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Abstract: The evolution of mesoscale eddies is crucial for understanding the ocean energy cascade.
In this study, using global reanalysis sea surface velocity data and a mesoscale eddy trajectory
product tracked by satellite altimeters, we aimed to reveal the coherence of eddy kinetic energy (EKE)
variation to low-frequency ageostrophic energy during the eddy life span. The variation in EKE
throughout the eddy life span was highly coherent to that of the seven-day low-passed ageostrophic
kinetic energy, with a correlation coefficient of −0.94. The low-frequency ageostrophic motions
supplied 38% of the EKE variation in the growing stage of mesoscale eddies and absorbed 42% in
the decaying stage. The evolution rate of the EKE during the eddy life span was consistent with
the barotropic conversion rate of the low-frequency ageostrophic motions, further confirming the
dominant role of low-frequency ageostrophic motions in eddy growth and decay.

Keywords: mesoscale eddy; eddy kinetic energy; eddy life span; low-frequency motion; barotropic
conversion rate

1. Introduction

Mesoscale eddies are broadly distributed in the global ocean, transporting and reg-
ulating the ocean’s physical and biogeochemical properties [1–8]. They have a spatial
scale of tens to hundreds of kilometers and contain about 90% of the sea surface kinetic
energy [9,10]. Mesoscale eddies play crucial roles in the ocean energy cascade. The eddies
generally obtain energy from large-scale background currents by barotropic and baroclinic
conversion and transfer energy down to submesoscale and smaller scale processes due to
ageostrophic instabilities, surface and bottom frictions, and turbulent dissipation [11–18].

Previous studies have revealed the spatiotemporal variations of the EKE in the global
ocean using intensive satellite altimeter data and numerical models [18–25]. The variation
in kinetic energy throughout the eddy life span has also been derived from sea surface
drifters and Argo floats [14]. In climatology, the variation in mesoscale eddy energy is
generally divided into three stages over the whole eddy life, i.e., growing, mature, and
decaying stages. The EKE rises in the growing stage, sustains a flat plateau in the mature
stage, and then falls in the decaying stage [14,26–28]. In addition, the mean EKE of cyclonic
eddies (CEs) is generally higher than that of anticyclonic eddies (AEs) [29].

Zhang and Qiu [14] analyzed the variation in submesoscale ageostrophic energy and
proposed that submesoscale motions play a critical role in the EKE variation throughout
the eddy life span. On the other hand, Huang et al. [30] found that the variation of eddy
rotational speed is negatively correlated with that of the current-regulating eddy propaga-
tion velocity, indicating the role of background currents in eddy energy variation. Previous

Remote Sens. 2022, 14, 3793. https://doi.org/10.3390/rs14153793 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14153793
https://doi.org/10.3390/rs14153793
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-0758-4980
https://orcid.org/0000-0003-1560-1370
https://orcid.org/0000-0003-4618-7723
https://doi.org/10.3390/rs14153793
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14153793?type=check_update&version=2


Remote Sens. 2022, 14, 3793 2 of 13

ocean energy analysis has shown that energy conversion can occur between mesoscale
eddies and large-scale currents through barotropic and baroclinic instabilities [13,31–35].
However, the quantitative effect of large-scale and low-frequency motions on mesoscale
eddy kinetic energy variation throughout the eddy life span remains unclear.

In this study, we aim to quantitatively analyze the contribution of low-frequency
ageostrophic motions to the EKE variation throughout the eddy life span in the global ocean,
using the eddy trajectory dataset, geostrophic velocity anomaly, and reanalysis current
data. The data and methods are described in Section 2. The energy variations of mesoscale
eddies and low-frequency ageostrophic motions are compared, and the mechanism of the
energy conversion due to barotropic instability (BT) is analyzed in Section 3. Discussion
and conclusions are given in Sections 4 and 5, respectively.

2. Data and Methods
2.1. Satellite Altimetry Data and Eddy Tracking Dataset

The Archiving Validation and Interpretation of Satellite Oceanographic (AVISO)
datasets provided the global gridded geostrophic velocity anomaly data Uga used in
this study, which were accessed from the Copernicus Marine Environment Monitoring
Service (CMEMS) website. The datasets were merged products derived from Topography
Experiment (TOPEX) Poseidon (T/P), Jason-1/2 (French–US altimeter satellites), ERS-1/2
(European Remote Sensing satellites), and Envisat (European Remote Sensing satellite)
altimeters. The gridded data were geophysically/meteorologically corrected (tides, iono-
sphere, wet, and dry troposphere) and interpolated onto Mercator grids of 0.25◦ horizontal
resolution with global ocean coverage except for high latitude oceans [36]. The tempo-
ral resolution of the data is one day, and the time coverage is from 1 January 1993 to
31 December 2019.

The AVISO 27-year mesoscale eddy trajectories atlas product (version 2.0 delayed-time)
derived from the satellite altimeter observations is used as a baseline for the study [37].
The daily eddy trajectory data include seven eddy parameters, i.e., tracking number, eddy
center position (latitude and longitude), tracking day, polarity information, maximum
circum-averaged speed, and eddy radius R. The eddy life span Tspan is calculated from
the track day of eddies with the same tracking number. The data span the period from
1 January 1993 to 31 December 2019 as the geostrophic velocity anomaly Uga.

The numbers, radius, and lifespan of CEs and AEs in the global ocean are listed in
Table 1. One can see that a total of 378,513 eddies are used for energy analysis in this study,
of which the number of CEs is slightly higher (3.6%) than that of AEs. In fact, there are
generally more CEs than AEs in each ocean, except in the North Atlantic, where the number
of CEs is 2.1% lower than AEs. The eddies have a median (mean) lifespan of 51 (73.38) days
and a median (mean) radius of 74.20 (82.33) km in total, while the AEs have a larger radius
and a longer lifespan than the CEs.

Table 1. The numbers, radius, and lifespan of mesoscale eddies in the global ocean.

All AEs CEs

Eddy number 378,513 185,937 192,577
Eddy radius (km)

median (mean ± std)
74.20

(82.33 ± 35.93)
74.95

(83.13 ± 36.23)
73.45

(81.53 ± 35.60)
Eddy lifespan (day)

median (mean ± std)
51.00

(73.38 ± 66.40)
51.00

(74.43 ± 69.62)
51.00

(72.60 ± 63.33)

2.2. Reanalysis Dataset of Total Current Velocity

The total current velocity U, including geostrophic and ageostrophic components, is
derived from the global ocean eddy-resolving reanalysis dataset (GLORYS12V1) provided
by Copernicus Marine Environment Monitoring Service (CMEMS). The model component
is the NEMO (Nucleus for European Modeling of the Ocean) platform, driven at the surface
by ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim then
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ERA5 reanalyzes for recent years. A reduced-order Kalman filter was used to assimilate
observations, including along track altimeter data, Satellite Sea Surface Temperature, Sea
Ice Concentration, and in situ temperature and salinity (T/S) vertical Profiles. Moreover, a
3D-VAR scheme corrects for temperature and salinity biases that are slowly evolving on a
large scale. The spatial and temporal resolutions of the dataset are (1/12)◦ and one day,
respectively. The time coverage is from 1 January 1993 to 31 December 2019, the same as
that of Uga.

We compare the reanalysis current velocity to that from surface six-hourly drifter
observations; the derived kinetic energy along eddy tracks is similar to each other (not
shown), indicating the reliability of the reanalysis velocity. Furthermore, the reanalysis
data have suitable continuity and concurrence with the satellite eddy observations.

2.3. Calculation of Geostrophic and Ageostrophic Kinetic Energy

The total current velocities U include all velocity components induced by different
dynamic processes, of which the geostrophic velocity can be provided by the satellite
observations. Here, we decompose the total velocity at each grid U into three components:
climatologic mean velocity U0 from time-averaged U, geostrophic current velocity anomaly
Uga from satellite observations, and ageostrophic velocity Uag:

Uag(i, j, t) = U(i, j, t)−U0(i, j)−Uga(i, j, t) (1)

where i and j are the zonal and meridional grids, respectively, and t is the time. Thus,
eddy kinetic energy (EKE) Ega, and ageostrophic kinetic energy (AKE) Eag are calculated
as follows:

Ega(i, j, t) = |Uga(i,j,t)|2
2

Eag(i, j, t) = |Uag(i,j,t)|2
2

(2)

We use a moving average filter to obtain the low-frequency part of ageostrophic
velocity Ualp from the time series of Uag at each data grid point; the remaining part of Uag,
subtracting Ualp, is the high-frequency ageostrophic velocity Uahp, i.e., Uahp = Uag − Ualp.
Considering the periods of the submesoscale motions, a seven-day cutoff frequency is used,
as in previous studies [14,38,39]. Since the temporal and spatial scales of ocean motions are
generally coherent, the low-frequency ageostrophic motions are generally overlapped by
the large-scale motions. Similar to the calculation of Eag, the high-frequency ageostrophic
energy (HAE) Eahp and the low-frequency ageostrophic energy (LAE) Ealp are calculated
from Uahp and Ualp, respectively.

Figure 1a,b show the global distributions of climatological mean EKE and AKE Ega
and Eag, respectively. One can see that the high values of Ega above 600 cm2/s2 are mainly
distributed in the western boundary current, the Antarctic circumpolar current (ACC), and
the equatorial current regions, where maximum values are even higher than 1000 cm2/s2.
Mesoscale eddies are frequently active in regions with strong currents due to barotropic and
baroclinic instabilities of the background currents, while ageostrophic motions could be
enhanced due to active nonlinear eddy–eddy interactions and eddy–current interactions. In
addition, ageostrophic forces, such as buoyancy fluxes and wind forcing, are generally large
in these areas and induce high ageostrophic energy [40–42]. In shallow shelf waters, bottom
friction may also contribute to the ageostrophic motions [15,43]. Though high values of Eag
and Ega are in close regions, they are dislocated in detail since high ageostrophic motions
are prone to appear around mesoscale eddies. Ega have more coverage of high values than
Eag indeed.

The difference between Ega and Eag is shown in Figure 1c. The positive values repre-
sent stronger geostrophic activities, which are mainly distributed in the western boundary
current region and the ACC region, while higher ageostrophic kinetic energy are mainly
concentrated in the equatorial region and continental shelf seas, where large winds or
bottom friction occurs. The distributions of climatologic LAE Ealp and HAE Eahp are sim-
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ilar to that of Eag, but Ealp is four times greater than Eahp (not shown). In other words,
low-frequency motions are the dominant components in ageostrophic motions.
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Figure 1. Global distributions of climatological kinetic energy. (a) Eddy geostrophic kinetic energy
Ega, (b) ageostrophic kinetic energy Eag, (c) differences between Ega and Eag.

2.4. Matching Gridded Data and Normalization

The daily center position and corresponding radius R of the eddies are derived from
the eddy-tracking dataset. The area within 0.5–1.5 R around the eddy center is chosen
as the main contribution area of the EKE, as in a previous study [14]. The gridded Ega
within this area is averaged to represent the EKE of mesoscale eddies at time t, as shown in
Figure 2. As a result, Ega(eddy,t) for a certain eddy can be captured along the eddy track on
each day t of the eddy life span. In fact, the variation of Ega(eddy,t) here within 0.5–1.5 R is
consistent with that derived from the maximum speed of eddies (not shown), although the
mean Ega within 0.5–1.5 R is smaller than that from the maximum speed.
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Figure 2. Matching gridded data along eddy track. The background image shows the EKE field, the
white curve represents the eddy trajectory, the black circles give the range of the eddy 0.5–1.5 R, and
the scatters between the two concentric circles represent the data points used in the energy calculation
for each eddy.

The life span of each eddy is then normalized by its total lifespan Tspan, i.e., Te = t/Tspan.
Averaging all energy curves along the eddy track in the normalized life span, we could
gain the direct mean energy curve Exx (Te) from all eddies, i.e.,

Exx(Te) =

N
∑

i=1
Exx(eddy, Te)

N
(3)

where N is the number of eddy samples, and the subscript xx represents the energy
categories, such as ga, ag, alp and ahp.

In order to clarify the portion of energy variation, we normalize the energies on each
day of the life cycle Exx(eddy, Te) by its life-mean EKE Eave

ga (eddy):

Exxn(eddy, Te) =
Exx(eddy, Te)

Eave
ga (eddy)

(4)

Finally, Exxn(eddy, Te) along the track in the normalized life span for all mesoscale
eddies are averaged to obtain the mean curve of Exxn(Te) throughout the eddy life cycle,

i.e., Exxn(Te) =
N
∑

i=1
Exxn(eddy, Te)/N. Therefore, the variation curves of EKE Eagn, AKE

Eagn, LKE Ealpn, and HKE Eahpn are derived. The mean standard error, std/N1/2, is used to
measure the deviation of the mean curves, where std is the standard deviation of the data
and N is the number of averaged eddy samples.

3. Results
3.1. Eddy Kinetic Energy Variation during Eddy Life Span

Figure 3a shows the variation of the direct mean EKE Ega for all eddies (black curve),
AEs (red curve), and CEs (blue curve) along their tracks during their normalized life
span. One can see that the three curves show a similar pattern, i.e., increasing at the
beginning, maintaining in the middle, and decreasing at the end. Specifically, Ega for
all eddies increases from 190 cm2/s2 at the beginning of the life span to 237 cm2/s2 at
0.3 Te. Subsequently, Ega maintains around 240 cm2/s2 until 0.7 Te and decreases rapidly
to 200 cm2/s2 at the end of the life span (black line). The mean Ega over the life span is
229 cm2/s2, lower than 245 cm2/s2 for CEs, and higher than 213 cm2/s2 for AEs.
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Figure 3. Curves of global mean eddy kinetic energy along the eddy track throughout the eddy life
span. (a) EKE Ega, (b) Normalized EKE Egan. Black curves represent the energy curves for total eddies.
Red and blue curves represent the energy curves for AEs and CEs, respectively. Shadows around the
energy curves represent the mean standard error.

According to the changing rate of Ega(Te) for total eddies with time, we divide the
whole eddy life span into three stages with a critical slope of 0.35 cm2/s2 per 0.01 Te: the
growing stage from 0 to 0.3 Te, the mature stage from 0.3 to 0.7 Te, and the decaying
stage from 0.7 to 1 Te, as shown in Figure 3a. The energy curves of AEs (red line) and
CEs (blue line) have similar patterns to the total one (black line), while the EKE values of
CEs are systematically higher than those of AEs, as also observed by Chen and Han [29].
Note that the curves of Ega(Te) are not symmetric. The energy values at the beginning are
5–15 cm2/s2 smaller than that at the end of the eddy life span. The differences between the
curves of CEs and AEs in the growing stage are also smaller than that in the decaying stage.

The global mean of the normalized EKE Egan(Te) curve is shown in Figure 3b. One
can see that the mean Egan(Te) was 1.02 in the mature stage, while the minimum values are
0.90 and 0.94 at the beginning and the end of the eddy life span, respectively. In contrast to
the higher Ega(Te) for CEs in Figure 3a, the normalized Egan(Te) of AEs is generally close to
that of CEs, and the Egan(Te) of AEs has larger values in the growing stage. The difference
may be attributed to more strong CEs than AEs. The statistics reveal 25.7% of CEs have a
Eave

ga (eddy) larger than 240 cm2/s2, while the ratio is only 23.2% for AEs. In the direct mean
of Ega(Te), strong eddies contribute more to the mean value, while the normalized mean
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curve Egan(Te) reveals the real portion of energy variation over the life span for each eddy.
On the other hand, the asymmetry of the curve in the beginning and ending are enhanced
in the normalized curve since the eddies are weaker in the growing and decaying stages.

Table 2 lists the energy increments of individual components, ∆EG
xx in the growing

stage and ∆ED
xx in the decaying stage for all eddies. One can see that ∆EG

gan = 0.12 and
∆ED

gan = −0.08, i.e., Egan increases by 12.1% of Eave
ga (eddy) in the growing stage and decreases

by 8% of Eave
ga (eddy) in the decaying stage.

Table 2. Increments of Egn, Ean, Ealpn, and Eahpn and contributions to Egn in the growing and
decaying stages.

Egn Ean Ealpn Eahpn

Growing stage
∆EG

xx(∆EG
xx/∆EG

gn)
0.12 (100%) −0.07 (57%) −0.05 (38%) −0.01 (8%)

Decaying stage
∆ED

xx(∆ED
xx/∆ED

gn)
−0.08 (100%) 0.06 (75%) 0.03 (42%) 0.01 (15%)

3.2. Ageostrophic Kinetic Energy Variation during Eddy Life Span

Figure 4a shows the mean curve of the normalized AKE Eagn(Te) during the eddy
life span. One can see that the Eagn of total eddies has a maximum value of 1.16 in the
growing stage, a minimum value of 1.09 in the mature stage, and 1.15 in the decaying stage.
It has an upside-down variation trend compared to the curve of Egan shown in Figure 3b.
As listed in Table 2, Eagn decreased by 0.07 in the eddy growing stage and increased by
0.06 in the decaying stage, which accounted for 57% and 75% of |∆Egan| in the two stages,
respectively. CEs and AEs both have similar variation trends in the normalized AKE, while
the values of AEs are higher than that of CEs, probably due to stronger geostrophic strain
in AEs [14].

The mean curves of the normalized LAE Ealpn (>7 d) and the normalized HAE Eahpn
(<7 d) during the eddy life span are further shown in Figure 4b,c. One can see that the
energy curves of both Ealpn and Eahpn are similar to that of the total ageostrophic energy
Eagn shown in Figure 4a. The maximum and minimum values of Ealpn are 0.84, 0.80, and
0.83 in the three stages, accounting for 62% of the values of total ageostrophic energy Eagn.
On the other hand, the extreme values of Eahpn for all eddies are only 0.22, 0.21, and 0.22 in
the three stages. They are four times lower than those of Ealpn, indicating that Ealpn is the
dominant component in Ean.

3.3. Analysis of Coherence of EKE Variation to Low-Frequency Ageostrophic Motions

As shown in Figure 4, the curves of Ealpn and Eahpn are highly coherent with that of
Egan during the eddy life span. The correlation coefficient reaches −0.94 and −0.89 with
a confidence level of 99% for Ealpn and Eahpn, respectively. This indicates that both low-
frequency and high-frequency ageostrophic motions contribute to EKE variation during the
eddy life span, while the low-frequency ageostrophic motions are more closely correlated
to the EKE variation.

Table 2 lists the ratios of the contribution. One can see that in the growing stage, Ealpn

decreases by 0.05 from 0.84 to 0.79, contributing 38% of ∆EG
gan. On the other hand, Ealpn

increases by 0.03 (42% of ∆ED
gan) in the decaying stage. On average, the energy provided by

the low-frequency ageostrophic motions contributes 40% of the total variation of Egan. For
comparison, the contributions of high-frequency ageostrophic motions to the variation of
Egan are also listed in Table 2. The ratios are only 8% and 15% in the growing and decaying
stages, respectively, 3–5 times lower than the ratio of Ealpn to Egan. The low-frequency
ageostrophic motions are a major contributor.
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Figure 4. Variation curves of global mean ageostrophic kinetic energy along the eddy track throughout
the eddy life span. (a) Normalized AKE Eagn, (b) normalized LAE Ealpn (with period > 7 d), and
(c) normalized HAE Eahpn (with period < 7 d). Black curves represent the energy curves for total
eddies. Red and blue curves represent the energy curves for AEs and CEs, respectively. Shadows
around the energy curves represent the mean standard error.

3.4. Barotropic Conversion Rate

In order to investigate the interactions among eddies and low-frequency ageostrophic
motions, we performed energy analysis to quantify the barotropic (BT) conversion rate
between the EKE and the LAE. We first integrate the EKE within the range of 0.5–1.5 R
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and obtain the integrated-EKE (iEKE) curve for each eddy. Then, the integrated-EKE curve
for each eddy is normalized by its life-mean EKE Eave

ga (eddy), and the global mean of the
normalized iEKE curve is obtained, which has similar patterns to the EKE Ega curve (not
shown). We calculate the time derivative dEgan/dt of the mean normalized iEKE curve in
the eddy life span. The resulted dEgan/dt is shown by the blue curve in Figure 5.
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For the eddy energy variation, the total derivative of eddy kinetic energy without ex-
ternal forcing depends on four dynamic terms, i.e., the shear production of the background
current (i.e., BT conversion rate), the buoyant production (i.e., BC conversion rate), the
viscosity dissipation, and the energy flux divergence [13,44]. In which the BT conversion
rate represents the energy transfer from the background current to the eddy geostrophic
current. It is calculated as follows [13]:

BT : −ρ0[uga(i, j, t) ·Uga(i, j, t) · ∇
(

ualp(i, j, t)+u0(i, j)
)
+

vga(i, j, t) ·Uga(i, j, t) · ∇
(

valp(i, j, t)+v0(i, j)
)
]

(5)

We calculate the BT rate for data grids first and then select values along the eddy track
to calculate the integrated BT rate within the range of 0.5–1.5 R during the eddy life span.
Then, the integrated BT rate curve is also normalized by its life-mean EKE Eave

ga (eddy) for
each eddy. Finally, the curves of all global eddies are averaged to obtain the red curve
shown in Figure 5. One can see that the normalized BT rate is positive in the eddy growing
and mature stage, indicating that the energy transfers from low-frequency motions to
eddies, while the BT rate is negative in the decaying stage, where the energy transfers
inversely from EKE to LAE.

Comparing the BT rate to the change rate of EKE along the eddy track (dEgan/dt,
blue line in Figure 5), one can see that the two rates have the same decreasing trend
during the eddy life span and change the sign of variation rate in the mature stage. Their
correlation coefficient reaches 0.73 with 99% significance, indicating that the BT rate is the
dominant term in the eddy energy variation. The BT rate is generally larger than the EKE
variation rate dEgan/dt. In the eddy growing stage, EKE increases with a positive dE/dt as
LAE transfers to EKE with a positive BT rate; EKE varies little with |dEgan/dt| less than
1.5 × 10−3 as the BT rate decrease rapidly in the mature stage. Then, EKE decreases with
a negative rate in the decaying stage, as the BT rate becomes negative. It is clear that
low-frequency ageostrophic motions serve as the energy sources for eddy growth and the
energy sink for eddy decay. Furthermore, the BT rate was positive between 0 and 0.62 Te,
while dEgan/dt becomes negative after 0.47 Te, implying EKE loss possibly probably due
to high-frequency ageostrophic motions, viscous dissipation, wind killing, and energy
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transfer to potential energy [32,45,46]. The positive anomaly after 0.95 Te may be caused by
eddy shape deforming or eddy–mean flow interaction at the western boundary [47,48].

4. Discussion

Previous investigators found a high correlation between the high-passed ageostrophic
kinetic energy and eddy geostrophic kinetic energy during the eddy life span and proposed
the importance of submesoscale processes in eddy kinetic energy variation [14]. In this
study, we found close coherence in the EKE variation to low-frequency ageostrophic
motions such as slowly varying wind-driven flow and planet waves because of their shared
frequency band with mesoscale eddies rather than submesoscale processes.

It should be noted that the high coherence of variations of EKE and LAE in this study
are a composite result of total eddies in the global ocean. The number of eddy samples N, as
well as the locations and occurrence time of eddies, may have an influence on the coherence
between EKE and LAE. Figure 6a shows the variation of the correlation coefficient between
Egn and Ealpn, marked as r, with different numbers of random eddy samples in the global
ocean. One can see that r oscillates around 0 as the number of eddy samples N is less than
2000, increases gradually from about −0.73 at N = 2000 to −0.90 as N reaches 7000, and
keeps to a little more than −0.92 with N > 10,000. It indicates that the coherence between
the curves of EKE and LAE could be established if there were more than 2000 eddies. We
further calculate r between Egn and Ealpn of the eddies in each year. As shown in Figure 6b,
r has the largest value of −0.95 in 1998 and then varies between −0.7 and −0.94 with
a 2–3 year period in the recent 20 years, which seems to be related to the interannual
variability of eddies and background currents influenced by ENSO [23,49,50]. For spatial
variability of the coherence shown in Figure 6c, the correlation r between Egn and Ealpn is
larger than −0.8 in most oceans except in the Atlantic, probably due to the narrow and
asymmetric ocean basin. Mechanisms about the coherence variation need further pursuing.
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We find three-stage variations of eddy energy during eddy life for global ocean eddies.
In fact, such composite three-stage evolution has been reported for eddies both in the open
ocean [2,14,27,29] and in regional seas [26,28,29,51], though the variation rates and the
span of each stage may be different in different seas in different years. It should be noted
that the three-stage pattern is also the composite result of large amounts of eddies. For
a single eddy, the energy curve during its life cycle may be complicated due to various
forcing [52,53]. The interaction between eddies, such as merging and splitting, could also
cause eddy energy variation during their lives [54,55]. In addition, only eddies with a life
cycle of more than 30 days are considered in this study due to data limitations. It will be
helpful to comprehensively understand the evolution of mesoscale eddies by separating
eddies within different ranges of radius and life span. Furthermore, only sea surface current
energy and BT conversion rate are analyzed; the baroclinic instability process and eddy
energy conversion to ageostrophic current could be further explored.

5. Conclusions

Using satellite altimetry data and reanalysis current velocity data from 1993 to 2019,
this study analyzes the role of low-frequency ageostrophic motions in the variation of eddy
kinetic energy during eddy life span in global ocean. The quantitative analysis showed
that the Egan curve and the Ealpn curve throughout the eddy life span have a correlation
coefficient of −0.94. Low-frequency ageostrophic motion contributes about 38% of the EKE
variation in the eddy generation phase and 42% in the decaying phase. Thus, it is the low-
frequency ageostrophic motions that are closely coherent with the EKE variation during
the eddy life span. In addition, the BT conversion rate analysis confirmed the relationship
between the energy transfer between LAE and EKE. Moreover, the EKE decrease in the
decaying stage may also be attributed to other processes such as wind work, submesoscale
processes, and topography effect.

The new findings in this study may help to improve the understanding of the mech-
anisms involved in the generation and dissipation of mesoscale eddies and the role of
mesoscale eddies in the global ocean energy cascade. Meanwhile, the results in the ocean
may also provide a reference for the other geophysical fluid on the Earth, the atmosphere.
Different from the same-order geo- and ageostrophic energies in the ocean (Figure 1c), the
ageostrophic energy in the atmosphere is weaker than that of geostrophic motion [5,14,56].
Nonetheless, ageostrophic motion is still important in weather-scale processes in the at-
mosphere and contributes to the enhancement of the geostrophic field [15,57]. The role of
ageostrophic motions in the atmospheric energy cascade could be compared to that in the
ocean in further studies.
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