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Coherence measure in terms of the 
Tsallis relative α entropy
Haiqing Zhao1 & Chang-shui Yu2

Coherence is the most fundamental quantum feature of the nonclassical systems. The understanding 

of coherence within the resource theory has been attracting increasing interest among which the 

quantification of coherence is an essential ingredient. A satisfactory measure should meet certain 
standard criteria. It seems that the most crucial criterion should be the strong monotonicity, that is, 

average coherence doesn’t increase under the (sub-selective) incoherent operations. Recently, the 

Tsallis relative α entropy has been tried to quantify the coherence. But it was shown to violate the 

strong monotonicity, even though it can unambiguously distinguish the coherent and the incoherent 

states with the monotonicity. Here we establish a family of coherence quantifiers which are closely 
related to the Tsallis relative α entropy. It proves that this family of quantifiers satisfy all the standard 
criteria and particularly cover several typical coherence measures.

Coherence, the most fundamental quantum feature of a nonclassical system, stems from quantum superposition 
principle which reveals the wave particle duality of matter. It has been shown that coherence plays the key roles 
in the physical dynamics in biology1–7, transport theory8,9, and thermodynamics10–14. In particular, some typical 
approaches such as phase space distributions and higher order correlation functions have been developed in 
quantum optics to reveal quantum coherence even as an irrigorous quanti�cation15–17. Quite recently, quantum 
coherence has been attracting increasing interest in various aspects18–33 including the quanti�cation of coher-
ence18–23, the operational resource theory24–28, the distribution29, the di�erent understandings34–41 and so on.

Quanti�cation of coherence is the most essential ingredient not only in the quantum theory but also in the 
practical application. Various quantities have been proposed to serve as a coherence quanti�er, however the avail-
able candidates are still quite limited. Up to now, only two alternatives, i.e., the coherence measures based on l1 
norm and the relative entropy, have turned out to be a satisfactory coherence measure18. In contrast, the usual lp 
(p ≠ 1) norm can not directly induce a good measure19. In addition, the coherence quanti�er based on the Fidelity 
is easily shown to satisfy the monotonicity that the coherence of the post-incoherent-operation state doesn’t 
increase, but it violates the strong monotonicity that average coherence doesn’t increase under the sub-selective 
incoherent operations18,42. Similarly, the coherence based on the trace norm is valid in many cases19,42 but looks 
invalid in general43. However, we know that the strong monotonicity is much more important than the mono-
tonicity not only because the sub-selection of the measurement outcomes required by the strong monotonicity 
can be well controlled in experiment as is stated in refs18,19, but also because the realizable sub-selection would 
lead to the real increment of the coherence from the point of resource theory of view if the strong monotonicity 
was violated. In this sense, the quantitative characterization of coherence still needs to be paid more attention.

Recently, ref.22 has also proposed a coherence quanti�er in terms of the Tsallis relative α entropy which lays 
the foundation to the non-extensive thermo-statistics and plays the same role as the standard logarithmic entropy 
does in the information theory44,45. However, it is unfortunate that the Tsallis relative α entropy isn’t an ideal 
coherence measure either because ref.22 showed that it only satis�es the monotonicity and a variational mono-
tonicity rather than the strong monotonicity. Is it possible to bridge the Tsallis relative α entropy with the strong 
monotonicity by some particular and elaborate design? In this paper, we build such a bridge between the Tsallis 
relative α entropy with the strong monotonicity, hence present a family of good coherence quanti�ers. By con-
sidering the special case in this family, one can �nd that the l2 norm can be validly employed to quantify the 
coherence. �e remaining of this paper is organized as follows. We �rst introduce the coherence measure and 
the Tsallis relative α entropy. �en we present the family of coherence quanti�er and mainly prove them to be 
strongly monotonic, and then we study the maximal coherence, several particular coherence measures and give a 
concrete application. Finally, we �nish the paper by the conclusion and some discussions.
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Result
The coherence and the Tsallis relative α entropy. �e resource theory includes three ingredients: the 
free states, the resource states and the free operations24,46. For coherence, the free states are referred to as the inco-
herent states which are de�ned in a given �xed basis {|i〉} by the states with the density matrices in the diagonal 
form, i.e., δ δ= ∑ i ii i  with δ∑ = 1i i  for the positive δi. All the states without the above diagonal form are the 
coherent states, i.e., the resource states. �e quantum operations described by the Kraus operators {Kn} with 

=†K K In n  are called as the incoherent operations and serve as the free operations for coherence, if δ ∈†K Kn n   for 
any incoherent δ. In this sense, the standard criteria of a good coherence quanti�er C(ρ) for the state ρ can be 
rigorously rewritten as18 (i) (Null) C(δ) = 0 for δ ∈ ; (ii) (Strong monotonicity) for any state ρ and incoherent 
operations {Kn}, ρ ρ≥ ∑C p C( ) ( )n n n

 with ρ= †p K KTr
n n n  and ρ ρ= †K K p/

n n n n
; (iii) (Convexity) For any ensemble 

{qi, σi}, σ σ∑ ≤ ∑C q q C( ) ( )i i i i i i .
In addition, ref.18 also introduces the monotonicity (in contrast to the strong monotonicity) that requires 
ρ ρ≥ ∑C C p( ) ( )n n n

. �is actually can be automatically implied by (ii) and (iii). As mentioned in ref.18, the mono-
tonicity is not laid in an important position compared with the strong monotonicity, because the measurement 
outcomes of {Kn} can be well controlled (sub-selected) in practical experiments. In fact, the fundamental spirit of 
both the monotonicity and the strong monotonicity (or the resource theory) is to restrict that the coherence 
(resource) shouldn’t be increased under the incoherent (free) operations, which is parallel with the resource the-
ory of entanglement, namely, the average entanglement is not increased under the local operations and classical 
communication (LOCC). However, if for a quantum state ρ, there exists one incoherent operation {Kn} such that 

ρ ρ∑ <C p C( ) ( )n n n
 but ρ ρ∑ >p C C( ) ( )n n n

 where n denotes the measurement outcome with the probability 
ρ= †p K KTr

n n n , and the corresponding post-measurement state is ρ ρ= †K K
n n n , this means that if we erase the 

information of the measurement outcomes, the coherence of the post-measurement state ρ′ is less than the coher-
ence of the pre-measurement state, but if we keep the measurement information, the average coherence is 
increased. However, in the practical experiment, it is not necessary for us to erase any information. �is means 
that the incoherent operation {Kn} can increase the coherence, which violates the fundamental spirit of a resource 
theory. It is why we emphasize the strong monotonicity.

With the above criteria, any measure of distinguishability such as the (pseudo-) distance norm could induce a 
potential candidate for a coherence quanti�er. But it has been shown that some candidates only satisfy the mono-
tonicity rather than the strong monotonicity, so they are not ideal and could be only used in the limited cases. 
ref.22 found that the coherence based on the Tsallis relative α entropy is also such a coherence quanti�er without 
the strong monotonicity.

�e Tsallis relative α entropy is a special case of the quantum f-divergences22,47. For two density matrices ρ 
and σ, it is de�ned as

ρ σ
α

ρ σ=
−

−α
α α−D ( )

1

1
(Tr 1)

(1)
1

for α ∈ (0, 2]. It is shown that for α → 1, ρ σαD ( ) will reduce to the relative entropy ρ σ ρ ρ ρ σ= −S Tr( ) log log2 2
. 

�e Tsallis relative α entropy ρ σαD ( ) inherits many important properties of the quantum f-divergences, for 
example, (Positivity) ρ σ ≥αD ( ) 0 with equality if and only if ρ = σ, (Isometry) ρ σ ρ σ=α α

† †D U U U U D( ) ( ) for 
any unitary operations, (Contractibility) ρ σ ρ σ≤α αD D($( ) $( )) ( ) under any trace-preserving and completely 
positive (TPCP) map $ and (Joint convexity) ρ σ ρ σ∑ ∑ ≤ ∑α αD p p p D( ) ( )n n n n n n n n n n  for the density matrices ρn and 
σn and the corresponding probability distribution pn.

Based on the Tsallis relative α entropy ρ σαD ( ), the coherence in the �xed reference basis {|i〉} can be charac-
terized by22

∑ρ ρ δ
α

ρ= =
−




















−







.α

δ
α

α α

α

∈

C D j j( ) min ( )
1

1
1

(2)j

1/



However, it is shown that ρα
C ( ) satis�es all the criteria for a good coherence measure but the strong monotonicity. 

Since ρ σα→D ( )1  reduces to the relative entropy ρ σS( ) which has induced the good coherence measure, through-
out the paper we are mainly interested in ∪α ∈ (0, 1) (1, 2].

In addition, the Tsallis relative α entropy ρ σαD ( ) can also be reformulated by a very useful function as

ρ σ
α

ρ σ=
−

−α α
D f( )

1

1
( ( , ) 1)

(3)

with

ρ σ ρ σ= .
α

α α−f ( , ) Tr (4)
1

Accordingly, the coherence ρα
C ( ) can also be rewritten as

ρ
α

α α ρ δ=
−







−




α

δ
α∈

C f( )
1

1
sgn ( )minsgn ( ) ( , ) 1

(5)1 1

which, based on Eq. (2), leads to the conclusion



www.nature.com/scientificreports/

3SCIENTIFIC REPORTS |  (2018) 8:299  | DOI:10.1038/s41598-017-18692-1


∑α ρ δ ρ=











.

δ
α

α α

α

∈
f j jminsgn ( ) ( , )

(6)j
1

1/

Based on Eq. (6) and the properties of ρ σαD ( ) mentioned above, one can have the following observations for the 
function fα(ρ, σ)22,47.

Observations: fα(ρ, σ) satis�es the following properties:

 (I) fα(ρ, σ) ≥ 1 for α ∈ (1, 2] and fα(ρ, σ) ≤ 1 for α ∈ (0, 1) with equality if and only if ρ = σ;
 (II) For a unitary operation U, fα(UρU†, UσU†) = fα(ρ, σ);
 (III) For any TPCP map $, fα(ρ, σ) doesn’t decrease for α ∈ (0, 1), and doesn’t increased for α ∈ (1, 2], namely,

α ρ σ α ρ σ≤
α α

f fsgn ( ) ($[ ], $[ ]) sgn ( ) ( , ), (7)1 1

where the function is de�ned by α
α

α
=






− ∈

∈
sgn ( )

1, (0,1)
1, (1,2]1

;

 (IV) �e function sgn1(α)fα(ρ, σ) is jointly convex;
 (V) For a state δ, ρ δ σ δ ρ σ⊗ ⊗ =

α α
f f( , ) ( ), which can be easily found from the function itself.

The coherence measures based on the Tsallis relative α entropy. To proceed, we would like to 
present a very important lemma for the function fα(ρ, σ), which is the key to show our main result.

Lemma 1 Suppose both ρ and σ simultaneously undergo a TPCP map = ∑ =†M M M$ : { : }n n n n S  which trans-
forms the states ρ and σ into the ensemble {pn, ρn} and {qn, σn}, respectively, then we have

∑α ρ δ α ρ σ≥ .
α

α α

α

−f p q fsgn ( ) ( , ) sgn ( ) ( , )
(8)S S

n
n n n n1 1

1

�e proof is given in the Methods.
Based on Lemma 1 and the preliminaries given in the previous section, we can present our main theorem as 

follows.

�eorem 1 �e coherence of a quantum state ρ can be measured by


ρ

α
ρ δ=

−
−α

δ
α

α

∈
C f( ) min

1

1
( ( , ) 1)

(9)
1/

∑
α

ρ=
−






−






α αj j
1

1
1 ,

(10)j

1/

where α ∈ (0, 2], {|j〉} is the reference basis and ρ δ α ρ σ= − +
α αf D( , ) ( 1) ( ) 1 with ρ σαD ( ) representing the 

Tsallis relative α entropy.

Proof . At �rst, one can note that the function xα is a monotonically increasing function on x, so Eq. (10) obvi-
ously holds for positive x due to Eq. (6).

Null. Since the original Tsallis entropy de�ned by Eq. (2) can unambiguously distinguish a coherent state from 
the incoherent one. Eq. (2) implies that ρ∑ =α αj j 1j

1/  is su�cient and necessary condition for incoherent 
states. �us the zero Cα(ρ) is also a su�cient and necessary condition for incoherent state ρ.

Convexity. From ref.48, one can learn that the function g(A) = Tr(XApX†)s is convex in positive matrix A for 
p ∈ [1, 2] and ≥s

p

1 , and concave in A for p ∈ (0, 1] and ≤ ≤s1
p

1 . Now let’s assume A = ρ, =X j j  and p = α 

and =
α

s
1 , thus one has

ρ ρ ρ= =
α

α α α αg j j j j j j( ) Tr( ) , (11)
j 1/ 1/

which implies ρ
α

g ( )j  is convex in density matrix ρ for α ∈ [1, 2] and =
α

s
1 , and concave in ρ for α ∈ (0, 1] and 

=
α

s
1 . Here the subscript α and the superscript j in 

α
g j speci�es the particular choice. So it is easy to �nd that 

ρ∑
α α−

g ( )j
j1

1
 is convex for α ∈ (0, 2]. Considering Eq. (10), one can easily show Cα(ρ) is convex in ρ.

Strong monotonicity. Now let {Mn} denote the incoherent operation, so the ensemble a�er the incoherent oper-
ation on the state ρ can be given by {pn,ρn} with ρ= †p M MTr

n n n  and ρ ρ= †M M p/
n n n n

. �us the average coherence 

αC  is
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∑ ∑ρ
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Let δo denote the optimal incoherent state such that

ρ
α

ρ δ=
−

−α α

αC f( )
1

1
( ( , ) 1),

(13)
o1/

i.e.,

ρ δ α ρ δ= .
α

δ
α∈

f f( , ) minsgn ( ) ( , )
(14)

o
1

Considering the incoherent operation {Mn}, we have σ δ= ∈†M M q/n
o

n
o

n n
  with δ= †q M MTr

n n
o

n . �erefore, 
one can immediately �nd that


α ρ δ α ρ σ≤

δ
α

α

α

α

∈
f fminsgn ( ) ( , ) sgn ( ) ( , ),

(15)n n
o

1
1/

1
1/

where we use the function x1/α is monotonically increasing on x. According to Eqs (12) and (15), we obtain

∑
α

ρ σ≤
−






−





.α α

αC p f
1

1
( , ) 1

(16)n
n n n

o1/

In addition, the Hölder inequality49 implies that for α ∈ (0, 1),

∑ ∑ ∑ρ σ ρ σ
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and the inequality sign is reverse for α ∈ (1, 2], so Eq. (16) becomes

∑
α

ρ σ
α

ρ δ≤
−
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≤

−
− =α

α α
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−C p q f f C
1

1
( , ) 1

1

1
( ( , ) 1) ,

(18)n
n n n n

o o1
1/

1/

which is due to Lemma 1. Eq. (18) shows the strong monotonicity of Cα.               ■

Maximal coherence and several typical quantifiers. Next, we will show that the maximal coherence 
can be achieved by the maximally coherent states. At �rst, we assume α ∈ (0, 1). Based on the eigen-decomposition 
of a d-dimensional state ρ ρ λ ψ ψ= ∑: k k k k  with λk and ψk  representing the eigenvalue and eigenvectors, we 
have

∑ ∑ ∑ ∑ ∑ρ λ ψ
λ

ψ
λ

=










≥











≥










≥ .α α α

α α
α

α α
α
α
−

j j j d
d

j d
d

d
(19)j j k

k k
jk

k
k

k

k1/ 2
1/

2

1/ 1/
1

One can easily �nd that the lower bound Eq. (19) can be attained by the maximally coherent states ρ = Ψ Ψ
m

 

with Ψ = ∑
φe j

d j
i1

j . Correspondingly, the coherence is given by ρ = −α α

α
α

< < −

−
C d( ) (1 )

m0 1
1

1

1
. Similarly, for 

α ∈ (1, 2], the function x1/α is concave, which leads to that Eq. (19) with the inverse inequality sign holds. �e 
inequality can also saturate for ρm. The corresponding coherence can be found to have the same form as 
C0<α<1(ρm). In other words,

ρ
α

=
−

− .α

α
α

< <

−( )C d( )
1

1
1

(20)m0 2

1

Cα(ρ) actually de�nes a family of coherence measures related to the Tsallis relative α entropy. �is family 
includes several typical coherence measures. As mentioned above, the most prominent coherence measure 
belonging to this family is the coherence in terms of relative entropy, i.e., C1(ρ) = S(ρ).

One can also �nd that

∑ρ ρ δ ρ δ ρ= − = − = −
δ δ∈ ∈

C Tr i i( ) min2(1 [ ] ) min 1
(21)i

1/2
2

2

2 2

 

with ||·||2 denoting l2 norm. So the l2 norm has been revived for coherence measure by considering the square root 
of the density matrices. �is is much like the quanti�cation of quantum correlation proposed in ref.50. In addition, 
C1/2(ρ) can also be rewritten as

∑ρ ρ= −C i i( )
1

2
Tr{[ , ] }

(22)i
1/2

2

which is just the coherence measure based on the skew information51–53.
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Finally, one can also see that


∑ρ ρ δ ρ= − = −

δ∈

−C Tr i i( ) min( 1) 1
(23)i

2
2 1 2 1/2

which is a simple function of the density matrix.

Applications. As applications, we would like to compare our coherence measure with other analytic coher-
ence measures, that is, the measure based on l1 norm, the relative entropy and the skew information. Let’s con-
sider a decoherence process where a bipartite maximally entangled state ψ| 〉 = |+ +〉 + |− −〉( )1

2
 with 

|±〉 = | 〉 ± | 〉( 0 1 )1

2
 undergoes a composite amplitude damping channel54 ⊗$ $ where $ = {Mi} and 

γ
=



 −






M
1 0
0 11

, γ
=










M
0
0 02  with γ denoting the damping rate. �us the �nal state under this amplitude 

damping channel can be given by

∑

ρ γ ψ ψ

ψ ψ

γ γ

γ γ

γ γ

γ γ

= ⊗

= ⊗ ⊗

=







+ −

− −

− −

− −







.

† †M M M M

( ) $ $[ ]

1

4

(1 ) 0 0 1

0 1 1 0

0 1 1 0

1 0 0 (1 ) (24)

ij
i j i j

2

2

2

2

�us one can easily �nd that the coherence based on the l1 norm can be given by ρ γ ρ γ= ∑ | | = −≠C ( ( )) 1l i j ij1
, 

and the coherence based on our Tsallis relative α entropy can be given by ρ γ ρ γ= ∑ −α α

α α

− =C i i( ( )) ( ( ) 1)i
1

1 1
4 1/ . 

In particular, it is shown that Cα(ρ(γ)) for α → 1 corresponds to the coherence based on the relative entropy 
de�ned by R(ρ(γ)) = S(I  ρ(γ)) − S(ρ(γ)) with  meaning the Hadamard product of matrices and C1/2(ρ(γ)) cor-
responds to the skew information53. In order to explicitly show the di�erence between the various coherence 
measures, we plot the coherence of the state ρ(γ) for Cl1

 and Cα(ρ(γ)) for various α in Fig. 1.

Conclusion
We establish a family of coherence measures that are closely related to the Tsallis relative α entropy. We prove 
that these coherence measures satisfy all the required criteria for a satisfactory coherence measure especially 
including the strong monotonicity. We also show this family of coherence measures includes several typical 
coherence measures such as the coherences measure based on von Neumann entropy, skew information and so 
on. Additionally, we show how to validate the l2 norm as a coherence measure. In addition, one can �nd that our 
current coherence measure can be easily related to the original Tsallis relative α entropy in �eorem 1, thus our 

Figure 1. Coherence based on various measures versus γ. �e solid line corresponds to Cl1
 and the dashed line 

corresponds to C1/2 which corresponds to the coherence in terms of skew information. �e ‘diamond’ line, the 
‘+’ line and the dash-dotted line, respectively correspond to C2/3, C3/2 and C2. In particular, the line marked by ‘o’ 
corresponds to Cα→1 and the dot line corresponds to the coherence based on relative entropy R(ρ(γ)), which 
shows the perfect consistency.
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current coherence measure has many potential applications or connections in both thermo-statistics and the 
information theory, since the Tsallis relative α entropy lays the foundation to the non-extensive thermo-statistics 
and have important applications in the information theory44,45. �is could require the further investigation. 
Finally, we would like to emphasize that the convexity and the strong monotonicity could be two key points which 
couldn’t easily be compatible with each other to some extent. Fortunately, ref.48 provides the important knowledge 
to harmonize both points in this paper. �is work builds the bridge between the Tsallis relative α entropy and 
the strong monotonicity and provides the important alternative quanti�ers for the coherence quanti�cation. �is 
could shed new light on the strong monotonicity of other candidates for coherence measure.

Methods
Proof of Lemma 1 Any TPCP map can be realized by a unitary operation on a composite system followed by a 
local projective measurement54. Suppose system S is of our interest and A is an auxiliary system. For a TPCP map 

= ∑ =†M M M$ : { : }n n n n S , one can always �nd a unitary operation USA and a group of projectors Π = | 〉 〈 |n n{ }n
A

A  
such that

 ρ ρ⊗ Π = ⊗ Π ⊗ Π ⊗ Π .† †M M U U( ) ( ) ( ) (25)n S n n
A

S n
A

SA S
A

SA S n
A

0

Using Properties (I) and (II), we have

ρ δ ρ σ= ⊗ Π ⊗ Π
α α

† †f f U U U U( , ) ( ( ) , ( ) ) (26)S S SA S
A

SA SA S
A

SA0 0

holds for any two states ρS and σS. Let ρ ρ= ⊗ Π †U U$ [ ( ) ]
Sf SA SA S

A
SA0  and σ σ= ⊗ Π †U U$ [ ( ) ]Sf SA SA S

A
SA0  which 

describe the states ρ ⊗ Π †U U( )SA S
A

SA0  and σ ⊗ Π †U U( )SA S
A

SA0  undergo an arbitrary TPCP map $SA performed on the 
composite system S plus A. Based on Property (III), one can easily �nd

α ρ δ α ρ σ≥ .
α α

f fsgn ( ) ( , ) sgn ( ) ( , ) (27)S S Sf Sf1 1

Suppose the TPCP map = ⊗ Π$ : { }SA S n
A , according to Eq. (25), one can replace ρSf and σSf in Eq. (27), respec-

tively, by

∑ρ ρ ρ→ = ⊗ Π †M M
(28)Sf Sf

n
n S n n

A

and

∑σ σ σ→ = ⊗ Π . †M M
(29)

Sf Sf
n

n S n n
A

�erefore, we get

∑

∑

∑

α ρ δ α ρ σ

α ρ σ

α ρ σ

α ρ σ

≥

= ⊗ Π ⊗ Π

=

=

α α

α

α

α α

α

−

 
† †

† †

f f

f M M M M

f M M M M

p q f

sgn ( ) ( , ) sgn ( ) ( , )

sgn ( ) ( , )

sgn ( ) ( , )

sgn ( ) ( , ),
(30)

S S Sf Sf

n
n S n n

A
n S n n

A

n
n S n n S n

n
n n n n

1 1

1

1

1
1

which completes the proof                                 ■.

References
 1. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature (London) 

446, 782 (2007).
 2. Plenio, M. B. & Huelga, S. F. Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10, 113019 (2008).
 3. Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature (London) 463, 

644 (2010).
 4. Lloyd, S. Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011).
 5. Li, C. M. et al. Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 855 (2012).
 6. Huelga, S. F. & Plenio, M. B. Vibrations, quanta and biology. Contemp. Phys. 54, 181 (2013).
 7. Rybak, L. et al. Generating molecular rovibrational coherence by two-photon femtosecond photoassociation of thermally hot atoms. 

Phys. Rev. Lett. 107, 273001 (2011).
 8. Rebentrost, P., Mohseni, M. & Aspuru-Guzik, A. Role of quantum coherence and environmental �uctuations in chromophoric 

energy transport. J. Phys. Chem. B 113, 9942 (2009).
 9. Witt, B. & Mintert, F. Stationary quantum coherence and transport in disordered networks. New J. Phys. 15, 093020 (2013).
 10. Åberg, J. Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014).
 11. Narasimhachar, V. & Gour, G. Low-temperature thermodynamics with quantum coherence. Nat. Comm. 6, 7689 (2015).
 12. Ćwikliński, P. et al. Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics. 

Phys. Rev. Lett. 115, 210403 (2015).
 13. Lostaglio, M., Jennings, D. & Rudolph, T. Description of quantum coherence in thermodynamic processes requires constraints 

beyond free energy. Nat. Commun. 6, 6383 (2015).
 14. Lostaglio, M. et al. Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 5, 021001 (2015).
 15. Glauber, R. J. Coherent and incoherent states of the radiation �eld. Phys. Rev. 131, 2766 (1963).



www.nature.com/scientificreports/

7SCIENTIFIC REPORTS |  (2018) 8:299  | DOI:10.1038/s41598-017-18692-1

 16. Sudarshan, E. C. G. Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 
277 (1963).

 17. Scully, M. O. & Zubairy, M. S. In Quantum optics Ch. 4, 115–141 (Cambridge University Press, Cambridge, England, 1997).
 18. Baumgratz, T., Cramer, M. & Plenio, M. B. Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014).
 19. Rana, S., Parashar, P. & Lewenstein, M. Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016).
 20. Girolami, D. Observable measure of quantum coherence in �nite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014).
 21. Napoli, C. et al. Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 

(2016).
 22. Rastegin, A. E. Quantum-coherence quanti�ers based on the Tsallis relative α entropies. Phys. Rev. A 93, 032136 (2016).
 23. Piani, M. et al. Robustness of asymmetry and coherence of quantum states. Phys. Rev. A 93, 042107 (2016).
 24. Winter, A. & Yang, D. Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016).
 25. Du, S., Bai, Z. & Guo, Y. Conditions for coherence transformations under incoherent operations. Phys. Rev. A 91, 052120 (2015).
 26. Chitambar, E. et al. Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016).
 27. Chitambar, E. & Hsieh, M.-H. Relating the resource theories of entanglement and quantum coherence. Phys. Rev. Lett. 117, 020402 

(2016).
 28. Chitambar, E. & Gour, G. Critical examination of incoherent operations and a physically consistent resource theory of quantum 

coherence. Phys. Rev. Lett. 117, 030401 (2016).
 29. Radhakrishnan, C. et al. Distribution of quantum coherence in multipartite systems. Phys. Rev. Lett. 116, 150504 (2016).
 30. Marvian, I. & Spekkens, R. W. Modes of asymmetry: the application of harmonic analysis to symmetric quantum dynamics and 

quantum reference frames. Phys. Rev. A 90, 062110 (2014).
 31. Marvian, I., Spekkens, R. W. & Zanardi, P. Quantum speed limits, coherence, and asymmetry. Phys. Rev. A 93, 052331 (2016).
 32. Yao, Y. et al. Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015).
 33. Singh, U., Zhang, L. & Pati, A. K. Average coherence and its typicality for random pure states. Phys. Rev. A 93, 032125 (2016).
 34. Yu, C. S. & Song, H. S. Bipartite concurrence and localized coherence. Phys. Rev. A 80, 022324 (2009).
 35. Streltsov, A. et al. Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015).
 36. Ma, J. et al. Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016).
 37. Tan, K. C. et al. Uni�ed view of quantum correlations and quantum coherence. Phys. Rev. A 94, 022329 (2016).
 38. Streltsov, A., Adesso, G. & Plenio, M. B. Quantum coherence as a resource. arXiv:1609.02439 [quant-ph].
 39. Streltsov, A. et al. Maximal coherence and the resource theory of purity. arXiv:1612.07570 [quant-ph].
 40. Hu, M. L. et al. Quantum coherence and quantum correlations. arXiv:1703.01852v2 [quant-ph].
 41. Ma, T. et al. Accessible coherence and coherence distribution. Phys. Rev. A 95, 042328 (2017).
 42. Shao, L. H. et al. Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015).
 43. Yu, X. D. et al. Alternative framework for quantifying coherence. Phys. Rev. A 94, 060302 (2016).
 44. Borland, L., Plastino, A. R. & Tsallis, C. Information gain within nonextensive thermostatistics. J. Math. Phys. 39, 6490 (1998).
 45. Tsallis, C. et al. In Nonextensive Statistical Mechanics and Its Applications, edited by Abe, S. & Okamoto, Y. (Springer-Verlag, 

Heidelberg, 2001).
 46. Brandão, F. G. S. L. & Gour, G. Reversible framework for quantum resource theories. Phys. Rev. Lett. 115, 070503 (2015).
 47. Hiai, F. et al. Quantum f-divergences and error correction. Rev. Math. Phys. 23, 691 (2011).
 48. Carlen, E. A. & Lieb, E. H. A Minkowski type trace inequality and strong subadditivity of quantum entropy II: convexity and 

concavity. Lett. Math. Phys. 83, 107 (2008).
 49. Kuang, J. C. In Applied inequalities (Shandong Science and Technology Press, Jinan, China, 2012).
 50. Chang, L. N. & Luo, S. L. Remedying the local ancilla problem with geometric discord. Phys. Rev. A 87, 062303 (2013).
 51. Wigner, E. P. & Yanase, M. M. Information contents of distributions. Proc. Natl. Acad. Sci. 49, 910 (1963).
 52. Lieb, E. H. Convex trace functions and the Wigner-Yanase-Dyson conjecture. Adv. Math. 11, 267 (1973).
 53. Yu, C. S. Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017).
 54. Nielsen, M. A. & Chuang, I. L. Quantum computation an quantum information (Cambridge University Press, Cambridge, England, 

2000).

Acknowledgements
�is work was supported by the National Natural Science Foundation of China, under Grant Nos 11775040 and 
11375036, and the Xinghai Scholar Cultivation Plan.

Author Contributions
Yu raises the question. Both Zhao and Yu analyze the question, provide the proof, write and review the paper.

Additional Information
Competing Interests: �e authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© �e Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Coherence measure in terms of the Tsallis relative α entropy
	Result
	The coherence and the Tsallis relative α entropy. 
	The coherence measures based on the Tsallis relative α entropy. 
	Null. 
	Convexity. 
	Strong monotonicity. 

	Maximal coherence and several typical quantifiers. 
	Applications. 

	Conclusion
	Methods
	Acknowledgements
	Figure 1 Coherence based on various measures versus γ.


