
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5935  | https://doi.org/10.1038/s41598-021-85273-8

www.nature.com/scientificreports

Coherence of assistance 
and assisted maximally coherent 
states
Ming‑Jing Zhao1*, Rajesh Pereira2, Teng Ma3 & Shao‑Ming Fei4,5

Coherence and entanglement are fundamental concepts in resource theory. The coherence 
(entanglement) of assistance is the coherence (entanglement) that can be extracted assisted 
by another party with local measurement and classical communication. We introduce and study 
the general coherence of assistance. First, in terms of real symmetric concave functions on the 
probability simplex, the coherence of assistance and the entanglement of assistance are shown to 
be in one‑to‑one correspondence. We then introduce two classes of quantum states: the assisted 
maximally coherent states and the assisted maximally entangled states. They can be transformed into 
maximally coherent or entangled pure states with the help of another party using local measurement 
and classical communication. We give necessary conditions for states to be assisted maximally 
coherent or assisted maximally entangled. Based on these, a unified framework between coherence 
and entanglement including coherence (entanglement) measures, coherence (entanglement) of 
assistance, coherence (entanglement) resources is proposed. Then we show that the coherence of 
assistance as well as entanglement of assistance are strictly larger than the coherence of convex roof 
and entanglement of convex roof for all full rank density matrices. So all full rank quantum states are 
distillable in the assisted coherence distillation.

Quantum coherence is an important feature in quantum physics and is of practical signi�cance in quantum 
computation and quantum  communication1,2. �e formulation of the resource theory of coherence was initiated 
in Ref.3, in which some requirements are proposed for a well de�ned quantum coherence measure. Later on, 
coherence measures or monotones such as the l1 norm of  coherence3, the relative entropy of  coherence3, intrin-
sic randomness of  coherence4, coherence  concurrence5, distillable  coherence6, coherence  cost6, robustness of 
 coherence7, coherence  number8 and so on are proposed theoretically or operationally. Many of these coherence 
measures were either created from entanglement measures using a standard modi�cation or are closely related to 
one that was. For example, the robustness of coherence and coherence number are de�ned in a manner similar 
to that of robustness of entanglement and the Schmidt number in entanglement theory,  respectively9,10. �e l1 
norm coherence is exactly the twice negativity for pure  states11.

Coherence of assistance is another quanti�er which quanti�es the coherence that can be extracted assisted 
by another party under local measurements and classical  communication12. Suppose Alice holds a state 
ρA =

∑
k pk|ψk��ψk| with coherence C(ρA) . Bob holds another part of the puri�ed state of ρA . �e joint state 

between Alice and Bob is 
∑

k pk|ψk�A ⊗ |k�B . Bob performs local measurements {|k��k|} and informs Alice 
the measurement outcomes by classical communication. Alice’s quantum state will be in a pure state ensemble 
{pk , |ψk��ψk|} with average coherence 

∑
k pkC(|ψk��ψk|) . �e process is called assisted coherence distillation. 

�e maximum average coherence is called the coherence of assistance which quanti�es the one-way coherence 
distillation  rate12. �e coherence of assistance is always greater than or equal to the coherence measure. But it is 
still not clear whether one can always obtain more coherence with the help of another party. Our answer in this 
paper is that one can always obtain more coherence for the full ranked quantum states.

As with other measures of coherence and entanglement, the coherence of assistance and the entanglement 
of assistance are also closely related. In fact, the relative entropy coherence of assistance corresponds to the 
entanglement formation of  assistance12–15 and the l1 norm coherence of assistance corresponds to the convex-roof 
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extended negativity entanglement of  assistance16–18. As intrinsic characteristics of quantum physics, the inextri-
cable relationship between quantum coherence and quantum entanglement is not limited to speci�c quantum 
coherence measures and entanglement measures as well as the coherence of assistance and the entanglement of 
assistance. Ref.19 shows any coherence can be converted to entanglement via incoherent operations, and each 
entanglement measure corresponds to a coherence measure. It has been further shown that coherence can be con-
verted to bipartite nonlocality, genuine tripartite entanglement and genuine tripartite  nonlocality20. In Refs.21,22 
the authors construct an entanglement monotone based on any given coherence measure. More generally, Ref.23 
establishes a general operational one-to-one mapping between coherence measures and entanglement measures.

Inspired by these results, we aim to construct a general relation between the coherence of assistance and 
entanglement of assistance for the coherence and entanglement theory. First we review the construction of 
entanglement measures and coherence measures using the convex roof extension. �en we de�ne the general 
coherence of assistance and the one-to-one correspondence between entanglement of assistance and coherence 
of assistance is established a�erwards. Subsequently, two special classes of states called assisted maximally coher-
ent states and assisted maximally entangled states are introduced. �ese states can be turned into the maximally 
coherent or maximally entangled states with the help of another party’s local measurement and classical com-
munication. �e necessary conditions for states to be the assisted maximally coherent states or assisted maximally 
entangled states are presented. �ese states can be thought of as potentially perfect coherence or entanglement 
resources. �en we show the coherence of convex roof and the coherence of assistance, as well as the entangle-
ment measure in convex roof construction and the entanglement of assistance, are not equal for any full rank 
density matrix. �is demonstrates that this kind of states are all distillable in the assisted coherence distillation. 
�e uni�ed framework between coherence and entanglement is shown in Fig. 1.

Results
Entanglement of assistance and coherence of assistance. A state is called incoherent if the density 
matrix ρ is diagonal in the �xed reference basis {|i�} , ρ =

∑
i pi|i��i| with pi the probabilities. Otherwise the state 

is called coherent. Obviously, coherence is basis dependent. A completely positive trace preserving map � acting 
as �(ρ) =

∑
l
KlρK

†

l
 is said to be an incoherent operation if all the Kraus operators Kl map incoherent states to 

incoherent  states3. A coherence measure C(ρ) should  satisfy3: (1) C(ρ) ≥ 0 with C(ρ) = 0 if and only if ρ is inco-
herent. (2) C(ρ) is nonincreasing under incoherent operations � , C(ρ) ≥ C(�(ρ)) . (3) C(ρ) is nonincreasing on 
average under selective incoherent operations, C(ρ) ≥

∑
l qlC(ρl) , with ql = tr(KlρK

†

l ) and ρl = KlρK
†

l /ql . (4) 
C(ρ) is a convex function on the density matrices, C(

∑
j pjρj) ≤

∑
j pjC(ρj).

L e t  F = {f }  b e  t h e  s e t  o f  f u n c t i o n s  o n  t h e  p r o b a b i l i t y  s i m p l e x 
� = {x = (x0, x1, . . . , xn−1)

T |
∑

n−1
i=0 xi = 1 and xi ≥ 0} such that (i) f is a real symmetric concave function; 

(ii) f ((1, 0, . . . , 0)T ) = 0 . We assume f ∈ F\{0} in this paper. Under these conditions f yields an entanglement 
monotone Ef  for the n ⊗ n pure states. If |ψ� has the Schmidt form |ψ� =

∑
n−1

i=0
�i|iA�|iB� with �i ≥ 0 , Ef  can 

be de�ned as

f EfCf

EcCc

Ca Ea

MEMC

AMEAMC

EntanglementCoherence

Figure 1.  Relations between coherence and entanglement. Here f ∈ F\{0} . Ef  is a function de�ned on bipartite 
pure states as in Eq. (1). Cf  is a function de�ned on pure states as in Eq. (4). Ec is the entanglement measure 
called the entanglement of convex roof which is the convex roof extension of Ef  from pure states to mixed states 
in Eq. (2). Cc is the coherence measure called the coherence of convex roof which is the convex roof extension 
of Cf  from pure states to mixed states in Eq. (5). Ec and Cc

 are one-to-one corresponded by the real symmetric 
concave function f. �e maximum points of Ec and Cc

 are maximally entangled states (ME) in Eq. (3) and 
maximally coherent states (MC) in Eq. (6) respectively. Ea is the entanglement of assistance which is the least 
concave majorant extension of Ef  from pure states to mixed states in Eq. (7). Ca

 is the coherence of assistance 
which is the least concave majorant extension of Cf  from pure states to mixed states in Eq. (8). Ea and Ca are 
one-to-one corresponded by the real symmetric concave function f. �e maximum points of Ea and Ca

 are 
assisted maximally entangled states (AME) in de�nition 2 and assisted maximally coherent states (AMC) in 
de�nition 1 respectively. �e coherence of assistance Ca as well as the entanglement of assistance Ea is shown 
to be strictly larger than the coherence of convex roof Cc and entanglement of convex roof Ec for all full rank 
quantum states.
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where {|iA�}
n−1

i=0
 and {|iB�}

n−1

i=0
 are orthonormal bases of the two subsystems, and �(|ψ�) = (�20, �

2
1, . . . , �

2
n−1)

T . �e 
entanglement monotone Ef  can be extended to mixed states by the convex roof  construction23,24. �e entangle-
ment of convex roof Ec is given by

where Ef  is de�ned by (1), the minimization is taken over all pure state decompositions of ρ =
∑

k pk|ψk��ψk|.
�e entanglement of convex roof Ec is an entanglement  measure24. Any quantum states that are local unitary 

equivalent to

are all maximally entangled according to Ec . �ese states are the only ones such that Ec attains its maximum for 
n ⊗ n systems.

Correspondingly, for the �xed reference basis {|i�} and any f ∈ F\{0} , a coherence measure for pure state 
|ψ� =

∑
n−1

i=0
ψi|i� can be de�ned as

where µ(|ψ�) = (|ψ0|
2, |ψ1|

2, . . . , |ψn−1|
2)T is the coherence vector. �e coherence measure Cf  can be extended 

to mixed states by the convex roof  construction23,25. �e coherence of convex roof Cc is given by

where Cf  is de�ned by (4), the minimization is taken over all pure state decompositions of ρ =
∑

k pk|ψk��ψk|.
�e coherence of convex roof Cc is a coherence  measure1–3,23. According to the coherence measure Cc , all 

maximally coherent states in an n-dimensional system can be transformed into the pure states in the following 
set by unitary incoherent  operations26:

For any function f ∈ F\{0} , the entanglement monotone Ef  can be also extended to mixed states by the least 
concave majorant extension, giving rise to entanglement of assistance. �e entanglement of assistance can be 
de�ned by

where the maximization is taken over all pure state decompositions of ρ =
∑

k pk|ψk��ψk|.
�e entanglement of assistance has been introduced with respect to some speci�c  functions13–15,17. De�nition 

(7) presents a general notion of entanglement of assistance for arbitrary function f ∈ F\{0} . It is a dual con-
struction to the entanglement of convex roof. Unlike the entanglement of convex roof which is an entanglement 
measure, the entanglement of assistance is not a measure of entanglement, as it is not monotonic under local 
operations and classical  communications27. But the entanglement of assistance describes the hidden entangle-
ment that can be unlocked with the help of another party’s local measurement and classical communication.

Correspondingly, we can de�ne the coherence of assistance,

with Cf  defined in Eq. (4), where the maximization is taken over all pure state decompositions of 
ρ =

∑
k pk|ψk��ψk|.

We observe that Ca vanishes if the quantum state is incoherent and pure. Additionally, Ca is not monotonic 
under incoherent operations. For example, consider ρ = |0��0| and an incoherent operation 
�(ρ) = K1ρK

†
1 + K2ρK

†
2  , where K1 =

1
√
2
I and K2 = 1√

2
(|0��1| + |1��0|) satisfying K†

1K1 + K
†
2K2 = I . A�er 

the incoherent operation, �(ρ) = 1

2
(|0��0| + |1��1|) = 1

2
(|ψ1��ψ1| + |ψ2��ψ2|) , with |ψ1� = cos θ |0� + sin θ |1� 

and |ψ2� = − sin θ |0� + cos θ |1� . By the assumptions of f we know that there exists an angle θ such that 
Cf (|ψ1�) = Cf (|ψ2�) > 0 . Hence, 0 = Ca(ρ) < Ca(�(ρ)) , which violates the monotonicity of coherence meas-
ures under incoherent operations. �erefore, the coherence of assistance is actually not a coherence measure.

Theorem 1 �e coherence of assistance Ca corresponds one-to-one to the entanglement of assistance Ea.

See “Methods” section for the proof of the �eorem 1.

(1)Ef (|ψ�) = f (�(|ψ�)),

(2)
Ec(ρ) = min

∑

k

pkEf (|ψk�),

(3)|φ+� =
1

√
n

n−1∑

j=0

|jj�,

(4)Cf (|ψ�) = f (µ(|ψ�)),

(5)
Cc(ρ) = min

∑

k

pkCf (|ψk�),

(6)







1
√
n

n−1
�

j=0

eiθj |j� | θ1, . . . , θn−1 ∈ [0, 2π)







.

(7)
Ea(ρ) = max

∑

k

pkEf (|ψk�),

(8)
Ca(ρ) = max

∑

k

pkCf (|ψk�),



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5935  | https://doi.org/10.1038/s41598-021-85273-8

www.nature.com/scientificreports/

Under the product reference bases, the entanglement of assistance Ea is just the coherence of assistance Ca for 
all pure states as well as for Schmidt correlated states ρmc =

∑
ij ρij|ii��jj|

28, Ea(ρmc) = Ca(ρmc) . Similar results 
also hold true for the entanglement of convex roof Ec and the coherence of convex roof Cc . �e correspondence 
not only bridges coherence theory and entanglement theory, but also generalizes many results in entanglement 
theory to coherence theory.

�e entanglement of assistance Ea and coherence of assistance Ca depend on the choice of the functions 
f ∈ F\{0} . If f (p) = −

∑
i pi log pi for p = (p1, p2, . . . , pn)

T in the probability simplex, Ea becomes the entangle-
ment of formation of  assistance13–15, and Ca becomes the relative entropy coherence of  assistance12. If 
f (p) =

∑
i �=j

√
pipj  for p = (p1, p2, . . . , pn)

T in the probability simplex, then Ea becomes the half convex-roof 
extended negativity of  assistance17 and Ca becomes the l1 norm coherence of  assistance16. Analogously, one can 
also de�ne various other types of entanglement of assistance and coherence of assistance based on other real 

symmetric concave functions f. For example, let f (p) =

√

2(1 −

∑

i p
2
i ) , then Ea is the entanglement of assistance 

in terms of  concurrence29, in which an upper bound of entanglement of assistance is provided as 

Ea(ρ) ≤

√

2(1 − tr(ρ2
A
)) with ρA = trB(ρ) . For this function f, we can de�ne the coherence of assistance Ca in 

terms of concurrence similarly and one upper bound is Ca(ρ) ≤

√

2(1 −
∑

i
ρ2
ii
) with ρii the diagonal entries of 

ρ in the reference basis.

Assisted maximally coherent states and assisted maximally entangled states. �e average of 
entanglement and coherence depends on the ensembles of a quantum state. Assisted by another party, the entan-
glement of assistance and coherent of assistance attain the maximum average entanglement and coherence of the 
quantum state. Here we investigate two classes of states called assisted maximally coherent states and assisted 
maximally entangled states for which the maximal average coherence and entanglement are the same as the 
maximally coherent states and maximally entangled states.

De�nition 1 We call an n dimensional quantum state ρ assisted maximally coherent (AMC) if it is a convex 
combination of maximally coherent pure states.

�e AMC states are a class of states that achieve the maximum of coherence of assistance. �erefore they are 
a potentially perfect coherence resource. For pure states, all the maximally coherent states are AMC and vice 
versa. For mixed states, all maximally mixed states ρ = 1

n

∑
n−1

i=0
|i��i| are AMC. �is follows from the existence 

of a maximally coherent pure state decomposition {pk , |ψk�} of ρ , where pk =
1

n for all k and 
|ψk� = 1√

n

∑n−1
j=0 e2π i(k−1)j/n|j� for k = 1, 2, . . . , n , and i =

√
−1 is the imaginary unit. �e Fourier matrix F with 

its k-th column given by the vector 
√
n|ψk� satis�es FF† = nI and |Fkj| = 1 , k = 1, . . . , n ; j = 0, 1, 2, . . . , n − 1 . 

Therefore, {|ψk�}
n

k=1
 is an orthonormal basis of the n dimensional system, which means that ∑

n−1

i=0
|i��i| =

∑
n

k=1
|ψk��ψk|.

Theorem 2 If an n dimensional quantum state ρ =
∑

ij ρij|i��j| is AMC, then ρii =
1

n
 for all i, which becomes both 

necessary and su�cient for two and three dimensional systems.

See “Methods” section for the proof of the �eorem 2.
�ere exist n-dimensional quantum states ρ with all diagonal entries 1

n
 which do not allow for pure state 

decomposition {pk , |ψk�} such that all diagonal entries of |ψk��ψk| are 1
n
 for all k and n ≥ 4 . Some speci�c exam-

ples are shown in Refs.30,31. We now give an explicit pure state decomposition for three dimensional AMC states. 
In a three dimensional system, the quantum state ρ =

∑
i,j ρij|i��j| , with ρ11 = ρ22 = ρ33 =

1

3
 and real nonzero 

off diagonal entries, is an example of mixed AMC state that is not a maximally mixed state. Let 
p1 =

1

4
(1 + ρ12 + ρ13 + ρ23)  ,  p2 =

1

4
(1 − ρ12 − ρ13 + ρ23)  ,  p3 =

1

4
(1 − ρ12 + ρ13 − ρ23)  , 

p4 =
1

4
(1 + ρ12 − ρ13 − ρ23)  ,  a n d  |ψ1� = 1√

3
(|1� + |2� + |3�)  ,  |ψ2� = 1√

3
(−|1� + |2� + |3�)  , 

|ψ3� = 1√
3
(|1� − |2� + |3�) , |ψ4� = 1√

3
(|1� + |2� − |3�) , then {pk , |ψk�} is a pure state decomposition of ρ with 

components all maximally coherent.
Similar to AMC states, we can de�ne the assisted maximally entangled (AME) states in bipartite systems.

De�nition 2 An n ⊗ n bipartite quantum state ρ is called assisted maximally entangled (AME) if it is a convex 
combination of maximally entangled pure states.

Theorem 3 �e n ⊗ n Schmidt correlated state ρmc =
∑

ij ρij|ii��jj| is AME if and only if the n dimensional state 
ρ =

∑
ij ρij|i��j| is AMC.

See “Methods” section for the proof of the �eorem 3. Combining �eorems 2 and 3 , we get the following 
necessary condition for Schmidt correlated states to be AME.

Corollary 1 If an n ⊗ n Schmidt correlated state ρmc =
∑

ij ρij|ii��jj| is AME, then ρii =
1

n
 for all i, which is both 

necessary and su�cient for the cases of n = 2 and n = 3 systems.
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For pure states, all maximally entangled states are AME and vice versa. For mixed states, all maximally cor-
related states ρ = 1

n

∑
n−1

i=0
|ii��ii| are AME due to Corollary 1. Besides the Schmidt correlated states, there are 

also other AME states. As examples, consider two-qubit system. Let ρ = p|ψ1��ψ1| + (1 − p)|ψ2��ψ2| with 
0 < p < 1 , |ψ1� = 1√

2
(|00� + |11�) and |ψ2� = 1√

2
(|01� + |10�) . Clearly, ρ is AME but not Schmidt correlated. 

�e maximally mixed states ρ = 1

n2

∑n−1
i,j=0 |ij��ij| are AME, since they can be written as the average of generalized 

Bell states |φst� = I ⊗ U
∗
st |φ

+� , where Ust = htg s , h|j� = |j + 1 mod n� , g |j� = ω
j|j� , ω = exp(−2π i/n) , and 

superscript ∗ stands for the  conjugate32.
AMC states and AME states are potential maximally coherent states and maximally entangled states, since 

they can be decomposed as the convex combinations of maximally coherent and maximally entangled pure 
states, respectively. Furthermore, they can be collapsed to maximally coherent states and maximally entangled 
states with the help of another party’s local measurements and classical communication operationally, if only one 
knows the optimal pure state decompositions. As applications, one can transform the AMC states to maximally 
coherent pure states with the help of another party’s local measurements and classical communication for the 
purpose of quantum information processing such as the Deutsch-Jozsa algorithm to speedup the  computation33. 
In this sense, the AMC states are potentially perfect quantum resources. In fact, the experimental realization in 
linear optical systems for obtaining the coherence of assistance with respect to the relative entropy coherence in 
two dimensional systems has already been  presented34.
Relation between the convex roof extension and the least concave majorant extension. �e 
strict relation between the coherence of convex roof and the coherence of assistance, that is, whether 
Cc(ρ) < Ca(ρ) holds for all mixed quantum states is an interesting topic. �e physical motivation is from the 
coherence distillation, which is to extract pure coherence from a mixed state by incoherent  operations6. All 
coherent states can be distilled by the coherence distillation process. �e assisted coherence distillation is then 
introduced to generate the maximal possible coherence with the help of another party’s local measurements 
and classical  communication12. �e relative entropy coherence of assistance in form of Eq. (8) with a speci�c 
function f is proposed �rst there to quantify the one way coherence distillation rate in the assisted coherence 
distillation. Generally we can get more coherence in the assisted coherence distillation. But a natural question is 
whether we can extract more coherence from all mixed states in the assisted coherence distillation. �is question 
is factually equivalent to whether the coherence of assistance is strictly larger than the coherence of convex roof 
for all mixed quantum states. If it is true, all mixed quantum states are distillable in the assisted coherence distil-
lation process. In order to answer this question, we consider a much more general case as follows.

We now investigate the general relations between the convex roof extension and the least concave majorant 
extension of an arbitrary nonnegative function. Let H be a �nite-dimensional Hilbert space and F a nonnegative 
function de�ned on the pure states of H . De�ne Fa(ρ) = max

∑
k pkF(|ψk�) to be the least concave majorant 

extension from F, and Fc(ρ) = min
∑

k pkF(|ψk�) the convex roof extension from F, where the maximization 
and minimization are both taken over all pure state decompositions of ρ =

∑
k pk|ψk��ψk| , respectively. �e 

convex roof extension Fc is the largest convex function which is equal to F on the pure states while the least 
concave majorant extension Fa is the smallest concave function. �e de�nitions Fc and Fa are more general than 
Ec , Cc and Ea , Ca.

Theorem 4 Let H be a �nite-dimensional Hilbert space and F a nonnegative function de�ned on the pure states 
in H . Let ρo be a density matrix on H and R(ρo) the range of ρo . If Fa(ρo) = Fc(ρo) , then there exists a positive 
semide�nite operator Q on R(ρo) such that F(|ψ�) = �ψ |Q|ψ� for all pure states |ψ� in R(ρo).

See “Methods” section for the proof of the �eorem 4. �eorem 4 transforms the equation Fa(ρ) = Fc(ρ) into 
the existence of a positive semide�nite operator Q on R(ρ) . So in order to check the coincidence of Fa(ρ) = Fc(ρ) , 
one only needs to check the existence of Q for all pure states in the support of R(ρ) . We apply �eorem 4 to 
coherence theory and entanglement theory.

Corollary 2 For full rank quantum states ρ , the coherence of assistance is strictly larger than the coherence of convex 
roof, Cc(ρ) < Ca(ρ).

Corollary 3 For full rank bipartite quantum states ρ , the entanglement of assistance is strictly larger than the 
entanglement of convex roof, Ec(ρ) < Ea(ρ).

See “Methods” section for the proof of the Corollary 2. �e proof of Corollary 3 is similar to that of Corol-
lary 2. Combined with the physical explanation of coherence (entanglement) of assistance, Corollaries 2 and 3 
demonstrate that for full rank density matrices, their coherence (entanglement) can be strictly increased with the 
help of another party’s local measurements and classical communication. Hence, this kind of states are distillable 
in the assisted coherence (entanglement) distillation.

Discussions
We have introduced the general coherence of assistance in terms of real symmetric concave functions on the 
probability simplex, the coherence of assistance and the entanglement of assistance are shown to be in one-to-one 
correspondence as entanglement measures and coherence measures in the convex roof construction. Assisted 
maximally coherent states and assisted maximally entangled states are proposed as the convex combination of 
the maximally coherent states and maximally entangled states respectively, which can act potentially as perfect 
resource in quantum information. A necessary and su�cient condition for two or three-dimensional states to 
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be AMC or AME is presented. Moreover, we have shown that the coherence of convex roof and the coherence of 
assistance are not equal for any full rank density matrix, together with a similar result for the entanglement with 
convex roof construction and the entanglement of assistance. �ese results may help strengthen our understand-
ing of the important resources quantum coherence and entanglement.

Methods
Proof of Theorem 1 �e coherence measure Cf  in Eq. (4) corresponds one-to-one to the real symmetric concave 
function f ∈ F\{0}23,25. �e entanglement measure Ef  in Eq. (1) also corresponds one-to-one to the real symmet-
ric concave function f ∈ F\{0}24. �erefore, the coherence measure Cf  in Eq. (4) and the entanglement measure 
Ef  in Eq. (1) are in one-to-one correspondence. As the least concave majorant extension of the coherence measure 
Cf  and entanglement measure Ef  , the coherence of assistance Ca and the entanglement of assistance Ea are also 
in one-to-one correspondence.   �

Proof of Theorem 2 Before we prove the theorem, we �rst introduce the concept of a correlation  matrix35. An 
n × n Hermitian matrix is called a correlation matrix if it is a positive semide�nite matrix with all diagonal entries 
being 1. �e set of correlation matrices is compact and convex. �e extreme points of the set are the correlation 
matrices with rank 1 for n = 2, 336. (For n ≥ 4 , there are extreme n by n correlation matrices which have rank 
two). Hence all n × n correlation matrices can always be decomposed into the convex combination of rank 1 
correlation matrices for n = 2, 3.

Since the diagonal entries of density matrices of maximally coherent pure states are all equal to 1
n
 , as the convex 

combination of maximally coherent pure states, the diagonal entries of AMC states are ρii =
1

n
 for all i. �ere-

fore, all n dimensional AMC states are the correlation matrices scaled by a multiplicative factor of 1
n
 . Since the 

maximally coherent pure states correspond to the rank 1 correlation matrices, and all 2 × 2 and 3 × 3 correlation 
matrices can be decomposed into a convex combination of rank 1 correlation matrices, the AMC states corre-
spond exactly to the set of correlation matrices for n = 2, 3 . (For n ≥ 4 , the AMC states correspond to a proper 
subset of the n × n correlation matrices). �is implies that all diagonal entries being equal to 1

n
 is necessary and 

su�cient for two and three dimensional AMC states.   �

Proof of Theorem 3 Note that the pure state decompositions of the Schmidt correlated state ρmc are all of the 
Schmidt form |ψ ′� =

∑
i
ai|ii�

37. �en {pk , |ψ ′
k�} is a pure state decomposition of ρmc with |ψ ′

k
� =

∑
i
a
(k)
i

|ii� if 
and only if {pk , |ψk�} is a pure state decomposition of ρ with |ψk� =

∑
i
a
(k)
i

|i� . While 
∑

i
a
(k)
i

|ii� is maximally 
entangled if and only if 

∑
i
a
(k)
i

|i� is maximally coherent. �erefore, ρmc =
∑

ij ρij|ii��jj| is AME if and only if 
ρ =

∑
ij ρij|i��j| is AMC.   �

Proof of Theorem 4 For all 0 ≤ τ ≤ ρo , de�ne F̃(τ ) as

where 
∑

k qk|ψk��ψk| is any pure state decomposition of τ into a weighted sum of pure states, i.e. qk ≥ 0 for 
all k and 

∑
k qk ≤ 1 . We claim that F̃(τ ) does not depend on the pure state decomposition at hand. Indeed, let ∑

k′ qk′ |ψ ′
k′ ��ψ

′
k′ | be another pure state decomposition of τ , and 

∑
h
rh|φh��φh| be a �xed pure state decomposition 

of ρo − τ ≥ 0 . �en, 
∑

k qk|ψk��ψk| +
∑

h rh|φh��φh| and 
∑

k′ qk′ |ψ ′
k′ ��ψ

′
k′ | +

∑
h rh|φh��φh| are two pure state 

decompositions of ρo , hence the equality Fc(ρo) = Fa(ρo) implies 
∑

k qkF(|ψk�) =
∑

k′ qk′F(|ψ ′
k′ �) by de�nition 

of Fa and Fc . Clearly, the maps F̃ and F coincide on pure states, and moreover F̃(0) = 0 . Further, we claim that

for all 0 ≤ τi ≤ ρo and ti ≥ 0 with t1 + t2 = 1 . Indeed, this follows by taking any pure state decompositions of τ1 
and τ2 into weighted sums of pure states and applying (9) to both sides of the equation.

We can now de�ne a functional on the space S(ρo) of all self-adjoint operators with range in R(ρo) as follows: 
p(H) = inf (k+F̃(τ+) − k−F̃(τ−)) where the in�mum is taken over all nonnegative real numbers k+ and k

−
 and 

all density matrices τ+ and τ
−

 whose range is contained in R(ρo) and for which k+τ+ − k−τ− = H . It is easy 
to verify that p(H1 + H2) ≤ p(H1) + p(H2) and p(kH) = kp(H) for all nonnegative k. Hence p is a sublinear 
functional on the space of all self-adjoint operators with range in R(ρo) . Note also that if ρ is any density matrix 
with range in R(ρo) , we can see that p(ρ) ≤ F̃(ρ) by choosing k+ = 1 , k

−
= 0 , τ+ = ρ and τ

−
 to be any density 

matrix. By choosing k+ = 0 , k
−

= 1 , τ+ to be any density matrix and τ
−

= ρ , we can see that p(−ρ) ≤ −F̃(ρ).
By the classical Hahn–Banach theorem, there exists a linear functional L(H) on S(ρo) such that L(H) ≤ p(H) 

for all H ∈ S(ρo) . Now if ρ is any density matrix with range in R(ρo) , we get L(ρ) ≤ p(ρ) ≤ F̃(ρ) . We also get 
−L(ρ) = L(−ρ) ≤ p(−ρ) ≤ −F̃(ρ) which a�er driving by minus one gives us L(ρ) ≥ F̃(ρ) . Combining our 
inequalities we get F̃(ρ) = L(ρ) . �us, there exists a nonnegative linear operator Q : R(ρo) → R(ρo) such that 
F̃(ρ) = tr(Qρ) for all states ρ with R(ρ) ⊆ R(ρo) , which concludes the proof.   �

Proof of Corollary 2 For full rank quantum states ρ , if Cc(ρ) = Ca(ρ) , then there is a nonnegative linear operator 
Q such that Cf (|ψ�) = �ψ |Q|ψ� for all pure states in R(ρ) = H . Since Cf (|i�) = �i|Q|i� = 0 for all incoherent 
pure states {|i��i|}n−1

i=0
 in H , Q is a zero operator, which contradicts to f  = 0 .   �

(9)
F̃(τ ) =

∑

k

qkF(|ψk�),

(10)F̃(t1τ1 + t2τ2) = t1F̃(τ1) + t2F̃(τ2)
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