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Coherence distillation machines are impossible in
quantum thermodynamics
Iman Marvian1*

The role of coherence in quantum thermodynamics has been extensively studied in the recent

years and it is now well-understood that coherence between different energy eigenstates is a

resource independent of other thermodynamics resources, such as work. A fundamental

remaining open question is whether the laws of quantum mechanics and thermodynamics

allow the existence of a coherence distillation machine, i.e., a machine that, by possibly

consuming work, obtains pure coherent states from mixed states, at a nonzero rate. This is

related to another fundamental question: Starting from many copies of noisy quantum clocks

which are (approximately) synchronized with a reference clock, can one distill synchronized

clocks in pure states, at a non-zero rate? Surprisingly, we find that the answer to both

questions is negative for generic (full-rank) mixed states. However, at the same time, it is

possible to distill a sub-linear number of pure coherent states with a vanishing error.
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W
hat are the fundamental limits of nature on manip-
ulation of quantum clocks? Suppose we have multiple
clocks, all synchronized with the same reference clock,

which are affected by noise. Then, by averaging the time read
from these clocks we can obtain a more accurate estimate of the
current time according to the reference clock. In other words, we
can distill a less noisy clock from several noisy clocks. What are
the limits of this distillation process for quantum clocks? Can we
distill quantum clocks in pure states from those in mixed states, at
a nonzero rate?

Interestingly, this question is related to another fundamental
question about the manipulation of coherence in quantum ther-
modynamics. It is now well-understood that coherence between
different energy eigenstates is a resource, independent of other
thermodynamic resources such as work, and can be used to
implement operations which are otherwise impossible1–4. A
fundamental open question in this context is whether the laws of
quantum mechanics and thermodynamics allow the existence a
coherence distillation machine, i.e., a machine that consumes
work to obtain pure coherent states from mixed ones at a nonzero
rate (See Fig. 1). The connection between these two questions
arises from the fact that the minimum requirement for a system
to be a clock is to be in a state which contains coherence (i.e., off-
diagonal terms) with respect to the energy-eigenbasis; otherwise,
the system will be time-independent, and hence useless as a clock.

In this article, we investigate coherence distillation in the
context of quantum thermodynamics, both in the single-shot and
asymptotic regimes. In particular, we settle the above questions,
which have been open heretofore5,6, and show that the answer to
both of them is negative. In other words, the coherence distilla-
tion machine, depicted in Fig. 1, is impossible. This is surprising,
especially when compared to the previously known results on
resource distillation in the entanglement theory and other
quantum resource theories (See e.g., 7–11), and reveals important
aspects of coherence in quantum thermodynamics. In particular,

we will see that, in some precise sense, the coherence content of a
single two-level system can be infinitely large. Furthermore, we
find that, even though distillation with a non-zero rate is
impossible, it is still possible to distill a sublinear number of pure
coherent states with a vanishing error. We also consider coher-
ence distillation in the single-shot regime and derive a simple
formula for the maximum achievable fidelity.

Results
Distillation of quantum clocks. A quantum clock is character-
ized by its state and Hamiltonian, which usually generates a
periodic time evolution12–18. By definition, the state of a clock
should be time-dependent. Therefore, when we say a clock with
Hamiltonian H is in state ρ, we actually mean its state is ρ at a
particular time, say t ¼ 0, with respect to a reference clock. Then,
at an arbitrary time t the state of clock is e�iHtρeiHt (Throughout
this paper we assume _ ¼ 1). Here, we focus on the systems with
bounded Hamiltonians, with periodic dynamics, whose period is
equal to a fixed (but arbitrary) parameter τ, such that
τ ¼ minft > 0 : e�iHtρeiHt ¼ ρg; otherwise, the state and
Hamiltonian are completely arbitrary. In the following, when we
talk about n copies of a system with state ρ and Hamiltonian H,
we mean n non-interacting systems, with the total Hamiltonian
Pn

i¼1H
ðiÞ, where HðiÞ ¼ I�ði�1Þ � H � I�ðn�i�1Þ, and with the

joint state ρ�n.
Suppose Alice is given a quantum clock with Hamiltonian Hin

and state ρin, synchronized with a standard reference clock owned
by Bob. Assume she does not have any additional information
about Bob’s clock. In other words, she knows at time t relative to
Bob’s clock, her quantum clock is in state e�iHintρine

iHint ; however,
the parameter t itself is unknown to her.

Now suppose Alice wants to transform this clock to a different
clock, with possibly different Hamiltonian Hout, which is still
synchronized with Bob’s clock, such that at any time t relative to
his clock the new quantum clock is in state e�iHouttρoute

iHoutt . For
instance, the input clock with Hamiltonian Hin can be multiple
copies of a noisy two-level clock in a mixed state, whereas the
output clock is a single two-level system, which is more accurate
than any single copy at the input, i.e., conveys more information
about the parameter t (This is an example of single-copy
distillation of clocks, which will be discussed later). This means
that Alice wants to implement the state conversion

e�iHintρine
iHint ! e�iHouttρoute

iHoutt ; 8t 2 ½0; τÞ : ð1Þ
However, since parameter t is unknown to her, this conversion
should be implemented by a fixed process, independent of t; i.e.,
there should exist a physical process, described by a completely
positive trace-preserving19,20 map E, such that
Eðe�iH intρine

iHintÞ ¼ e�iHouttρoute
iHoutt , for all time t 2 ½0; τÞ. It turns

out that this is possible if, and only if, the single state conversion
ρin ! ρout is possible under a Time-translation Invariant (TI)
process, i.e., a process satisfying the covariance condition

e�iHoutsETIðσÞeiHouts ¼ ETI e�iHinsσeiHins
� �

; ð2Þ
for all times s, and input σ21,22. Therefore, rather than studying
the state conversions for the family of states in Eq. (1), one can
equivalently study state conversion for the single input-output
pair ρin and ρout under the restricted set of TI operations.

The covariance condition in Eq. (2) means that TI processes
are those which can be defined, and hence implemented,
independent of any reference clock. Furthermore, they can be
implemented without interfering with the intrinsic time evolution
generated by the system Hamiltonian. An example of this type of
processes is energy-conserving unitary transformations, i.e., those
which commute with the Hamiltonian (assuming the input and

Coherence distillation machineWork

Fig. 1 A hypothetical "Coherence Distillation Machine" for distilling

coherence with respect to the energy eigenbasis. It consumes work and

obtains pure coherent states from mixed states at a non-zero rate, or

equivalently, purifies quantum clocks. Is this hypothetical machine

consistent with the laws of quantum mechanics and thermodynamics?.
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output systems have identical Hamiltonians). There are also TI
operations which are not energy-conserving, such as, preparing
the system in an incoherent state, i.e., any state ρ commuting with
the system Hamiltonian (Note that in the case of composite
systems, the joint state is incoherent if it commutes with the total
Hamiltonian).

In summary, we conclude that for distillation or manipulation
of quantum clocks, we can restrict our attention to the set of TI
operations. In the language of quantum resource theories7,23–26,
these are the free operations for the resource theory of quantum
clocks, which is a special case of the resource theory of
asymmetry.

It is worth emphasizing that the notion of resource
distillation, which can be abstractly defined in any resource
theory, has a clear operational interpretation in this framework:
it is the process in which one combines noisy clocks, affected by
independent noise processes, to obtain less, but more accurate
clocks in pure states. More precisely, the information content of
each output clock about the unknown parameter t, i.e., the
current time relative to the standard clock, is greater than the
information content of each input clock. Hence, using a
distillation protocol, one can increase the efficiency of storage
and transmission of quantum clocks. Intuitively, one expects
that to maximize the information content about parameter t,
the state of quantum clock should be pure. This intuition is
confirmed by the fact that pure states maximize any convex
measure of information (about the time parameter t) such
as Holevo quantity19,20,27 or quantum Fisher information27–30.
Similarly, from the point of view of parameter estimation, to
minimize the error in the estimation of the time parameter
t 2 ½0; τÞ, as quantified by any cost function which is a linear
functional of state, such as mean squared error27,31, the system
should be prepared in a pure state.

Interestingly, as we see next, the set of TI operations also
naturally arises in the study of coherence in quantum thermo-
dynamics. It is worth mentioning that, in this paper we focus on a
notion of coherence which is relevant in the context of quantum
clocks and quantum thermodynamics, known as unspeakable
coherence6,32. This notion of coherence is a special case of a more
general property, called asymmetry32–35. There are other resource
theoretic approaches to coherence, capturing a different notion of
coherence, known as speakable coherence6,32 (In these resource
theories the eigenvalues of the system Hamiltonian do not play
any role).

Coherence distillation machines. A coherence distillation
machine, as depicted in Fig. 1, receives systems in a mixed
coherent state, and transforms them to pure coherent states, at a
non-zero rate. Recall that a quantum state contains coherence, or
is coherent, if its density operator does not commute with its
Hamiltonian. In the following, we consider two different frame-
works for describing coherence distillation machines and, inter-
estingly, find that they are equivalent and both lead to the notion
of TI operations.

Our first approach is to consider the most general processes
which can be interpreted as “coherence distillation machines”.
What are the constraints on such operations? Clearly, a
distillation machine should not generate coherence itself, i.e.,
should transform incoherent states to incoherent states; other-
wise, the coherence at the output cannot be interpreted as
distilled coherence. This should hold even if the input is
entangled with another closed system with an arbitrary
Hamiltonian; if their initial joint state commutes with their total
Hamiltonian, then their final state should also commute, and
hence be incoherent (See Fig. 2).

We prove that a quantum operation satisfies this property, or is
completely incoherence-preserving, iff it is a TI operation (See
Supplementary Note 1). This means that, by proving the
impossibility of coherence distillation using TI operations, we
also establish its impossibility under completely incoherence-
preserving operations, which describe the most general processes
relevant to coherence distillation.

A different approach to formalizing coherence distillation is
to use the framework of the resource theory of quantum
thermodynamics (athermality) and the notion of thermal
operations24,26,36–40. Thermal operations are those which can
be implemented by coupling the system to a thermal bath by
energy-conserving unitaries. It turns out that under these
operations coherence and work are two independent
resources1,2. Therefore, to focus on coherence, one can
supplement a thermal operation with an unlimited amount of
work at the input (using a battery or work reservoir), which can
be modeled as an auxiliary system in an energy eigenstate. What
is the set of all operations which can be implemented in this
way? Interestingly, it turns out that the answer is again TI
operations. In particular, any TI operation ETI on a system S
with Hamiltonian HS can be implemented by coupling the
system to an auxiliary system (battery) with Hamiltonian Hbat,
such that

ETIðσÞ ¼ TrbatUðσ � jEihEjbatÞUy; ð3Þ

where (i) the initial state Ej ibat of the auxiliary system is an
eigenstate of its Hamiltonian Hbat, and (ii) the unitary U that
couples it to the system S conserves the total energy
Htot ¼ HS � Ibat þ IS � Hbat, i.e., ½U ;Htot� ¼ 0 (See Supplemen-
tary Note 1, ref. 41, and theorem 25 of ref. 22).

We conclude that formalizing the notion of coherence
distillation machines in the framework of the resource theory of
quantum thermodynamics (athermality), again leads us to the
notion of TI operations.

To summarize, we saw three different properties, each of which
can characterize exactly the same set of operations, namely TI
operations: (a) invariance under time-translations, (b) being
completely incoherence-preserving, and (c) being implementable
with thermal operations supplemented with an arbitrary amount
of work. Next, we study distillation of coherence using these
processes.

Main theorem: Typical states have no distillable coherence. An
ideal coherence distillation machine is a TI operation (or,
equivalently, a completely incoherence-preserving operation)
which consumes copies of a system in a mixed state ρ as the

H in in

aux aux

Houtout

HauxHaux

Fig. 2 Completely incoherence-preserving operations. Suppose the joint

initial state of the input system and an auxiliary system with Hamiltonian

Haux is incoherent with respect to their total Hamiltonian

Hin � Iaux þ Iin � Haux. Quantum operation E is called completely

incoherence-preserving if for any choices of Haux and the initial incoherent

state, the joint state of the output and the auxiliary system is also

incoherent with respect to their total Hamiltonian Hout � Iaux þ Iout � Haux.

We show that any such operation is a TI operation and can be implemented

by coupling the system to a work reservoir (battery) by an energy-

conserving unitary.
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resource, to generate copies of a system in a pure coherent state

ϕcoh, at rate R > 0, i.e., ρ�n!TIϕ
�dRne
coh . Note that, in general, the

Hamiltonians and the Hilbert spaces of the input and output
systems can be different. Also, note that ϕcoh can be any pure state
of the output system, except the energy eigenstates (For instance,
one can choose a two-level system with Hamiltonian πσz=τ, and

state ϕcoh
�

�

�

¼ ð 0j i þ 1j iÞ=
ffiffiffi

2
p

, where τ is the period).
In practice, exact transformations are often impossible and

physically intractable. Therefore, we can allow a small error ϵ in
infidelity20, provided that it vanishes in the limit of infinite copies,

i.e., ρ�n!TI �ϵ ϕ�dRne
coh as n ! 1; ϵ ! 0 (Recall that infidelity is

one minus fidelity, i.e., 1� hψjσjψi for state σ and a pure state ψ.
Infidelity is closely related to the trace distance20). Then, by the
Helstrom’s theorem20,28, in the limit n ! 1, the actual output

state is indistinguishable from the desired state ϕ
�dRne
coh .

Consider an arbitrary system with bounded Hamiltonian H
and state ρ. The distillable coherence CTI

d ðρÞ, relative to any
standard pure coherent state ϕcoh, is the maximum rate at which
copies of ϕcoh can be obtained from copies of this system using TI
operations (or, equivalently, using completely incoherence-
preserving operations),

CTI
d ðρÞ � sup R : ρ�n!TI �ϵ ϕ�dRne

coh as n ! 1; ϵ ! 0; ð4Þ

where the error ϵ is vanishing in infidelity (one minus fidelity).
Note that this definition resembles the definition of the distillable
entanglement9–11,42,43, or, more generally, distillable resource in
any resource theory (See e.g., 7,8). We prove the following
fundamental no-go theorem on coherence distillation:

Theorem. If the projector to the support of state ρ commutes
with the system Hamiltonian H, then the rate of distillation of
any system in a pure coherent state ϕcoh is zero, i.e., CTI

d ðρÞ ¼ 0.
Thus, for a typical state ρ, which has full-rank density operator,
this rate is zero.

Surprisingly, we find that the hypothetical coherence distilla-
tion machine depicted in Fig. 1 is impossible, i.e., starting from
asymptotically many copies of a generic mixed state, using a
thermal machine we cannot distill pure coherence at a nonzero
rate, even if we spend an unlimited amount of work. In fact, it
turns out that coherence distillation remains impossible even if, in
addition to copies of state ρ, one is allowed to consume a finite
helper system in a pure state, provided that its Hamiltonian is
bounded and its Hilbert space is finite-dimensional (See
Supplementary Note 5). It is interesting to compare this result
with the results of5 and8, which prove that the rate of distillation
of speakable coherence is generally non-zero.

Finally, it is worth mentioning that although for a typical
mixed state the distillable coherence is zero, there are also mixed
states with non-zero distillable coherence. The problem of
classifying all such states, and determining the optimal rate of
conversion remains open. In Supplementary Note 6 we present
examples of such states, and find an achievable distillation rate,
which is closely related to a Petz-Rényi relative entropy. These
examples rely on the previously known results on state
conversions between pure states33,44–46, which show that the
optimal rate of conversion from a system with the pure state ψ1

and Hamiltonian H1 to another system with the pure state ψ2 and
Hamiltonian H2, provided that they have the same period, is

R ¼ VH1
ðψ1Þ=VH2

ðψ2Þ, where VHðψÞ � hψjH2jψi � hψjHjψi2 is
the energy variance for state ψ.

Next, we explain how the above no-go theorem follows from an
interesting relation between two quantifiers of coherence, namely
quantum Fisher information and a new quantifier, called the
purity of coherence.

Purity of coherence. In recent years, many quantifiers of
coherence and asymmetry have been studied (See, for
instance,22,34,47–). These previously known examples, however, all
fail to see a simple, yet fundamental feature of coherence: Given
any finite copies of a generic mixed state, it is impossible to
generate a single copy of a pure coherent state (with a non-zero
probability), using only TI operations. Here, we introduce a new
quantifier of coherence which captures the missing part of the
picture and predicts the unreachability of pure coherent states.

For a system with state ρ, let the Purity of Coherence with
respect to the eigenbasis of an observable H be

PHðρÞ � TrðHρ2Hρ�1Þ � TrðρH2Þ ð5Þ

¼
X

j;k

p2k � p2j

pj
jhψkjHjψjij

2 ; ð6Þ

if suppðHρHÞ � suppðρÞ, and PHðρÞ ¼ 1 otherwise, where ρ ¼
P

jpj ψj

�

�

�

E

ψj

D
�

�

� is the spectral decomposition of ρ.
As we discuss below, this function is an example of a generalized

family of Fisher information introduced by Petz53,54. Also, in
Supplementary Note 2 we show that this function can be thought as
the second derivative of Petz-Rényi relative entropy (for α ¼ 2)55,56.
Using this fact we show that purity of coherence is (i) non-negative
and it becomes zero iff state is incoherent, (ii) non-increasing under
any TI operation ETI, i.e., PHout

ðETIðρÞÞ � PH in
ðρÞ. In particular, it

is invariant under energy-conserving unitaries. (iii) Additive: for
uncorrelated composite systems which are not interacting with each
other, i.e., PHtot

ðρ1 � ρ2Þ ¼ PH1
ðρ1Þ þ PH2

ðρ2Þ, where Htot ¼
H1 � I2 þ I1 �H2, and (iv) a convex function of ρ.

The above definition implies that for pure states the purity of
coherence is 1, unless the state is an energy eigenstate, in which
case it is zero. This unboundedness of the purity of coherence,
captures the unreachability of pure coherent states from generic
mixed states: Suppose there exists a TI operation which receives n
copies of a system with state ρ1 and Hamiltonian H1, and with
probability of success p, transforms them to a single copy of a
system with state ρ2 and Hamiltonian H2. Using properties (i-iv),
in Supplementary Note 2 we show

n 	 p´
PH2

ðρ2Þ
PH1

ðρ1Þ
: ð7Þ

Thus, to generate a single copy of a pure coherent state ρ2, we
need n ¼ 1 or PH1

ðρ1Þ ¼ 1. These properties of purity of

coherence make it a powerful tool to study coherence distillation,
both in the asymptotic and single-shot regimes.

Relation with Quantum Fisher Information. It turns out that
the purity of coherence has an interesting relation with Quantum
Fisher Information (QFI), and this relation plays a crucial role in
the proof of our no-go theorem. Recall that for the family of states
fe�iHtρeiHtgt , QFI associated to the time parameter t is

FHðρÞ ¼ 2
X

j;k

ðpj � pkÞ
2

pj þ pk
jhψjjHjψkij

2 : ð8Þ

where ρ ¼ P

jpj ψj

�

�

�

E

ψj

D
�

�

� is the spectral decomposition of ρ. QFI

is the central quantity of quantum metrology and estimation
theory27–30,54, and has found extensive applications in different
areas of physics (See e.g.,57–62). QFI satisfies properties (i-iv)
listed above for the purity of coherence. In particular, it is additive
and monotone under TI operations.
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A closer look at the properties of the purity of coherence and
QFI reveals an interesting relation between them: First, compar-
ing Eq. (6) and Eq. (8), one can easily show that the purity of
coherence is always larger than or equal to QFI, i.e.,
PHðρÞ 	 FHðρÞ, and the equality holds iff ρ is incoherent.
Furthermore, for two-level systems, we find the nice formula

PHðρÞ ¼
FHðρÞ

2½1� Trðρ2Þ� ; ð9Þ

i.e., the purity of coherence is determined by a combination of
QFI and the purity, Trðρ2Þ. This means that, for states close to the
maximally mixed state, PHðρÞ=FHðρÞ � 1, whereas for states close
to a generic pure state, PHðρÞ can be arbitrarily larger than FHðρÞ.
We show that these properties hold beyond two-level systems: In
general, if ρ is ϵ-close to the maximally mixed state in infidelity,

then
PHðρÞ
FHðρÞ ¼ 1þOð ffiffiffi

ϵ

p Þ. In the opposite limit, where ρ is close to

a pure state, we find PHðρÞ 	 1
4
FHðψmaxÞ ´ ½

p2max

1�pmax
� 1�; where

pmax is the largest eigenvalue of ρ, and ψmax is the corresponding
eigenvector (See Supplementary Note 3). Again, as ρ converges to
a pure state, the purity Trðρ2Þ and pmax converge to one. In this
case, PHðρÞ diverges, unless the pure state is an energy eigenstate.

We conclude that, roughly speaking, the purity of coherence
PHðρÞ is lower bounded by the ratio of QFI (for a pure state close
to ρ) to one minus the purity of state; hence, higher PHðρÞ means
more pure coherence, which justifies its name.

It is interesting to note that the relation between the purity of
coherence and QFI is analogous to the relation between the total
and free energies in thermodynamics; the latter distinguishes
ordered (low-entropy) energy and disordered (high-entropy)
energy. Similarly, the purity of coherence, can recognize the
distinction between the pure and mixed coherence. It turns out
that for some operations, such as coherence distillation, the same
amount of coherence quantified by QFI in states with more purity
is a more useful resource.

RLD and SLD Fisher information. It is worth mentioning that
both of these quantifiers of coherence, i.e., the purity of coherence
PH and QFI FH , are specials cases of a generalized family of Fisher
Information. Classically, Fisher information is the unique (up to a
normalization) stochastically monotone Riemannian metric on
the space of probability distributions63. In the quantum case, on
the other hand, there is a family of monotone metrics on the
space of density operators, which is fully characterized by
Petz53,54 (See also ref. 63). Interestingly, functions PH and FH are
extremal points in this family: they are, respectively, the maximal
and minimal monotone metrics calculated for the one-parameter
family of states fe�iHtρeiHtgt . In quantum estimation literature,
these functions are often respectively called Right Logarithmic
Derivative (RLD) and Symmetric Logarithmic Derivative (SLD)
Fisher Information. Following the physics literature convention,
here we have referred to SLD Fisher information as Quantum
Fisher Information (QFI).

Remarkably, these two extremal functions have also distin-
guished roles in the resource theory of (unspeakable) coherence
and quantum clocks: it has been recently shown that QFI (SLD
Fisher Information) determines the coherence cost, i.e., the
minimum rate of consumption of standard pure coherent states
that is needed to generate the desired mixed state, using TI
operations46. Also, it is well-known that QFI determines the
lowest achievable mean square error for estimating the time
parameter. On the other hand, it turns out that the purity of
coherence (RLD Fisher Information) is relevant in the context of
coherence distillation (See Fig. 3), and provides a powerful tool
for proving our no-go theorem on coherence distillation.

Proof of the main theorem. To prove the impossibility of
coherence distillation machines, we use the properties of the
purity of coherence, namely its monotonicity and additivity, and
its relation with QFI. Note that the impossibility of distillation
cannot be shown using QFI alone, because it increases linearly in
n, for both the input and the desired output states. As we explain
in the following, the main challenge in proving this theorem is the
fact that QFI and the purity of coherence are not asymptotically
continuous64.

In Supplementary Note 4 we prove the following result, which
is of independent interest: Consider m non-interacting systems,
each with Hamiltonian H, and with the total Hamiltonian

Htot ¼
Pm

i¼1H
ðiÞ, in the joint state σm. Suppose the fidelity of σm

and state ϕj i�m, is hϕj�mσmjϕi
�m ¼ 1� ϵ. Then, for sufficiently

large m, e.g., m 	 70
jhϕjH3jϕij2
V3

HðϕÞ
and sufficiently small ϵ, e.g.,

ϵ � 10�3, QFI and the purity of coherence of state σm relative to
the total Hamiltonian Htot, are lower bounded by

FHtot
ðσmÞ 	 4c ´m ´ FHðϕÞ; ð10Þ

PHtot
ðσmÞ 	 c ´m ´ FHðϕÞ ´

1

ϵ

; ð11Þ

where c is a positive constant, e.g., c ¼ 10�2 (Recall that for a pure
state ϕ, QFI is FHðϕÞ ¼ 4VHðϕÞ). Note that similar to the case of
a single qubit in Eq. (9), the lower bound on the purity of
coherence in Eq. (11) grows linearly with ϵ

�1.
At first glance, these bounds might seem intuitive from our

previous discussions: For instance, Eq. (10) means that to be able
to have a large fidelity with state ϕ�m, QFI of state σm should also
grow (at least) linearly with m, which might be expected from the
additivity of QFI. However, a more careful analysis is needed: the
Hamiltonian Htot has eigenvalues of order m ´ k H k, which
means relative to this Hamiltonian, two states with infidelity ϵ can

have QFI’s which differ by order ϵ ´m2 k Hk2. Thus, while one
state can have a large QFI, e.g., linear in m, the other might have a
negligible QFI. This makes the proof of the above bounds non-
trivial.

Now suppose there exists a TI operation En which converts ρ�n

to state σmðnÞ whose fidelity with the desired state ϕ
�mðnÞ
coh is 1� ϵn.

To simplify the notation, we assume the Hamiltonian of each copy
at the input is the same as the Hamiltonian of each copy at the
output, which is denoted by H (This assumption is not needed for
the proof). Then, using the additivity of the purity of coherence, the
total purity of coherence of the input is n ´ PHðρÞ. Since this
quantity is monotone under TI operations, the purity of coherence
of the output is PHtot

ðσmðnÞÞ � n ´ PHðρÞ. Combined with

Eq. (11), this leads to

mðnÞ
n

� 1

c
´

PHðρÞ
FHðϕcohÞ

´ ϵn: ð12Þ

This interesting inequality implies that to make error ϵn small, the
yield mðnÞ=n should also be small, unless FHðϕcohÞ ¼ 0, i.e., ϕcoh
is incoherent, or PHðρÞ ¼ 1. Thus, if PHðρÞ is bounded and ϕcoh
is coherent, then to have vanishing error ϵn ! 0, we also need to
have vanishing yield, lim

n!1
mðnÞ=n ¼ 0, which means the

distillable coherence is zero. We show that for a bounded
Hamiltonian H, PHðρÞ < 1 iff Πρ, the projector to the support of

ρ, commutes with H. We conclude that if ½Πρ;H� ¼ 0, then the

distillable coherence is zero, which proves the theorem.

Sub-linear Coherence Distillation: Trade-off between the
maximum achievable yield and fidelity. Even though for states
with finite purity of coherence the distillable coherence is zero,
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interestingly, it turns out that any state which contains coherence
can still be used to distill a sub-linear number of pure coherent
states. In the above scenario, let moptðnÞ be the maximum number

of copies of ϕcoh which can be distilled with error less than ϵn, and
roptðnÞ ¼ moptðnÞ=n be the maximum achievable yield. Assuming

the input and output systems have the same period, the ratio of
roptðnÞ to error ϵn satisfies

4½1� oð1Þ� ´ FHðρÞ
FHðϕcohÞ

�
roptðnÞ

ϵn

� 1

c
´

PHðρÞ
FHðϕcohÞ

; ð13Þ

where the upper bound on roptðnÞ=ϵn follows from Eq. (12), and

holds assuming the number of distilled copies is sufficiently large,

e.g., moptðnÞ 	 70
jhϕcohjH3jϕcohij

2

V3
HðϕcohÞ

, and error ϵn is sufficiently small,

e.g., ϵn � 10�3. These assumptions are not required for the
lower bound.

This means that there is a trade-off between fidelity and yield.
For instance, for sufficiently large n, one can achieve the yield

rðnÞ ¼ 4
FHðρÞ

FHðϕcohÞ
n�α, for arbitrary exponent α > 0, with infidelity

ϵn ¼ n�ðα�δÞ where δ > 0 can be arbitrary small. Choosing
smaller α > 0, means higher yield and also larger error. This
should be compared with the recent results on distillation of
speakable coherence65–68 (In particular, in the case of strictly
incoherent operations5,69, there are bound states, which cannot
be converted to a single copy of a pure coherent state with a
vanishing error, even if one is given an arbitrary many copies of
state66–68). This tradeoff and the linear relation between the yield
and error, which highlights the significance of yield-to-error ratio
as a fundamental quantity, are unique features of this resource
theory, which have practical implications in the context of
quantum clocks, and are worth further study.

In the Methods section, we also discuss an interesting corollary
of this result, namely a novel operational explanation of the
violation of the monotonicity of Petz-Rényi relative entropy
under data processing, for the parameter range α > 255,56.

To establish the lower bound on roptðnÞ=ϵn in Eq. (13), we
consider a TI process defined based on a parameter estimation
task: Suppose one is given n copies of state e�iHtρeiHt , where
t 2 ½0; τÞ is unknown (Recall that τ is the period of both the input
and the desired output systems). Measuring these systems, one
can obtain an estimate test 2 ½0; τÞ of t, with probability density
pðtestjtÞ. We can assume the estimator is invariant under time-
translations, such that pðtestjtÞ ¼ pðtest � sjt � sÞ : 8s 2 ½0; τÞ,
where the subtraction is mod τ; if this is not the case, one can
always make the estimator invariant by adding a random time
translation to the input state, and then canceling it at the output
of the estimator (See Supplementary Note 7). Suppose after
obtaining the estimate test one prepares mðnÞ copies of state

e�iHtest ϕcoh
�

�

�

. Then, the entire measure-and-prepare process will
be described by a TI operation. Furthermore, as we show in
Supplementary Note 7, applying this TI operation on the input
ρ�n, the fidelity of the resulting state with the desired state

ϕcoh
�

�

��mðnÞ
is

R τ

0 dtestpðtestjt ¼ 0ÞjhϕcohjeiHtest jϕcohij
2mðnÞ

	 1�mðnÞFHðϕcohÞ ´ hδt2i=4;
ð14Þ

where FHðϕcohÞ is four times the energy variance of ϕcoh, and

hδt2i ¼
R τ

0dtestpðtestjtÞðt � testÞ2 is the Mean Squared Error
(MSE) of the estimator (Note that because of time-translation
symmetry, MSE is independent of t). Therefore, the ratio of the

yield rðnÞ ¼ mðnÞ=n to infidelity ϵn, satisfies

rðnÞ
ϵn

	 4

FHðϕcohÞ ´ nhδt2i
: ð15Þ

For any reasonable estimator the MSE hδt2i scales as 1=n.
Therefore, as n goes to infinity, the above lower bound remains
positive. In particular, as shown in30,70, there exists an estimator
working based on the classical Maximum Likelihood (ML)
estimator, which achieves MSE hδt2i ¼ 1=ðnFHðρÞÞ þ oð1=nÞ,
i.e., saturates the Quantum Cramér-Rao bound27,30,71. Therefore,
using Eq. (15), we find that the ratio rðnÞ=ϵn for this estimator,
satisfies the lower bound in Eq. (13).

It is worth noting that in the high noise regime, where each
input copy ρ is close to the maximally mixed state, we have
PHðρÞ=FHðρÞ � 1, and therefore the lower and upper bounds in
Eq. (13) coincide, up to a constant factor 1=c. Therefore, in this
regime we can achieve close to optimal distillation using a
measure-and-prepare strategy. Furthermore, because asymptoti-
cally the optimal MSE can be achieved using local adaptive
measurements on individual copies30,70, this distillation process
does not require any entangling interactions between the input
copies. On the other hand, as we discuss in Methods section, such
measure-and-prepare TI operations are, in general, sub-optimal
for distillation in the low-noise regime.

Single-shot Coherence Distillation: Exact formula. Next, we
consider the problem of coherence distillation in the single-shot
regime: suppose we are given n copies of a system in a mixed state
ρ as the resource, and we want to obtain a single copy of a system
in a pure coherent state ψ, using only TI operations? What is the
maximum achievable fidelity maxETI

hψjETIðρ�nÞjψi, where the

maximization is over all TI operations.
Using the approach of72, we find a simple general formula for

the maximum achievable fidelity:

maxETI
hψjETIðρ�nÞjψi ¼ 2�HminðoutjinÞΩ ; ð16Þ

where HminðoutjinÞΩ is the conditional min-entropy56,73, for the
bipartite state Ωin;out, obtained by dephasing state ðρ�nÞin �
ψj i ψh jout in the eingenbasis of Hamiltonian Hin�
Iout � Iin � Hout. Here, Iin and Iout are the identity operators, and

Hin ¼ Pn
i¼1H

ðiÞ and Hout are the input and output Hamiltonians,
respectively. See Supplementary Note 9, for the proof and further
discussion about this formula.

Although important, Eq. (16) does not clearly show the
asymptotic behavior of the maximum achievable fidelity. On the
other hand, our results on the purity of coherence and sub-linear
coherence distillation yield simple general upper and lower
bounds on the maximum achievable fidelity. Note that in Eq.
(15), the number of distilled copies mðnÞ is arbitrary and can be
independent of n. In fact, as we explain in Supplementary Note 7,
for any (fixed) finite mðnÞ ¼ m, Eq. (15) is tight in the regime
n ! 1, and for ML estimator, n ´ ϵn converges to
mFHðϕcohÞ=4FHðρÞ, where ϵn is the infidelity of the output with
m copies of ϕcoh.

Example: Single-shot distillation of a two-level system. The
smallest quantum clock is a system with two different energy
levels. Without loss of generality we assume the Hamiltonian of
this system is H ¼ πσz=τ. Suppose we want to prepare this clock

in state ϕcoh
�

�

�

¼ ð 0j i þ 1j iÞ=
ffiffiffi

2
p

, but we have access to a noisy

version of this state, i.e., ρ ¼ λ ϕcoh
�

�

�

ϕcoh
�

�

� þ ð1� λÞI=2, with
0 < λ < 1. The goal is to use n 
 1 copies of ρ to obtain a state
with higher fidelity with ϕcoh

�

�

�

. What is the lowest achievable
infidelity? Using the properties of the purity of coherence and, in
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particular, Eq. (7), in Supplementary Note 10 we show that the
infidelity is lower bounded by

1�maxETI
hϕcohjETIðρ�nÞjϕcohi 	

1

n

1� λ2

4λ2
þOð 1

n2
Þ: ð17Þ

Therefore, in the limit of large n, infidelity times n is lower

bounded by ð1� λ2Þ=4λ2. In Fig. 3 we compare this lower bound
with the infidelity achieved by two different TI processes: (i) an
operation related to quantum Schur transformation, studied
previously in74, which has full SU(2) symmetry, and hence is also
TI. As we discuss in Supplementary Note 10, the results of74

implies that using this process we can achieve the infidelity

ð1� λÞ=2nλ2. (ii) The measure-and-prepare process based on the
ML estimator, discussed in the previous section, which achieves

the infidelity n�1
´ FHðΦÞ=4FHðρÞ ¼ 1=ð4nλ2Þ.

Remarkably, we find that the bound imposed by the purity of
coherence in Eq. (17) is tight in both high-noise (λ ! 0) and low-
noise (λ ! 1) regimes. This suggests that this bound is achievable
for all values of λ, and, at least in this example, the purity of
coherence determines the ultimate limit of coherence distillation
in the single-shot regime.

Discussion. In recent years there has been a significant progress
in understanding the concept of coherence in the context of
quantum thermodynamics (See e.g.,1–4,6,40,75,76). Nevertheless,
some aspects of coherence are still not well-understood. Here, we

highlighted an important feature of quantum coherence which
manifests itself, for instance, in the unreachability of pure
coherent states from mixed states in both the single-shot and
asymptotic regimes, and the fact that (in some precise sense) the
coherence content of a single qubit can be arbitrarily large. To
quantify this feature of coherence, we introduced a new quantifier
of coherence, called the purity of coherence and showed that the
monotonicity of this quantity under TI operations gives a tight
bound on the coherence distillation in the single-shot regime. The
tightness of this bound supports the idea that the purity of
coherence is adequately quantifying the unreachability of pure
coherent states from mixed states.

In this paper, we focused on the implications of our results in
the context of quantum clocks and thermodynamics. Another
important area of applications is quantum metrology32,47,77–79,
which will be discussed in future works.

Methods
Limited power of TI measure-and-prepare processes for distillation. In the
above example, it is interesting to note that in the high noise regime, the optimal
distillation can be achieved using a measure-and-prepare TI process. On the other
hand, in the opposite limit, where the input state ρ is almost pure, measure-and-
prepare TI processes are not optimal for coherence distillation. In fact, as it can be
seen in Fig. 3, even if the input is n copies of a pure coherent state ϕcoh, the output
of a measure-and-prepare distillation process can not be a pure coherent state for
any finite n.

To understand this fact better, in the following we derive a strong constraint on
the power of measure-and-prepare TI processes for manipulation of coherence.
This constraint is a corollary of the following result: For any state ρ and any
Measure-and-Prepare TI process EMP�TI , it holds that

PHout
ðEMP�TIðρÞÞ � FHin

ðρÞ � PHin
ðρÞ; ð18Þ

i.e., the purity of coherence of the output is upper bounded by the input QFI, where
Hin and Hout are, respectively, the input and output Hamiltonians (See below for
further discussion). This means that for input ρ�n , the purity of coherence of the
output of a measure-and-prepare TI process is upper bounded by n ´ FHin

ðρÞ. On
the other hand, for a general TI process the purity of coherence of the output can
be as large as n ´ PHin

ðρÞ, which is much larger than n ´ FHin
ðρÞ, if ρ is close to a

coherent pure state (For instance, in the above example, Schur transformation
reaches this bound in the low noise regime).

Combining this result with the lower bound on the purity of coherence in Eq.
(11), we find that if one applies a measure-and-prepare TI process to n copies of ρ
to obtain mðnÞ copies of a pure coherent state ϕcoh with error ϵn , then for
sufficiently large mðnÞ and small error ϵn , the yield rðnÞ ¼ mðnÞ=n and error ϵn

satisfy rðnÞ=ϵn � 1=c ´ FHðρÞ=FHðϕcohÞ. Therefore, if QFI of state ρ is finite,
which is always the case for systems with bounded Hamiltonians, then using
measure-and-prepare TI processes it is not possible to achieve a finite yield
rðnÞ > 0 with a vanishing error ϵn ! 0, even if ρ is a pure coherent state, i.e., has
an unbounded purity of coherence.

In Supplementary Note 8 we present the proof of inequality PHout
ðEMP�TIðρÞÞ �

FHin
ðρÞ in Eq. (18). We also note that this inequality follows from the previous

result of80. The main idea is the following: By definition any measure-and-prepare
process can be realized by a measurement on the input followed by a state
preparation at the output, which solely depends on the classical outcome of the
measurement. For input states fe�iHin tρeiHin tgt , consider the distribution of
outcomes of this measurement, as a function of parameter t. Then, the (classical)
Fisher information corresponding to parameter t is upper bounded by QFI of the
input state, i.e., FHin

ðρÞ. As we show in Supplementary Note 8, this classical Fisher

information, itself, is an upper bound on PHout
ðEMP�TIðρÞÞ, the purity of coherence

of the output (This also has been shown previously in80). Roughly speaking, this is
true because at the classical level, the distinction between Fisher information and
the purity of coherence vanishes (This is related to Čencov’s theorem63 which
asserts that, up to a normalization, Fisher information is the unique monotone
metric on the space of classical probability distributions).

Violation of monotonicity of Petz-Rényi relative entropy in the light of

coherence distillation. Our results on coherence distillation, and in particular Eq.
(13) and Eq. (17), provide a novel operational understanding of the violation of
monotonicity of Petz-Rényi relative entropy under data-processing, for α > 2.
Recall that for α > 1, Petz-Rényi relative entropy is defined as
Dαðρ k σÞ ¼ 1

α�1
logTrðρασ1�αÞ, if suppðρÞ � suppðσÞ and Dαðρ k σÞ ¼ 1,

otherwise55,56. For α 2 ð1; 2�, and any completely positivity trace-preserving map
E, DαðEðρÞ k EðσÞÞ � Dαðρ k σÞ, whereas this bound is violated for α > 255,56. As
we mentioned before, the purity of coherence can be derived from the second
derivative of the Petz-Rényi relative entropy for α ¼ 2, and its monotonicity under

5

4

3

2

1

0.0 0.1 0.2 0.3 0.4

Schur transformation

Measure-and-prepare using

ML estimator

Input infidelity

n × output infidelity

Forbidden by 

monotonicity of 

Purity of coherence 

Fig. 3 Minimum achievable infidelity as a function of the input infidelity.

We are given n 
 1 two-level systems, each with Hamiltonian πσ
z
=τ, in

state ρ ¼ λ ϕcoh
�

�

�

ϕcoh
�

�

�þ ð1� λÞI=2, where 0 < λ < 1, i.e., a noisy version of

state ϕcoh
�

�

�

¼ ð 0j i þ 1j iÞ=
ffiffiffi

2
p

. The goal is to distill a single copy of ϕcoh
�

�

�

with higher fidelity using TI operations. Horizontal axis is the infidelity of

each input state ρ with the desired state ϕcoh
�

�

�

, which is equal to ð1� λÞ=2.
For any reasonable coherence distillation process, the infidelity at the

output is in the form eðλÞ=nþ oð1=nÞ. Vertical axis is the function eðλÞ, i.e., n
times the output infidelity, in the limit n ! 1. The dashed curve

corresponds to the equation eðλÞ ¼ ð1� λ2Þ=4λ2, dictated by the

conservation of purity of coherence (RLD Fisher information), i.e., is found

by minimizing the infidelity with the desired state ϕcoh
�

�

�

, under the

constraint that the purity of coherence remains conserved. The shaded area

below this curve is forbidden by the monotonicity of this quantity. The blue

curve is eðλÞ ¼ ð1� λÞ=2λ2, achieved by a distillation process which works

based on the Schur transformation75. The red curve is eðλÞ ¼ 1=4λ2,

achieved by a measure-and-prepare process which uses ML estimator.

Note that the lower bound imposed by the purity of coherence is tight in

both high-noise (λ ! 0) and low-noise (λ ! 1) regimes, but each of these

TI operations achieves this lower bound only in one limit.
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TI operations follows from the monotonicity of this relative entropy (See Sup-
plementary Note 2). Considering the second derivative of Petz-Rényi relative
entropy for other values of α 2 ð1;1Þ, we can generalize the purity of coherence,
and obtain the family of functions defied by the formula
PH;αðρÞ � TrðραHρ1�αHÞ � TrðρH2Þ, if the projector to the support of ρ com-

mutes with H, and PH;αðρÞ ¼ 1 otherwise. Similar to the purity of coherence, all

these functions are (i) additive, (ii) non-zero iff state is coherent, and (iii) bounded
if the projector to the support of ρ commutes with H. Furthermore, for any state ρ
whose infidelity with a pure coherent state is ϵ, PH;αðρÞ scales (at least) as ϵ

1�α . It

follows that, if instead of the purity of coherence we use other monotone functions
in this family, we obtain other lower bounds on the achievable infidelity. In
particular, such a bound would imply that if the purity of coherence of a mixed
state ρ is finite, then to distill a single copy of a pure coherent state ϕcoh with error

ϵ, the required number of copies of ρ is, at least, of order ϵ1�α , i.e., n 2 Ωðϵ1�αÞ. For
α > 2 this bound is asymptotically stronger than the bound imposed by purity of
coherence, which is linear in ϵ

�1 .
However, as we have seen in the proof of Eq. (13) and also in Fig. 3, there exists

a TI process based on the ML estimator which achieves errors of order ϵ, by
consuming only order ϵ�1 copies of ρ. Therefore, if Petz-Rényi relative entropy was
monotone for α > 2, we had a lower bound on the number of required copies,
which was violated by this coherence distillation process. This provides an
operational explanation that why the Petz-Rényi relative entropy cannot be
monotone under data-processing for α > 2: α ¼ 2 is the largest value for which the
monotonicity of Petz-Rényi relative entropy is not violated by coherence
distillation processes.

Proofs. All the results in the paper are rigorously proven in the Supplementary
Notes 1-10.
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