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Abstract

Margin-based classification methods are typ-
ically devised based on a majorization-
minimization procedure, which approxi-
mately solves an otherwise intractable min-
imization problem defined with the 0-l loss.
The extension of such methods from the bi-
nary classification setting to the more general
multicategory setting turns out to be non-
trivial. In this paper, our focus is to devise
margin-based classification methods that can
be seamlessly applied to both settings, with
the binary setting simply as a special case.
In particular, we propose a new majoriza-
tion loss function that we call the coherence
function, and then devise a new multicate-
gory margin-based boosting algorithm based
on the coherence function. Analogous to
deterministic annealing, the coherence func-
tion is characterized by a temperature fac-
tor. It is closely related to the multinomial
log-likelihood function and its limit at zero
temperature corresponds to a multicategory
hinge loss function.

1 Introduction

Margin-based classification methods have become in-
creasingly popular since the advent of the support vec-
tor machine (SVM) (Cortes and Vapnik, 1995) and
boosting (Freund, 1995; Freund and Schapire, 1997).
These algorithms were originally designed for binary
classification problems. Unfortunately, extension of
them to the multicategory setting has been found to
be non-trivial.
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A variety of ad hoc extensions of the binary SVM
and boosting to multicategory classification problems
have been studied. These include one-versus-rest, one-
versus-one, error-correcting codes, and pairwise cou-
pling (Allwein et al., 2000). Among these methods,
one-versus-rest has been the dominant approach. The
basic idea is to train m binary classifiers for an m-
class (m ≥ 2) problem so that each classifier learns to
discriminate one class from the rest. However, opti-
mality achieved for each of the m independent binary
problems does not readily guarantee optimality for the
original m-class problem.

The goal of this paper is to solve multicategory clas-
sification problems using the same margin principle
as that for binary problems. Of crucial concern are
the statistical properties (Bartlett et al., 2006; Tewari
and Bartlett, 2007; Zhang, 2004) of a majorization
function for the original 0-1 loss function. In particu-
lar, we analyze the Fisher-consistency properties (Zou
et al., 2008) of extant majorization functions, which
are built on the exponential, logit and hinge functions.
This analysis inspires us to propose a new majorization
function, which we call the coherence function.

The coherence function is attractive because it is a
Fisher-consistent majorization of the 0-1 loss. Also,
one limiting version of it is just the multicategory hinge
loss function of Crammer and Singer (2001), and its re-
lationship with the multinomial log-likelihood function
is very clear. Moreover, this function is differentiable
and convex. Thus it is very appropriate for use in the
development of multicategory margin-based classifica-
tion methods, especially boosting algorithms. Fried-
man et al. (2000) and Zou et al. (2008) proposed the
multicategory LogitBoost and GentleBoost algorithms
based on the multinomial log-likelihood function and
the exponential loss function, respectively. We pro-
pose in this paper a new multicategory GentleBoost
algorithm based on our coherence function.

The rest of this paper is organized as follows. Sec-
tion 2 presents theoretical discussions of extant loss
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functions for multicategory margin-based classification
methods. Section 3 proposes the coherence function
and discusses its statistical properties. Section 4 de-
vises a multicategory margin-based boosting algorithm
using the coherence function. An experimental anal-
ysis is presented in Section 5 and concluding remarks
are given in Section 6. Some proofs of the theoretical
results are left to the appendices.

2 Problem Formulation

We are given an m-class (m ≥ 2) classification problem
with a set of training data {(xi, ci)}

n
i=1, where xi ∈

X ⊂ R
d is an input vector and ci ∈ {1, 2, . . . ,m} is

its corresponding class label. We assume that each x

belongs to one and only one class. Our goal is to find
a classifier φ(x) : x→ c ∈ {1, . . . ,m}.

Let Pc(x) = P (C = c|X = x), c = 1, . . . ,m be the
class probabilities given x. The expected error at x is
then defined by

∑m
c=1 I[φ(x) 6=c]Pc(x), where I[#] = 1 if

# is true and 0 otherwise. The empirical error on the
training data is given by

ǫ =
1

n

n
∑

i=1

I[φ(xi) 6=ci].

Since ǫ is equal to its minimum value of zero when
all the training data points are correctly classified, we
wish to use ǫ as a basis for devising multicategory clas-
sification algorithms.

2.1 Multicategory Margins

Suppose the classifier is modeled using an m-vector
g(x) = (g1(x), . . . , gm(x))T , where the induced clas-
sifier is obtained via maximization in a manner akin
to discriminant analysis: φ(x) = argmaxj{gj(x)}. For
simplicity of analysis, we assume that the maximiz-
ing argument of maxj gj(x) is unique. Of course this
does not imply that the maximum value is unique; in-
deed, adding a constant to each component gj(x) does
not change the maximizing argument. To remove this
redundancy, it is convenient to impose a sum-to-zero
constraint. Thus we define

G =

{

(g1(x), . . . , gm(x))T
∣

∣

∣

m
∑

j=1

gj(x) = 0

}

and assume g(x) ∈ G. Zou et al. (2008) referred to the
vectors in G as multicategory margin vectors.

Since a margin vector g(x) induces a classifier, we ex-
plore the minimization of ǫ with respect to (w.r.t.)
g(x). However, this minimization problem is in-
tractable because I[φ(x) 6=c] is the 0-1 function. Var-
ious tractable surrogate loss functions ζ(g(x), c) are

thus used to approximate I[φ(x) 6=c]. The correspond-
ing population and empirical risk functions are given
by

R(P,g) = EX

(

m
∑

c=1

ζ(g(x), c)Pc(x)
)

,

R̂(g) =
1

n

n
∑

i=1

ζ(g(xi), ci),

where EX(·) is the expectation taken w.r.t. the distri-
bution of X.

If α is a positive constant that does not de-
pend on (x, c), argmin

g(x)∈G
1
α
R̂(g) is equivalent to

argmin
g(x)∈G R̂(g). We thus present the following def-

inition.

Definition 1 A surrogate loss ζ(g(x), c) is said to be
a majorization of I[φ(x) 6=c] w.r.t. (x, c) if ζ(g(x), c) ≥
αI[φ(x) 6=c] where α is a positive constant that does not
depend on (x, c).

Given a majorization function ζ(g(x), c), the classi-
fier resulting from the minimization of R̂(g) w.r.t. the
margin vector g(x) is called a margin-based classifier
or a margin-based classification method. Therefore,
a margin-based classifier corresponds to a so-called
majorization-minimization procedure. In the binary
classification setting, a wide variety of classifiers can be
understood as minimizers of a majorization loss func-
tion of the 0-1 loss. If such functions satisfy other
technical conditions, the resulting classifiers can be
shown to be Bayes consistent (Bartlett et al., 2006).
It seems reasonable to pursue a similar development
in the case of multicategory classification, and indeed
such a proposal has been made by Zou et al. (2008)
(see also Tewari and Bartlett (2007); Zhang (2004)).
The following definition refines the definition of Zou
et al. (2008). (Specifically, we do not require that the
function ζ(g(x), c) depends only on gc(x).)

Definition 2 A surrogate function ζ(g(x), c) is said
to be Fisher consistent w.r.t. a margin vector g(x) =
(g1(x), . . . , gm(x))T at x if (i) the following risk min-
imization problem

ĝ(x) = argmin
g(x)∈G

m
∑

c=1

ζ(g(x), c)Pc(x) (1)

has a unique solution ĝ(x) = (ĝ1(x), . . . , ĝm(x))T ; and
(ii)

argmax
c

ĝc(x) = argmax
c

Pc(x).

2.2 Multicategory Losses

Zou et al. (2008) derived multicategory boosting al-
gorithms by using ζ(g(x), c) = exp(−gc(x)). In their
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discrete boosting algorithms, the margin vector g(x)
is modeled as an m-vector function with one and only
one positive element. In this case, I[gc(x)≤0] is equal to
I[φ(x) 6=c]. Consequently, exp(−gc(x)) is a majorization
of I[φ(x) 6=c]. Therefore, the discrete AdaBoost algo-
rithms of Zou et al. (2008) still approximate the origi-
nal empirical 0-1 loss function. However, in the general
case, exp(−gc(x)) is not a majorization of I[φ(x) 6=c].
Thus the multicategory GentleBoost algorithm of Zou
et al. (2008) is not a margin-based method.

Friedman et al. (2000) proposed a multicategory Log-
itBoost algorithm by using the negative multinomial
log-likelihood function, which is given by

L(g(x), c) = log
m

∑

j=1

exp
(

gj(x)− gc(x)
)

(2)

= log
[

1 +
∑

j 6=c

exp(gj(x)−gc(x))
]

at (x, c). Although log[1 + exp(−gc(x))] is an up-
per bound of log(2)I[gc(x)≤0], it is not a majoriza-
tion of I[φ(x) 6=c]. However, L(g(x), c) is a majoriza-
tion of I[φ(x) 6=c] because of L(g(x), c) ≥ log(2)I[φ(x) 6=c].
Thus, the multicategory LogitBoost algorithm (Fried-
man et al., 2000) is also a margin-based method.

It is worth noting that log[1+exp(−gc(x))] is the ma-
jorization of I[φ(x) 6=c] if the margin vector g(x) has
only one positive element. Unfortunately, when this
majorization as well as L(g(x), c) are used to derive
multicategory discrete boosting algorithms, a closed-
form solution no longer exists.

In the case of the multicategory SVM algorithm,
Crammer and Singer (2001) used the surrogate:

H(g(x), c) = max{gj(x) + 1− I[j=c]} − gc(x). (3)

It is easily seen that

I[φ(x) 6=c] = I[∃j 6=c, gj(x)−gc(x)>0]

≤ max
{

gj(x) + 1− I[j=c]

}

− gc(x).

This shows that H(g(x), c) is a majorization of
I[φ(x) 6=c], but it is Fisher consistent only when
maxl Pl(x) > 1/2 (Zhang, 2004).

3 Coherence Functions

Since hinge-type loss functions are not smooth, exist-
ing multicategory SVMs do not directly estimate the
class probability Pc(x). Moreover, it is rare to de-
vise a boosting algorithm with them. However, lo-
gistic regression extends naturally from binary classi-
fication to multicategory classification by simply us-
ing the multinomial likelihood in place of the bino-
mial likelihood. In this section, we present a smooth

and Fisher-consistent majorization loss, which bridges
hinge-type losses and the negative multinomial log-
likelihood. Thus, it is applicable to the construction
of multicategory margin-based classifiers.

3.1 Definition

In order to obtain a majorization function of I[φ(x) 6=c],

we express max{gj(x) + 1− I[j=c]} as
∑m

j=1 βc
j (x)

[

1 +

gj(x)− I[j=c]

]

where

βc
j (x) =

{

1 j = argmaxl{gl(x)+1−I[l=c]}
0 otherwise.

Motivated by the idea behind deterministic anneal-
ing (Rose et al., 1990), we relax this hard function
βc

j (x), retaining only βc
j (x) > 0 and

∑m
j=1 βc

j (x) = 1.
With respect to a soft βc

j (x) respecting these con-

straints, we maximize
∑m

j=1 βc
j (x)

[

1 + gj(x) − I[j=c]

]

under an entropy constraint, namely,

max
{βc

j
(x)}

{

F =

m
∑

j=1

βc
j (x)

[

1 + gj(x)− I[j=c]

]

− T
m

∑

j=1

βc
j (x) log βc

j (x)
}

, (4)

where we refer to T > 0 as a temperature.

The maximization of F w.r.t. βc
j (x) is straightforward,

and it gives rise to the following distribution

βc
j (x) =

exp
[ 1+gj(x)−I[j=c]

T

]

∑

l exp
[ 1+gl(x)−I[l=c]

T

]

. (5)

The corresponding maximum of F is obtained by plug-
ging (5) back into (4):

F ∗ = T log
∑

j

exp
[1 + gj(x)− I[j=c]

T

]

.

Note that for T > 0 we have

T log
[

1+
∑

j 6=c

exp
1+gj(x)−gc(x)

T

]

= T log
∑

j

exp(
1 + gj(x)− I[j=c]

T
)− gc(x)

≥ max
j

{

gj(x)+1−I[j=c]

}

−gc(x)

≥ I[φ(x) 6=c].

This thus leads us to the following family of majoriza-
tion functions of I[φ(x) 6=c]:

C(g(x), c) = T log
[

1+
∑

j 6=c

exp
1+gj(x)−gc(x)

T

]

, T > 0.

(6)
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We refer to the functions as coherence functions due to
their statistical mechanical properties similar to those
of deterministic annealing (Rose et al., 1990). Note
that the coherence function is also a majorization of
the multicategory hinge loss H(g(x), c) in (3).

When T = 1, we have

C(g(x), c) = log
[

1+
∑

j 6=c

exp
(

1+gj(x)−gc(x)
)

]

,

which is just an upper bound of the negative multino-
mial log-likelihood function L(g(x), c) in (2).

In the binary case, i.e. m = 2, we let g1(x) = −g2(x) =
1
2f(x) and encode y = 1 if c = 1 and y = −1 if c = 2.
We can thus express the coherence function as

C(yf(x)) = T log
[

1+ exp
1−yf(x)

T

]

, T > 0. (7)

Figure 1 depicts the coherence function (T = 1) and
other common loss functions for m = 2.
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0−1 loss

Coherence

Logit

Exponential

Hinge

Figure 1: A variety of loss functions, which are re-
garded as a function of yf(x). Here T = 1 in the co-
herence loss. Logit loss: 1

log 2 log[1+ exp(−yf(x))]; Ex-

ponential loss: exp(−yf(x)); Hinge loss: [1− yf(x)]+
where [u]+ = u if u ≥ 0 and [u]+ = 0 otherwise.

3.2 Properties

The following theorem shows that the coherence func-
tion is Fisher consistent.

Theorem 1 Assume Pc(x) > 0 for c = 1, . . . ,m.
Consider the optimization problem

argmax
g(x)∈G

m
∑

c=1

T log
[

1+
∑

j 6=c

exp
1+gj(x)−gc(x)

T

]

Pc(x)

for a fixed T > 0 and let ĝ(x) = (ĝ1(x), . . . , ĝm(x))T

be its solution. Then ĝ(x) is unique. Moreover, if

Pi(x) < Pj(x), we have ĝi(x) < ĝj(x). Furthermore,
after having obtained ĝ(x), Pc(x) is given by

Pc(x) =

∑m
l=1 exp

1+ĝl(x)+ĝc(x)−I[l=c]

T
∑m

j=1

∑m
l=1 exp

1+ĝl(x)+ĝj(x)−I[l=j]

T

. (8)

Moreover, we have the following properties.

Theorem 2 Let H(g(x), c), βc
j (x) and C(g(x), c) be

defined by (3), (5) and (6), respectively. Then,

S(g(x), c) ≤ C(g(x), c)− T log m ≤ H(g(x), c),

where

S(g(x), c) =
1

m

∑

j 6=c

(

1 + gj(x)− gc(x)
)

.

Importantly, when treating g(x) fixed and considering
βc

j (x) and C(g(x), c) as functions of T , we have

Theorem 3 Under the conditions in Theorem 2, for
a fixed g(x) we have

(i) limT→∞ C(g(x), c)− T log m = S(g(x), c) and

lim
T→∞

βc
j (x) =

1

m
for j = 1, . . . ,m

(ii) limT→0 C(g(x), c) = H(g(x), c) and

lim
T→0

βc
j (x) =

{

1 j = argmaxl{gl(x)+1−I[l=c]}
0 otherwise.

It is worth noting that Theorem 3-(ii) shows that at
T = 0, C(g(x), c) reduces to the multicategory hinge
loss H(g(x), c), which is used by Crammer and Singer
(2001).

As an immediate corollary of Theorems 2 and 3 in the
binary case (m = 2), we have

Corollary 1 Let C(yf(x)) be defined by (7). Then

(i) (1−yf(x))+ ≤ C(yf(x)) ≤ T log 2+[1−yf(x)]+;

(ii) limT→0 C(yf(x)) = [1− yf(x)]+;

(iii) 1
2 (1−yf(x)) ≤ C(yf(x))− T log 2;

(iv) limT→∞ C(yf(x))− T log 2 = 1
2 (1−yf(x)).

Graphs of C(yf(x)) with different values of T are
shown in Figure 2. We can see that C(yf(x)) with T =
0.01 is almost the same as the hinge loss [1− yf(x)]+.

Wang et al. (2005) derived an annealed discriminant
analysis algorithm in which the loss function is
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Figure 2: Coherence functions with T = 1, T = 0.1
and T = 0.01.

A(g(x), c) = T log
[

1+
∑

j 6=c

exp
gj(x)−gc(x)

T

]

, T > 0.

Thus, the negative multinomial log-likelihood function
L(g(x), c) and the conventional logistic regression are
respectively the special cases of A(g(x), c) and the an-
nealed discriminant analysis algorithm with T = 1
(also refer to Zhang and Oles (2001) for the binary
case). However, since

lim
T−→0

A(g(x), c) = max
j

(gj(x)− gc(x)),

it is no longer guaranteed that A(g(x), c) is always a
majorization of I[φ(x) 6=c] for any T > 0.

4 The GentleBoost Algorithm

In this section we apply the coherence function to
the development of multicategory margin-based boost-
ing algorithms. Like the negative multinomial log-
likelihood function, when the coherence function is
used to devise multicategory discrete boosting algo-
rithms, a closed-form solution no longer exists. We
instead use the coherence function to devise a genuine
multicategory margin-based boosting algorithm. With
a derivation similar to that in Friedman et al. (2000);
Zou et al. (2008), our GentleBoost algorithm is shown
in Algorithm 1.

5 Experimental Evaluation

We compare our algorithm (called GentleBoost.C)
with some representative multicategory boost-
ing algorithms, including AdaBoost.MH (Schapire

and Singer, 1999), multicategory LogitBoost
(MulLogitBoost) (Friedman et al., 2000) and
multicategory GentleBoost (GentleBoost.E) (Zou
et al., 2008), on six publicly available datasets
(Vowel, Waveform, Image Segmentation, Optdigits,
Pendigits and Satimage) from the UCI Machine
Learning Repository. Following the settings in Fried-
man et al. (2000); Zou et al. (2008), we use predefined
training samples and test samples for these six
datasets. Summary information for the datasets is
given in Table 1.

Based on the experimental strategy in Zou et al.
(2008), eight-node regression trees are used as weak
learners for all the boosting algorithms with the ex-
ception of AdaBoost.MH, which is based on eight-node
classification trees. In the experiments, we observe
that the performance of all the methods becomes sta-
ble after about 50 boosting steps. Hence, the num-
ber of boosting steps for all the methods is set to
100 (H = 100) in all the experiments. The test er-
ror rates (in %) of all the boosting algorithms are
shown in Table 2, from which we can see that all
the boosting methods achieve much better results than
CART, and our method slightly outperforms the other
boosting algorithms. Among all the datasets tested,
Vowel and Waveform are the most difficult for clas-
sification. The notably better performance of our
method for these two datasets reveals its promising
properties. Figure 3 depicts the test error curves of
MulLogitBoost, GentleBoost.E and GentleBoost.C

on these two datasets.

Theorem 3 shows that as T → 0, C(g(x), c) approaches
max{gj(x) + 1 − I[j=c]} − gc(x). This encourages us
to try to decrease T gradually over the boosting steps.
However, when T gets very small, it can lead to numer-
ical problems and often makes the algorithm unstable.
The experiments show that when T takes a value in
[0.1, 2], our algorithm is always able to obtain promis-
ing performance. Here our reported results are based
on the setting of T = 1. Recall that L(g(x), c) is the
special case of A(g(x), c) with T = 1, so the com-
parison of GentleBoost.C with MulLogitBoost is fair
based on T = 1.

As we established in Section 2.2, GentleBoost.E does
not implement a margin-based decision because the
loss function used in this algorithm is not a majoriza-
tion of the 0-1 loss. Our experiments show that
MulLogitBoost and GentleBoost.C are competitive,
and outperform GentleBoost.E.

6 Conclusion

In this paper, we have proposed a novel majorization
function and a multicategory boosting algorithm based
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Algorithm 1 GentleBoost.C({(xi, ci)}
n
i=1 ⊂ R

p×{1, . . . ,m}, T , H)

1: Start with uniform weights wij = 1/n for i = 1, . . . , n and j = 1, . . . ,m, and βj(x) = 1/m and gj(x) = 0 for
j = 1, . . . ,m.

2: Repeat for h = 1 to H:

(a) Repeat for j = 1, . . . ,m:

(i) Compute working responses and weights in the jth class,

zij =
I[j=ci] − βj(xi)

βj(xi)(1− βj(xi))
,

wij = βj(xi)(1− βj(xi)).

(ii) Fit the regression function g
(h)
j (x) by a weighted least-squares fit of the working response zij to xi

with weights wij on the training data.

(iii) Set gj(x)← gj(x) + g
(h)
j (x).

(b) Set gj(x)← m−1
m

[

gj(x)− 1
m

∑m
l=1 gl(x)

]

for j = 1, . . . ,m.

(c) Compute βj(xi) for j = 1, . . . ,m as

βj(xi) =











exp
(

1+gj(xi)−gci
(xi)

T

)

1+
P

j 6=ci
exp

(

1+gj(xi)−gci
(xi)

T

) if j 6= ci,

1

1+
P

j 6=ci
exp

(

1+gj(xi)−gci
(xi)

T

) if j = ci.

3: Output φ(x) = argmaxj gj(x).

Table 1: Summary of benchmark datasets.
Dataset # Train # Test # Features # Classes
Vowel 528 462 10 11

Waveform 300 4700 21 3
Segmentation 210 2100 19 7

Optdigits 3823 1797 64 10
Pendigits 7494 3498 16 10
Satimage 4435 2000 36 6

Table 2: Test error rates of our method and related methods (in %). The best result for each dataset is shown
in bold.

Dataset CART AdaBoost.MH MulLogitBoost GentleBoost.E GentleBoost.C

Vowel 54.10 50.87 49.13 50.43 47.62

Waveform 31.60 18.22 17.23 17.62 16.53

Segmentation 9.80 5.29 4.10 4.52 4.05

Optdigits 16.60 5.18 3.28 5.12 3.17

Pendigits 8.32 5.86 3.12 3.95 3.14
Satimage 14.80 10.00 9.25 12.00 8.75

on this function. The majorization function is Fisher
consistent, differential and convex. Thus, it is appro-
priate for the design of margin-based boosting algo-
rithms. While our main focus has been theoretical,
we have also shown experimentally that our boosting
algorithm is effective, although it will be necessary to
investigate its empirical performance more extensively.

Owing to the relationship of our majorization function
with the hinge loss and the negative multinomial log-
likelihood function, it is also natural to use the coher-
ence function to devise a multicategory margin-based
classifier as an alternative to existing multicategory
SVMs and multinomial logistic regression models.
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Figure 3: Test error rates versus boosting steps.

A Proof of Theorem 1

A map L : Ω→ R, where Ω is a normal function space
defined over R

d, is said to be Gateaux differentiable at
g(x) ∈ Ω, if for every fixed h ∈ Ω there exists

L′(g(x)) = lim
t→0

L(g(x) + th)− L(g(x))

t
.

In our derivation, for notational simplicity, we omit x

in the functions and denote L′(gj(x)) by ∂L
∂gj

.

Without loss of generality, we let T = 1 in the following
derivation. Consider the following Lagrangian

L =

m
∑

j=1

log
[

1 +
∑

l 6=j

exp(1 + gl − gj)
]

Pj + λ

m
∑

j=1

gj

and calculate the first and second derivatives of L
w.r.t. the gc as

∂L

∂gc

= −

∑

l 6=c exp(1+gl−gc)

1+
∑

l 6=c exp(1+gl−gc)
Pc

+
∑

j 6=c

exp(1 + gc − gj)

1 +
∑

l 6=j exp(1+gl−gj)
Pj + λ

= −

∑m
l=1 exp(1+gl−gc)

1+
∑

l 6=c exp(1+gl−gc)
Pc

+
m

∑

j=1

exp(1 + gc − gj)

1 +
∑

l 6=j exp(1+gl−gj)
Pj + λ

= −

m
∑

l=1

βclPc +

m
∑

j=1

βjcPj + λ,

∂2L

∂gc∂gk

= −βckPc +
∑

l 6=c

βclβckPc − βkcPk

+ βkc

∑

l 6=k

βklPk −
∑

j 6=c,k

βjcβjkPj

= −

m
∑

j=1

βjcβjkPj

for k 6= c, and

∂2L

∂gc∂gc

=
m

∑

j=1

βjc(1− βjc)Pj

where

βcc =
1

1 +
∑

l 6=c exp(1 + gl − gc)

βcj =
exp(1 + gj − gc)

1 +
∑

l 6=c exp(1 + gl − gc)
.

We denote ∆j = diag(βj1, βj2, . . . , βjm) and βj =

(βj1, βj2, . . . , βjm)T . The Hessian matrix is

H ,
∂2L

∂gT ∂g
=

m
∑

j=1

Pj(∆j − βjβ
T
j ).

For any nonzero u ∈ R
m subject to

∑m
j=1 uj = 0, it is

easily seen that

uT Hu =

m
∑

j=1

Pj

[

m
∑

c=1

βjcu
2
c − (

m
∑

c=1

βjcuc)
2
]

≥ 0.

Here we use the fact that u2 is convex. Moreover, the
above inequality is strictly satisfied for any nonzero
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u with
∑m

j=1 uj = 0. This shows that the optimiza-
tion problem has a strictly local minimum point ĝ.
Again, we note that the Hessian matrix is positive

semi-definite, so
∑m

j=1 log
[

1+
∑

l 6=j exp(1+gl−gj)
]

Pj

is convex. Thus, ĝ is also the global minimum point.

Now we prove that if Pc > Pk, then ĝc > ĝk. Since
ĝ is the solution of equations ∂L

∂gc
= 0, it immediately

follows that λ = 0 by using
∑m

c=1
∂L
∂gc

= 0. Hence,

Pc

∑m
l=1 exp(1+ĝl−ĝc)

1+
∑

l 6=c exp(1+ĝl−ĝc)
=

m
∑

j=1

Pj × exp(1+ĝc−ĝj)

1+
∑

l 6=j exp(1+ĝl−ĝj)
,

from which we get

Pc

Pk

=
exp(ĝc)

exp(ĝk)

exp(ĝc)+
∑

l 6=c exp(1+ĝl)

exp(ĝk) +
∑

l 6=k exp(1+ĝl)
(9)

=
exp(2ĝc)− exp(1+2ĝc)+ exp(ĝc)

∑m
l=1 exp(1+ĝl)

exp(2ĝk)− exp(1+2ĝk)+ exp(ĝk)
∑m

l=1 exp(1+ĝl)

> 1.

Consequently,

0 >
[

exp(2ĝc)− exp(2ĝk)
][

1− exp(1)
]

+
[

exp(ĝc)− exp(ĝk)
]

m
∑

l=1

exp(1+ĝl)

= (exp(ĝc)− exp(ĝk))
[

exp(ĝc) + exp(ĝk)

+
∑

l 6=c,k

exp(1 + ĝl)
]

.

Thus we obtain ĝc > ĝk. From (9), we get (8).

B Proof of Theorem 2

First, consider that

T log m + S(g(x), c)− C(g(x), c)

= T log
m exp 1

m

∑

j 6=c

1+gj(x)−gc(x)
T

1+
∑

j 6=c exp
1+gj(x)−gc(x)

T

≤ T log
1+

∑

j 6=c exp
1+gj(x)−gc(x)

T

1+
∑

j 6=c exp
1+gj(x)−gc(x)

T

= 0.

Here we use the fact that exp(·) is convex. Second,
assume that l = argmaxj{gj(x) + 1− I[j=c]}. Then

T log m +H(g(x), c)− C(g(x), c)

= T log
m exp

1+gl(x)−gc(x)−I[l=c]

T

1+
∑

j 6=c exp
1+gj(x)−gc(x)

T

≥ 0.
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