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We study the quantum coherence properties of a finite sized atomic condensate using a toy model and the
thin spectrum model formalism. The decoherence time for a condensate in the ground state, nominally taken as
a variational symmetry breaking state, is investigated for both zero and finite temperatures. We also consider
the lifetimes for Bogoliubov quasiparticle excitations, and contrast them to the observable window determined
by the ground-state coherence time. The lifetimes are shown to exhibit a general characteristic dependence on
the temperature, determined by the thin spectrum accompanying the spontaneous symmetry breaking ground
state.
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I. INTRODUCTION

Although the first observation of superfluid behavior in
4He dates back to 1937 �1�, it was not until 1995 that super-
fluid associated with Bose-Einstein condensation �BEC� �2�
was discovered in dilute atomic gases �3�. While the atom-
atom interactions are too complicated to handle in liquid
state 4He, a dilute atomic gas opens the possibility to con-
struct a microscopic theory for superfluidity. Since 1995,
atomic quantum gases have served as excellent fertile ground
for studying quantum coherence properties of matter and for
testing interesting many-body theories.

The theoretical and experimental studies of atomic con-
densates have also focused on their quantum coherence prop-
erties. Shortly after the initial discovery of BEC, it was un-
derstood that a finite sized condensate, in addition to the
usual decoherence due to imperfect isolation from the envi-
ronment, suffers from quantum phase diffusion �4,5�, an in-
teraction driven decoherence due to atomic number fluctua-
tions from within the condensate �6�. This study suggests a
third source of decoherence, which we show limits the life-
time of a quasiparticle excitation from a condensate, based
on the mechanism of the thin spectrum as recently proposed
and applied to any quantum system with a spontaneously
broken symmetry �7–9�. Our work therefore constitutes a
natural application of the thin spectrum formalism to the
highly successful mean-field theory for atomic condensates,
where the condensate is treated as a U�1� gauge symmetry
breaking field.

This paper is organized as follows: We begin with a re-
view of a toy-model calculation for the lifetime of the coher-
ent condensate ground state as well as a squeezed ground
state and a thermal coherent state. We then review the con-
cept of the thin spectrum and show how it is connected with
spontaneous symmetry breaking and decoherence of an
atomic condensate. In Sec. IV, we show how the quasiparti-
cle excitations of an atomic Bose-Einstein condensate are
affected by the thin spectrum associated with the ground-
state condensate. Finally, in Sec. V we show how to gener-
alize the idea of the thin spectrum to systems with multiple

broken symmetries. Concluding remarks are provided in
Sec. VI.

II. TOY MODEL

The basic idea of dephasing from the ground-state phase
collapse can be understood based on the zero-mode dynam-
ics of a toy model �10,11�. The ground state of an N boson
system is with all N bosons in the lowest energy eigenstate,
the zero momentum state for a homogeneous gas. However,
it cannot simply be a Fock state since Bose-Einstein conden-
sation entails a definite phase from the broken phase U�1�
symmetry, while a number state has no definite phase. A
reasonable approximation is to consider a coherent state oc-
cupation for the zero mode with an amplitude �=�N. Taking
� real is equivalent to explicitly picking a phase of the U�1�
symmetry. Because such a coherent state is not an energy
eigenstate, it suffers phase collapse �4,5�. In this section, we
discuss the dynamics of the associated phase collapse based
on a simple toy model to calculate the rate of this collapse
and study the modifications arising from a squeezed ground
state.

A. Lifetime for the coherent ground state

We discuss the zero mode due to BEC, which results in
breaking the U�1� gauge symmetric Hamiltonian

H =
ũ

2
â†â†ââ − �â†â , �1�

where â denotes the atomic annihilation operator for the con-
densate �zero� mode. ũ scales as ũ=u0 /V with V the quanti-
zation volume and u0 the effective interaction constant de-
fined as u0=4�as�

2 /M. as is the s-wave scattering length
and M is the atomic mass. � is the chemical potential, a
Lagrange multiplier for fixing the density of the average
number of condensed particles N in the quantization volume
V. We consider a variational, symmetry breaking ground
state, a coherent state satisfying â�z�=z�z�. Such a state can
be formally generated by the displacement operator D�z�
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=exp�zâ−z�â†� acting on the vacuum state, or D�z��0�= �z�.
Minimization of the mean free energy �z�H�z� then fixes �z�
	�N. This coherent state can be expanded in terms of the
eigenvectors of the Hamiltonian, e.g., the Fock number states
�n� so that

�z� = e−�z�2/2

n=0

�
zn

�n!
�n� . �2�

In this case the order parameter for BEC is the expectation
value of the annihilation operator. In the Heisenberg picture,
the operator â�t� is

â�t� = ei/�Htâe−i/�Ht. �3�

In terms of the eigenenergy En= ũ
2 �n2−n�−�n, defined

through H�n�=En�n�, for the nth Fock state �n�, one can eas-
ily calculate

�z�â�z� = �N exp�N�e−i/�ũt − 1��ei/��t, �4�

whose short time behavior is found to be

�z�â�z� = �Nei/��te−iNũ/�te−Nũ2/2�2t2, �5�

i.e., revealing an exponential decay �4,5�. At a longer time
scale, it turns out that �z�â�z� revives due to the discrete, and
thus periodic, nature of the exact time evolution �4�.

The short time decay defines a collapse time proportional
to tc�� /�Nũ. The ratio of the revival time tr required for the
order parameter scales as tr / tc=�N, and becomes infinite in
the thermodynamic limit. In order to get an estimate of this
tc, we introduce a characteristic length scale for the harmonic
trap potential as aho=�� / �M�tr�, in terms of the harmonic
trap frequency �tr. Denoting the density of condensed atom
numbers in the quantization volume as �=N /V, we find

tc =
�N

4�Neff

1

�tr
, �6�

where we have defined Neff=�aho
2 as. Assuming a typical situ-

ation of current experiments with N�106, as=10 nm, aho
=1 �m, and �=1021 m−3, we obtain tc	10/�tr. For a mag-
netic trap with �tr=100 Hz, this amounts to tc�10−1 s,
clearly within the regime to be confirmed and studied experi-
mentally �6�.

B. Squeezed ground state

The unitary squeezing operator �12� for a single bosonic
mode is defined as

S�	� = e	/2ââ−	�/2â†â†
. �7�

The squeezed coherent state �� ,	�=D���S�	��vac� is also a
minimum uncertainty state, although its fluctuations in the
two orthogonal quadratures are not generally equal to each
other. Fluctuations of one quadrature are reduced or
squeezed at the expense of the other. The arguments of 	 and
� determine which quadrature is squeezed. In particular, if
both 	 and � are real, then the state is a number squeezed
state, with the uncertainty in atom number reduced at the

cost of higher uncertainty in the conjugate phase variable.
We expect such a state to have a longer lifetime, since the
phase collapse speed is generally proportional to 
N, which
is smaller in this case, as was recently observed experimen-
tally �13,14�. A wide phase distribution, on the other hand,
makes the squeezed state more similar to a Fock state which
has a uniform phase distribution, and is less influenced by
the decoherence effect due to the U�1� symmetry breaking
field because of the reduced number fluctuations.

In order to understand the essence of the above discus-
sion, we choose to follow similar arguments as with the co-
herent state considered previously. We will study the time
evolution of the single mode state �� ,	� subject to the same
U�1� gauge symmetric Hamiltonian �1�. For notational con-
venience we define

� = 	
tanh��	��

�	�
. �8�

The Fock state expansion of the squeezed state in terms of
this new variable is �15�

��,	� = 

n=0

�

An��,���n�

= �1 − ���2�1/4e−��+������/2

n=0

� � �n

2nn!
Hn�� + ���

�2�
�n� ,

�9�

where Hn is the nth-order Hermite polynomial. In the limit
x→�, Hn�x� behaves like 2nxn. Hence, the squeezed state
approaches a coherent state when �→0. The corresponding
expectation value for â�t� now takes the form

��,	�â�t���,	� = 

n=0

�

�n + 1An
�An+1ei/��En−En+1�t, �10�

where the complex nature of An�� ,�� makes the analytic
evaluation of this expression nontrivial. We therefore resort
to numerical studies. In a recent paper, number squeezing of
the initial state by a factor of 10 was reported �13�. This
corresponds to 	=ln 10 or �	0.98. In our numerical calcu-
lations, we consider the time evolution of �10� for �=10 at
�=0.5 and 0.9. The results in Fig. 1 manifest that squeezing
in the particle number fluctuations improves the coherence
time for the condensate. The phase space distributions of the
initial states used in Fig. 1 are displayed in Fig. 2. The long-
est lived preparation of the condensate is the one with the
strongest squeezing in the particle number or the one with
the largest phase fluctuations. In order to examine how the
phase distribution evolves in time, we can look at the propa-
gation of the Q function. We find that all coherent prepara-
tions of the condensate eventually lose the imprinted phase
information, and the system recovers its uniform phase dis-
tribution as in a Fock state. A typical result of our simula-
tions is presented in Fig. 3. By initially preparing the con-
densate in a number squeezed coherent state, with already
broad phase distribution, longer lifetimes of the condensate
are achieved.
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More generally, our discussions can reach beyond the
choices of real parameters � and �. Consequently, different
results may be expected, as we illustrate the comparisons
between a coherent state and squeezed states with �=0.5, �
=0.5i, and �=−0.5 in Fig. 4. We see that the last two choices
of the squeezing parameters lead to reduced coherence times,
a result that again can be reasonably understood in terms of
the increased uncertainty in the atom number, as it causes
faster collapse.

C. Thermal coherent state

To extend the above discussions to finite temperature sys-
tems, we will now introduce the thermal coherent state,

which possesses both a thermal character as well as a phase.
Consider the following density matrix for a thermal state:

�th = e−�H = 

n

e−�En�n��n� , �11�

where �=1/kBT, kB is the Boltzmann constant, and T is the
temperature. In this state �11�, H is the Hamiltonian operator,
H= ũâ†â†ââ /2. En is redefined, corresponding to H�n�
=En�n�. �th is a mixed state that has a thermal character but
not a definite phase. In order to introduce a coherent compo-
nent, and also to change the mean number of atoms, we can
make use of the displacement operator

� = D����thD
†��� . �12�
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FIG. 1. The comparison of the short time decay character for a
coherent state condensate with that for a squeezed state at �=0.5
and �=0.9. The parameters used are as=10 nm, aho=1 �m, n
=1021 m−3, but now for N=100. In this case, the dimensionless time
in units of � / ũ becomes � / ũ=�tr

−1. The fastest decay �solid line�
denotes the result for a coherent state, while the dashed �dotted� line
refers to that of a squeezed state with �=0.5 ��=0.9�. As expected,
the choice of a squeezed state with real parameters � and � im-
proves the coherence time.
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FIG. 2. �Color online� The phase space distributions of the ini-
tial states used in Fig. 1. Curves �a�, �b�, and �c� correspond to �
=0.9, �=0.5, and �=0, respectively. Although all of them should be
centered at �=10, they are shifted for convenience.
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FIG. 3. �Color online� Time evolution of the Q function for a
squeezed-coherent state with �=10 and �=0.5 for different values
of t�tr. �a�, �b�, �c�, and �d� show the Q-function distributions for
t�tr=0, t�tr=0.02, t�tr=0.10, and t�tr=0.40. It is seen that as the
order parameter decays, the broken phase symmetry is restored,
since the Q-function distribution becomes rotationally symmetric.
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FIG. 4. Decay of the order parameter for the coherent state and
squeezed states of �=0.5, �=0.5i, and �=−0.5 as a function of t�tr.
The solid line is the coherent state, the dashed line is the squeezed
state with �=0.5, and the dotted lines are the squeezed states with
�=0.5i and �=−0.5. Only the state with real squeezing parameter
has a longer lifetime than the coherent state.
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We shall call this state a thermal coherent state, whose prop-
erties can be conveniently studied with the aid of the gener-
alized coherent or displaced number states �16�

D����n� = �n,�� = 

n=0

�

e−1/2���2� n!

m!
�m−nLn

m−n����2��m�

= 

n=0

�

Cm�n,���m� , �13�

where Lk
l is the generalized Laguerre polynomial. The ther-

mal coherent density matrix now becomes

� = 

n=0

�

e−�EnD����n��n�D†���

= 

n=0

�

e−�En�n,���n,��

= 

nmm�

e−�EnCm�n,��Cm�
� �n,���m��m�� , �14�

with which we can again consider the time evolution of the
expectation value of â�t�,

�â�t�� = 

nmm�k

e−�EnCm�n,��Cm�
† �n,���k�m�

�m��ei/�Htâe−i/�Ht�k� , �15�

calculated according to �â�t��=Tr��â�t��. In the end, we find

�â�t�� = 

nm

e−�EnCm+1�n,��Cm
� �n,���me−i/��Em+1−Em�t.

�16�

In general, the phase factors will interfere destructively in the
above. The thermal distribution weight e−�En term determines
how many different terms contribute. This implies that the
temperature definitely leads to a reduced coherence time for
the state. For the initial preparations of a condensate of 100

atoms, as depicted in Fig. 5, Fig. 6 illustrates the decay of
these condensates at various temperatures.

III. THIN SPECTRUM FORMALISM

A. Simple theory

By the thin spectrum, we typically refer to a group of
states whose energy spacings are so low that they are not
exactly controllable in any experiments. The effect of such
states on the partition function and on the decoherence has
been studied extensively, for instance, see Ref. �7�. In many-
body systems, models of thin spectra arise quite often when-
ever there exists a spectrum with level spacing inversely pro-
portional to the system size. These states with vanishing
energy difference in the thermodynamic limit are usually be-
yond experimental reach and therefore constitute a thin spec-
trum.

We begin by reviewing the ideas developed in �7�, which
use two quantum numbers, n and m, to denote the thin spec-
trum and ordinary states. When the initial state is prepared at
m=0, the thin spectrum distribution will be a thermal one.
This leads to the initial state for the system being

��t = 0� = Z−1

n

e−�E0
�n�

�0,n��0,n� , �17�

where H�m ,n�=Em
�n��m ,n�. Z is the partition function, Z

=
nexp�−�E0
�n��. A transformation �0,n�→
mCm�m ,n� leads

to the state

� = Z−1 

nmm�

e−�E0
�n�

CmCm�
� �m,n��m�,n� , �18�

which becomes
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FIG. 5. �Color online� The phase space distributions of the ini-
tial states used in Fig. 4. Curves �a�, �b�, �c�, and �d� correspond to
�=0.5, �=0, �=−0.5, and �=0.5i, respectively. Although all of them
should be centered at �=10, they are shifted for convenience.
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FIG. 6. �Color online� The short time decays for thermal coher-
ent states. The lines correspond, respectively, to T=1000, 100, 10,
1, and 0.001 nK from left to right. The humps are entirely due to the
ground degeneracy E0=E1. Even as the temperature approaches
zero, the state �12� does not approach the ordinary coherent state
D����0�. Instead, it is a superposition state D�����0�+ �1�� /�2.
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��t � 0� = 

nmm�

e−�E0
�n�

Z
e−i/��Em

�n�−E
m�
�n��tCmCm�

� �m,n��m�,n� ,

�19�

after time evolution. When it is observed, the details of this
density matrix cannot be seen, since the thin spectrum is
assumed to be beyond experimental reach. Therefore, only
the reduced density matrix, which is obtained by taking the
trace of � over the thin spectrum states, is observed. Follow-
ing the work of �7�, we define the thin spectrum state �jthin�
by �jthin �m ,n�=� j,n�m� where �m� denotes the ordinary ob-
servable state of a system. This then allows us to compute
the reduced system state

��red� = 

j

�jthin���t � 0��jthin�

= 

mm�n

e−�E0
�n�

Z
e−i/��Em

�n�−E
m�
�n��tCmCm�

� �m��m�� . �20�

While the diagonal elements �mm
�red�= �Cm�2 experience no time

evolution, the off-diagonal elements suffer a phase collapse
unless Em

�n�−E
m�
�n� is independent of n. For a two state system

�m=0,1�, the off-diagonal element will decay at a rate

Ethin /Ethin with 
Ethin=E1

�n�−E0
�n� and Ethin=E0

�n� �7�.

B. Continuous symmetry breaking and the Goldstone theorem

The Nambu-Goldstone theorem �17� dictates the existence
of a gapless mode whenever a continuous symmetry is bro-
ken spontaneously. For a ferromagnetic material, this mode
is the long-wavelength spin waves �18�. For a crystalline
structure, when the translational symmetry is broken, the
Nambu-Goldstone mode �NGM� describes the overall mo-
tion of the crystal �7�. For an atomic condensate, where the
BEC leads to the breaking of the gauge symmetry, the cor-
responding gapless mode induces phase displacement of the
condensate �5,19�.

Consider a diagonal Hamiltonian, which may correspond
to normal mode excitations with different �’s,

H = 

k

��kbk
†bk, �21�

where bk is the annihilation operator for the kth mode. As
usual, the bosonic commutation relations are assumed,
�bk� ,bk

†�=�k,k� and �bk ,bk��= �bk
† ,bk�

† �=0. If there is a broken
symmetry, motion along the axis of this symmetry will ex-
perience no restoring force, and hence the Hamiltonian of
this mode will have the form p2 /2I rather than a†a, where p
is the corresponding momentum operator and I is the corre-
sponding inertia mass. Hence, the Hamiltonian becomes

H =
1

2I
p2 + 


k

��kbk
†bk. �22�

The Hamiltonians for both a crystal �7� and a condensate �5�
can be shown to take this form. In both cases, the inertia
mass parameter I depends on the total atom number N and

can either diverge or vanish in the thermodynamic limit
when N→�.

The relationship between the Nambu-Goldstone theorem
and the thin spectrum is that the NGM guarantees the exis-
tence of a gapless mode, with the corresponding momentum
p taking an arbitrarily small value. Therefore, the value of p
is always capable of giving rise to thermal fluctuations below
the experimental precision and every NGM corresponds to a
thin spectrum �7�.

C. Explicit calculation

The Hamiltonian �22� is very common, Therefore, it is
useful and instructive to calculate its time of collapse explic-
itly. According to the thin spectrum theory, the general state
of a system takes the form �p , �Nk�� denoted by two sets of
quantum numbers p and �Nk�. For simplicity, we assume that
both p and k are one-dimensional quantities. Furthermore,
only two different states of the system are considered in or-
der to use it as a qubit. Assume that the elementary excitation
which brings the system from �Nk� to �Nk�� has a correspond-
ing energy �. In general, such an excitation may also change
the inertia mass I of the p term. For example, an interstitial
excitation changes the total mass of the crystal �7�. Similarly,
an excitation inside an atomic condensate can change its
peak density, which determines the inertia mass factor in
front of the phase coordinate �5,20�. Such a change is neces-
sary for our mechanism of phase diffusion to occur. When
this change to the effective mass from I to I�1+�� is small
against the small change � of the parameter, the off-diagonal
element in Eq. �20� evolves in time as

�od
�red� = Z−1�


p

e−�E0
�p�

e−i/��E1
�p�−E0

�p��tC1C0
�, �23�

where E0
�p�= p2 /2I and E1

�p�=�+ p2 /2I�1+��. Upon substitut-
ing into the above, we find

�od
�red� = Z−1e−i/���


p

e−��/2I−i/2��/It�p2C1C0
�. �24�

Since p is continuous, its summation becomes an integral, or

�od
�red� = Z−1e−i/��

��

2

1

�� �

2I
− 2

i

�

�

I
tC1C0

�, �25�

which gives

��od
�red��2 = �const�

1
�1 + 16t2�2/�2�2

. �26�

Thus, the off-diagonal term decays in a time

tc � �/kBT� , �27�

as seen in Fig. 7.
To apply the above result to an atomic condensate, we

consider the relevant temperature scale at T�100 nK and
assume that a particular observable excitation has ��10−1.
In this case, we see that tc�10−3 s, less than the lifetimes of
many observed ground states. We can also try to obtain an
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approximation to the coherence time of the condensate
ground state. Taking the atom number as N�106, if the
ground state is assumed a coherent state, than the number
fluctuations are of the order of 
N=�N. The inertia param-
eter I is proportional to I�N2/5 �5,20� in the Thomas-Fermi
limit, which gives �= ��N+
N�2/5−N2/5� /N2/5=2
N /5N, or
��10−3. Substituting this, we find tc�10−1 s, much larger
than for the excited state, as to be expected. Furthermore, the
result for the ground-state lifetime is in agreement with our
previous calculation in Sec. II.

IV. QUASIPARTICLES IN A CONDENSATE

A. Thermal state

We now focus on the Hamiltonian of a dilute, weakly
interacting atomic Bose gas �21�

H = 

k

Ekak
†ak +

ũ

2 

k,p,q

ap+q
† ak−q

† akap. �28�

Omitting the third- and fourth-order operator terms in the
uncondensed mode �k�0�, we can partition the Hamiltonian
into

H = Hz + He,

Hz =
ũ

2
�n̂0

2 − n̂0� ,

He = 

k�0

��Ek + 2ũn̂0�n̂k +
ũ

2
�ak

†a−k
† a0a0 + H.c.� , �29�

where n̂k=ak
†ak is the mode occupation. The above two parts

of the Hamiltonian actually do not commute with each other,
as we can easily check that

�Hz,He� =
ũ2

2 

k�0

�ak
†a−k

† �− n̂0a0
2 − a0

2n̂0 + a0
2� − H.c.� .

�30�

Neglecting the quantum nature of a0 in He, we can replace
n0 /V by �0=N0 /V, and obtain

He = 

k�0

��kn̂k +
u0�0

2
�ak

†a−k
† + H.c.� , �31�

where we have defined �k=Ek+2u0�0−�0 with �0=u0�0
for a coherent condensate state. In this approximation,
�Hz ,He�=0 at the cost of sacrificing the conservation of
Ntotal=
knk.

The quadratic Hamiltonian �31� can be diagonalized with
the Bogoliubov quasiparticles into the canonical form

He = 

k�0

�kbk
†bk + const, �32�

with �k= ��k
2−u0

2�0
2�1/2 �22� and bk=SakS

−1. S is the multi-
mode squeeze operator �23�.

In order to conserve the particle number density in the
condensate, we include a chemical potential term in the zero-
mode Hamiltonian

Hz =
ũ

2
�n̂0

2 − n̂0� − �0n̂0. �33�

The ground state of such a system will be a Fock number
state �N0� with N0=�0V /u0+1/2. We assume that although
N0 and V may fluctuate, their ratio �0 is always a constant, as
in the thermodynamic limit. In this case, Hz becomes

Hz =
u0�0

2N0
�n̂0

2 − n̂0� − �0n̂0. �34�

Substituting �0=u0�0−u0�0 /2N0, we obtain

H =
u0�0

2N0
n̂0

2 − �0u0n̂0 + He. �35�

For a coherent condensate state with �0=u0�0, we could im-
mediately obtain this result by neglecting the second term in
Eq. �34�, consistent with the nonzero momentum part of the
Hamiltonian.

The ground state, which we denote as ���, has N0 bosons
in the zero momentum state and no quasiparticle excitations
at all, i.e., for k�0,

bk��� = 0 = SakS
−1��� �36�

or

akS
−1��� = 0, �37�

and

��� = S�vac� . �38�

Therefore, the quasiparticle vacuum state ��� is in fact a
squeezed vacuum of atoms with nonzero k.

Now, we consider a setup with n atoms in the condensate
mode and m quasiparticle excitations at a certain single k
mode, while all other modes are empty. We will denote such
a state by �n ,m�,

n̂0�n,m� = n�n,m� , �39�
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FIG. 7. The decay of ��od
�red�� as a function of t / tc.
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n̂k��n,m� = m�k,k��n,m� . �40�

In the single-particle excitation regime Ek��0u0, each qua-
siparticle excitation reduces the number of condensate atoms
by one. In this case, the energy of this state can be written as

H�n,m� = Em
�n��n,m� = � u0�0n2

2�N0 − m�
− u0�0n + m��n,m� ,

�41�

where we simply denote �=�k.
Assume the system can be initially prepared with no qua-

siparticle excitation at all, but is in a Boltzmann weighted
distribution over the states �n ,0�, i.e.,

��t = 0� � 

n

e−�E0
�n�

�n,0��n,0� . �42�

This state will allow us to study the number fluctuations due
to unknown nonzero temperature constituents that make up
the occupations of the thin spectrum �7�. The summation
index can take any positive integers and therefore the sum-
mation should be over 0�n� +�. However, we note that
the maximum of E0

�n� is at N0�1, and because it becomes
extremely small for small values of n, we can extend the
summation to be over the full range −��n� +� and re-
place it with an integral in the continuous limit as done in the
following.

Excitation of a quasiparticle brings each �n ,0� to �n ,1�.
The off-diagonal element of the resulting state will evolve
according to

�od�t � 0� � �
−�

�

e−�E0
�n�

e−i/��E1
�n�−E0

�n��tdn

� �
−�

�

e�−�u0�0/2N0+itu0�0/2�N0
2�n2+��0u0ndn

� ��

exp� �2�0
2u0

2

2�u0�0/N0 − 2itu0�0/�N0
2

��u0�0/2N0 − itu0�0/2�N0
2

, �43�

which gives

��od�t��2 �

exp� �3N0
3u0�0

�2N0
2 + t2/�2

��2 + t2/�2N0
2

, �44�

after omitting terms with only a phase factor. Although the
denominator and the numerator have quite different forms,
we find that both decay in a time proportional to tc
��N0 /kBT. This is the same result that Wezel et al. have
found for a crystal �7�. The decay of this function is plotted
in Fig. 8 for unit values of parameters.

For an atomic Bose-Einstein condensate, the relevant pa-
rameters are N0�106–108 and T�10−8–10−7 K. These then
lead to tc�102–105 s, which is a time much larger than both
the theoretical and observed ground-state lifetimes. How-
ever, this is the lifetime for a single quasiparticle excitation,
i.e., for m=1. It is easy to show that the collapse time is
inversely proportional to m for m values not too large. An

easily tractable excitation should have m�N0 and this gives
tc�10−4–10−3 s, much smaller than both the observed and
expected ground-state lifetimes.

The study of temperature dependence for the damping
rates of Bogoliubov excitations of any energy has been car-
ried out before using perturbation theory. A linear tempera-
ture dependence was found �24�, surprisingly coinciding
with the linear dependence found here based on the decoher-
ence of the thin spectrum. Our result clearly would make a
quantitative contribution to the total decay of the quasiparti-
cles, although we note that our calculation is limited only to
the single-particle excitation regime as we have used �k
=Ek�u0�0. In the phonon branch corresponding to the low-
lying collective excitations out of a condensate, more com-
plicated temperature dependencies may occur �25�. In con-
trast to damping mechanisms based upon excitation collision
processes in the condensate, the thin-spectrum-caused decay
rate shows no system specific dependencies, apart from the
dependencies on temperature and the number of atoms. It is
independent of the interatomic interaction strength or the
scattering length, and the quasiparticle spectrum. This is due
to the fact that the thin spectrum emerges as a result of a
global symmetry breaking in a quantum system so that local
properties of the system do not contribute to the associated
decay rate.

B. Thermal coherent state

We now generalize the above idea to a thermal coherent
occupation of the zero mode. The initial density matrix be-
comes in this case

�od�0� = Z−1

n

e−�E0
�n�

D����n,0��n,0�D†���

= Z−1 

nmm�

e−�E0
�n�

Cm�n,��Cm�
� �n,���m,0��m�,0� .

�45�

The system is now brought into a superposition of no quasi-
particle and one quasiparticle state, i.e., �n ,0�→ ��n ,0�
+ �n ,1�� /�2. After further time evolution, the state becomes

0 2 4 6 8 10
0

0,5

1

t/t
c

|ρ
od

|

FIG. 8. The relative decay of the off-diagonal element in Eq.
�44� as a function of t / tc for unit values of parameters.

COHERENCE LIFETIMES OF EXCITATIONS IN AN … PHYSICAL REVIEW A 76, 043616 �2007�

043616-7



��t� = Z−1 

nmm�



kk�=0,1

e−�E0
�n�

2
Cm�n,��Cm�

� �n,��

e−i/��E1
�m�−E0

�m���t�m,k��m�,k�� , �46�

giving rise to the reduced density matrix and its off-diagonal
element below

��red� = Z−1

nl



kk�=0,1

e−�E0
�n�

2
�Cl�n,���2e−i/��Ek

�l�−E
k�
�l��t�k��k�� ,

�47�

�od
�red� = Z−1


nl

e−�E0
�n�

�Cl�n,���2

2
e−i/��E1

�l�−E0
�l��t. �48�

Figures 9 and 10 show the early time decay at temperatures
of 10 nK and 100 nK, respectively. It is seen that the decay
time for a thermal occupation, which we have studied in the
preceding section, exhibits stronger temperature sensitivity,
whereas the decay time for the thermal coherent occupation
is not changed very much by temperature. Therefore, we
conclude that for a thermal coherent occupation, the main
reason for the decay of the off-diagonal element is the decay
of the zero-mode distribution. However, if there is solely
thermal occupation, no decay of the zero mode occurs, and
the off-diagonal element decays only because of the tempera-
ture. In the preceding section, we have seen that the decay
rate due to the thin spectrum and the decay rate due to the
excitation collision processes show the same temperature de-
pendence qualitatively. In the case of coherent thermal occu-
pation of the zero mode, qualitative differences appear in the
temperature dependence of the decay time due to the differ-
ent decay mechanisms. Any remaining coherence in the zero
mode at nonzero temperatures makes the condensate decay
less sensitive to temperature.

V. MORE THAN ONE BROKEN SYMMETRY

A system may have more than one spontaneously broken
symmetry. For example, in addition to a broken gauge sym-
metry, the formation of vortices breaks the rotational sym-
metry of a condensate in a spherically symmetric trap �26�.
Furthermore, rotational symmetry can also be broken �27�
for a multicomponent or a spinor condensate �28�. When
more than one continuous symmetry is broken, there will
exist as many gapless modes as for the broken symmetries,
each with its own thin spectrum. In this section, we briefly
consider the effect of more than one thin spectrum.

Consider a general effective Hamiltonian with two gap-
less modes

H = �1p1
2 + �2p2

2 + �12p1p2 + 

k

��kbk
†bk, �49�

which after a canonical transformation reduces to

H = �1�p1�
2 + �2�p2�

2 + 

k

��kbk
†bk. �50�

Without loss of generality, we use this form of the Hamil-
tonian and henceforth omit the primes. The observable state
will be denoted by n, and an easy extension leads to
H�n , p1 , p2�=En

�p1,p2��n , p1 , p2� with En
�p1,p2�=En

�0,0�+�1p1
2

+�2p2
2. More generally, the primary excitation may affect

both inertia terms in the two thin spectra, which may them-
selves be coupled, i.e., �1=�1�n , p2� and �2=�2�n , p1�. Ex-
panding around the small p1 and p2, we find around pj =0,

En
�p1p2� = En

�0,0� + ��1�n,0� + �1��n,0�p2 + ¯�p1
2

+ ��2�n,0� + �2��n,0�p1 + ¯�p2
2

	 En
�0,0� + �1�n,0�p1

2 + �2�n,0�p2
2, �51�

up to the second order in pj. Thus, we can safely ignore the
inertia terms’ dependence on the other thin excitations to the
first approximation and let �1�n , p2�=�1�n�. Instead of �23�
we now find
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FIG. 10. Decay of the off-diagonal element for T=100 nK and
thermal coherent occupation of the zero mode as a function of t�tr.
Dashed line shows the decay in the case of the thermal coherent
occupation and the solid line shows the decay in the case of the
thermal occupation.
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FIG. 9. Decay of the off-diagonal element at T=10 nK as a
function of t�tr. Dashed line shows the decay in the case of the
thermal coherent occupation and the solid line shows the decay in
the case of the thermal occupation.
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�od
�red� = Z−1�


p1p2

e−�E0
�p1,p2�

e−i/��E1
�p1,p2�−E0

�p1,p2��tC1C0
�. �52�

Upon substituting the approximate forms for the Ej’s, we
find

�od
�red� = Z−1e−�E0

�0,0�
e−i/��E1

�0,0�−E0
�0,0��t

 

p1,p2

e−i/���1�1�−�1�0��p1
2te−i/���2�1�−�2�0��p2

2t

e−���1�0�p1
2+�2�0�p2

2�C1C0
�, �53�

�od
�red� = �const�e−t/tc

�1�
e−t/tc

�2�
. �54�

Thus, we see that the collapse due to different thin spectra do
not influence each other severely. They combine to give a
resulting decay with a simple single decay time

tc = � 1

tc
�1� +

1

tc
�2�−1

. �55�

VI. CONCLUSION

Based on a toy-model calculation for the decoherence dy-
namics of a coherent ground-state condensate, we have gen-

eralized the calculations of the dephasing times to cases of a
squeezed coherent ground state as well as a thermal coherent
ground state. The numerical results for a squeezed ground
state reveal that phase fluctuations increase its coherence
lifetime �13,14�, whereas temperature increases always de-
crease the lifetimes for ground-state quantum coherence.

The dynamics of the thin spectrum are shown to lead to
decoherence, not just on the ground state, but on quasiparti-
cle excitations, or superposition of excitations. We have in-
troduced simple approximations that allowed for the calcula-
tions of the decoherence lifetime of the condensate ground
state as well as its coherence excitations. These calculations
make possible the discussion of temperature effects in terms
of the thermal and thermal coherent occupations of the zero
mode. We find that the lifetimes for these two cases are of
the same order of magnitude, although the lifetime for the
latter shows a weak sensitivity on temperature, whereas that
of the former displays a stronger sensitivity.
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