displaying the
well-known maximum is obtained~actually, this is shown for
ws.0.45 only!. Additionally, a nonmonotonic dependenc
of the SPA on the driving frequency is observed. It is fou
for an intermediate range of noise intensities roughly co
sponding to the range where coherence resonance in
bistable regime occurs. At a fixed noise level the syst
shows an optimal response to an external signal with
quency close to the noise-induced eigenfrequency of
system.

FIG. 5. Spectral power amplification versus frequency and no
level for the bistable system for the driving modes~I! ~a! and ~II !
~b!. Inset: Contour plot of spectral amplification versusD and vs

compared with the mean frequencyvm(D) ~thick line! from Eq.
~13!.
re
e a

t

in

-
he

-
e

In Figs. 5~a! and 5~b! the mean frequencyvm is again
plotted as a function ofD and compared to the contour line
showing a time scale matching betweenvm and the optimal
frequency for a large range of noise intensity and both d
ing modes. We once more point out that this effect is
consequence of the nonpotential character of the F
model. It is not expected to occur in common bistable s
tems like the continuous overdamped bistable oscillator@12#
or the symmetric Schmitt trigger@27#. Clearly, there is no
overall maximum of the SPAh versusD and vs for ws
.0, exactly as in the bistable systems mentioned. A
crease of the driving frequency always yields an increas
maximum ofh as a function ofD.

In the excitable dynamics~Fig. 6! the resonance effect i
much more pronounced; the SPAh shows a global maxi-
mum with respect to noise strength and driving frequen
At low frequencies the amplification reaches a limitin
curve, as is known from asymmetric bistable systems@12#;
the maximal SPA at moderate frequencies compared to
adiabatic limit is considerably larger in case~II ! @note the
different scale ofh in Figs. 6~a! and 6~b!#. Similarly to the
noise-induced frequency, the optimal driving frequency do
not match the mean frequencyvm of the system. However
all three frequencies differ just slightly and are of the sa
order of magnitude.

The occurrence of the global maximum can be conside
in two different ways:~1! for fixed noise strength as a com
mon resonance with respect to the noise-induced eigen

e
FIG. 6. Spectral power amplification of the excitable syste

versus driving frequency and noise strength for different driv
modes~I! ~a! and ~II ! ~b!. Note that two maxima occur at roughl
the same noise intensity. Inset: Contour plot of spectral amplifi
tion versusD and vs compared with the mean frequencyvm(D)
~thick line! from Eq. ~13!.
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quency or~2! as a stochastic resonance which can be o
mized by an appropriate tuning of the driving frequenc
Another effect for the driving mode~II ! is the occurrence o
a second maximum with respect to driving frequency@Fig.
6~b!#. For frequencies beyond the frequency yielding the g
bal maximum we find that the SPA as a function ofD re-
mains nearly constant over one order of magnitude ofD ~cf.
Fig. 7!. This is shown for driving mode~II ! in Fig. 7. Note in
particular curveb corresponding tovs55. The amplification
in this region can even display two maxima with respect
noise strength. Although the amplification in that parame
range is one order of magnitude smaller than the glo
maximum it is remarkable that the system is quite insensi
to the level of fluctuations. This is—apart from the we
known example in@33#—possibly another inherent mech
nism of neuronal systems enabling them to detect weak
nals without tuning noise intensity.

Finally, we turn to the spectral power amplification of th
symmetric oscillatory case presented in Fig. 8. As for
spectral density, we find for a low noise level peaks at
basic deterministic frequencyv0 and its higher odd harmon
ics. This is due to the fact that the ‘‘spectrum’’ of the dete
ministic system even without signal (e50) displaysd spikes
at these frequencies; consequently the SPAh defined as the
weight of the peak divided by the square of the signal a
plitude e2 has to diverge in the limitD→0. More surpris-
ingly, in this limit the amplification of a detuned signal@vs
Þ(2m11)v0# tends to finite values, as can be shown by
small D expansion of Eq.~17! ~note that our system is ave
aged with respect to the initial phase of the signal!.

Furthermore, if the driving frequency is between an o
and an even multiple ofv0 the oscillatory system has poss
bly an optimal output at a finite noise level~cf. Fig. 9!,
although no potential barrier is present in the system. A si
lar effect has been found in a periodically modulated Wie
process@34#. Noise simply facilitates the detection of
‘‘positively detuned’’ signal, since the eigenfrequency of t
system increases with growing noise and thus for a cer
noise level matches the signal frequency. This is, of cou
limited by the fact that the entire system becomes m
noisy, which destroys the cooperative effect; therefore
difference between the driving frequency and the natural
quencies of the system has to be smaller than the distan
the next~even! harmonics.

FIG. 7. Spectral power amplification in the excitable case a
driving mode~II ! versus noise intensity at different values of dri
ing frequency~a!–~g!: vs54,5,6,7,8,9,10.
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A final remark concerns the signal-to-noise ratio~SNR! of
the response. It can readily be calculated as the ratio of
amplification given by Eq.~17! and the spectrum at the driv
ing frequency ~14!, serving as an approximation for th
background noise at small signal amplitudes. However,
function does not show the relevant resonance of the sys
for instance, in the excitable regime with respect tovs . The
SNR in this case either increases to infinity for increas
frequency~second driving mode! or falls rapidly off ~first
driving mode!. It is our belief that the system is rather cha
acterized by the coherent part of the output, quantified byh,

d

FIG. 8. Spectral power amplification of the oscillatory syste
versus frequency and noise level for different driving modes~I! ~a!
and ~II ! ~b!. Inset: Contour plot of spectral amplification versusD
andvs compared with the mean frequencyvm(D) ~thick line! from
Eq. ~13!.

FIG. 9. Spectral power amplification for driving mode~I! in the
oscillatory case versus noise intensity atvs53.0 with the determin-
istic eigenfrequencyv0'1.79.
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than by a ratio that is not ‘‘noticed’’ by a neuronal syste
and has been introduced in a more technical context@26#.

V. CONCLUSIONS

We have presented results for a solvable two-state sys
that is the limit case of a stochastic FitzHugh-Nagumo mo
and possesses either bistable, excitable, or oscillatory be
ior. Various nonadiabatic resonances of the system with
without two different kinds of periodic driving have bee
discussed. Coherence resonance, i.e., the occurrence
noise-induced eigenfrequency, could be verified in
bistable and the excitable regime, resulting in a nonmo
tonic dependence of the spectral amplification when a h
monic signal is added. This effect is much more pronoun
if the signal is acting directly on the voltage variable of t
FHN model. Furthermore, we have found that in the osci
v

.

a

er

v.
.

m
l
v-
d

f a
e
-
r-
d

-

tory case an improvement of the signal detection with
assistance of noise is possible if the signal frequency
slightly larger than the deterministic eigenfrequency or th
an odd harmonics of it. All results show selectivity of sign
detection of weaknonadiabaticsignals with respect to the
driving frequency, and thus might be relevant for neurob
logical applications of the model.
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