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Coherence resonance at noisy precursors of bifurcations in nonlinear dynamical systems
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A general mechanism of coherence resonance that occurs in noisy dynamical systems close to the onset of
bifurcation is demonstrated through examples of period-doubling and torus-birth bifurcations. Near the bifur-
cation of a periodic orbit, noise produces the characteristic peaks of ‘‘noisy precursors’’ in the power spectrum.
The signal-to-noise ratio evaluated at these peaks is maximal for a certain optimal noise intensity in a manner
that resembles a stochastic resonance.@S1063-651X~97!06307-1#

PACS number~s!: 05.40.1j, 05.20.2y
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Nonlinear systems perturbed by noise have the poten
to display a wide range of complex responses includi
somewhat paradoxically, an enhancement of net order
coherence as noise levels increase. A distinguished exa
of this phenomenon is stochastic resonance~SR! @1# which
has attracted considerable attention over the last decade~see
for references the reviews@2#!. Conventional SR occurs in
noisy dynamical systems when perturbed by a weak exte
periodic signal. For such systems, significant amplification
the weak periodic signal may occur solely by increasing
level of the noise intensity. The signal-to-noise ratio~SNR!,
and other appropriate measures of signal coherence,
through a maximum at an optimal noise strength when
noise-controlled time scale of the system matches the pe
of the external signal.

A similar effect of noise-induced coherence may also
observed in systems which lack an external signal, but wh
intrinsic dynamics are controlled by noise intensity. In earl
studies@3,4# the noise-induced enhancement of coherenc
underdamped nonlinear oscillators has been found.
noise-induced peak at zero frequency appeared in the v
ity of a pitchfork bifurcation@3#, whereas the decrease of th
width of a fluctuating peak in the power spectrum is sho
for an underdamped oscillator, whose eigenfrequency p
sesses an extreme in energy, in@4#. Recently, a noise-
induced coherent motion has been observed for autonom
systems in@5#, where the effect of noise on a nonunifor
limit cycle has been studied, and in@6#, where a coherence
resonance in a noise-driven excitable system has been
ported. This group of phenomena can be called cohere
resonance or ‘‘internal’’ SR, which underlines the fact th
one can observe SR-like phenomena without an externa
riodic signal.
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In the present paper we study the response of nonlin
dynamical systems to noise excitation near the onset of
namical instabilities of periodic orbits. Our starting point
the key paper of Wiesenfeld@7#, which carefully elaborates
the way in which noise controls the qualitative structure
the power spectrum. In brief, Wiesenfeld demonstrates
the power spectrum of a system observed after a bifurca
point can, nevertheless, be visible even before the bifurca
actually occurs if there is noise present. We thus observ
noisy precursorof the bifurcation.

To follow this line of thought further, let us suppose th
noise induces a peak of heightH at the frequencyvp in the
power spectrum, so that the noisy precursor of an instab
is observed. We then ask what might happen to the shap
the spectrum if the noise intensity is increased? Two tend
cies can be suggested.

~i! With the increase of noise, the model’s trajectory
kicked further away from the stable periodic orbit whic
leads to damped oscillations at the frequencyvp . This
boosts the heightH of the peak in the power spectrum.

~ii ! Because of the nonlinearity of the system, increas
noise will increase the peak’s relative widthW5Dv/vp
~which is none other than the inverse of the familiar qual
factorQ) @8#. This increase inWmakes it difficult to resolve
the peak from the noise background.

In order to measure the coherence of the system at
noise-induced peak we define the signal-to-noise ratio
SNR5H/W, as in@5#. We aim to show that becauseH and
W vary differently with noise intensity, the SNR will very
often pass through a maximum, and in a manner that is t
cal for conventional SR.

Firstly, however, we note that it would be impossible
observe such behavior in a linear system perturbed by a
tive noise, since the height of a noise-induced peak is kno
to increase monotonically as a function of noise intens
whereas the width of the peak is constant against noise. A
result, in linear systems the SNR increases monotonic
with noise. On the other hand, noise excitation of a se
sustained oscillator which has a stable limit cycle far from
bifurcation leads to the well-known effect of washing th
spectral line out@8# so that the SNR decreases monotonica
with the increase of noise.

In order to test our prediction of a resonant behavior v
sus noise strength, as found in noisy precursors, we study
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56 271COHERENCE RESONANCE AT NOISY PRECURSORS OF . . .
effects of white noise forcing on:~a! period-doubling bifur-
cations in the celebrated discrete Feigenbaum map@9#; ~b!
torus-birth bifurcations found in two coupled discre
Feigenbaum maps; and~c! period-doubling bifurcations in
the Rössler equations.

For the case of theperiod-doubling bifurcations, consider
first the noisy Feigenbaum map~or logistic map! as defined
by the following stochastic difference equation:

xn11512axn
21ADjn , ~1!

wherea is the control parameter of the map andD measures
the intensity of white noisejn . The universal behavior of a
noisy period-doubling sequence has been studied in deta
@10#. In the absence of noise, the bifurcation sequence
fixed points of period 2k takes place for the parameter value
ak : a150.75,a251.25,a351.368 099, . . . . Figure 1 dis-
plays the power spectrum of the noisy map~1! just before the
second period doubling bifurcation (a51.24) for different
noise levels. Note that when there is no noise (D50), the
map has a stable fixed point of period 2 and ad peak at the
frequencyv05p in the power spectrum. With the nois
switched on, the noisy precursor of a period-four cycle b
comes visible as a peak at the subharmonic freque
vp5p/2. The increase of noise makes this peak more p
nounced. However for large noise levels, the width of t
peak becomes so wide that it is difficult to distinguish th
peak from the noise background.

To better quantify this behavior we present the results
numerical calculations ofH, W, and SNR in Fig. 2 which
clearly support our prediction for a resonant effect. The in
graph in Fig. 2 displays the dependence ofH andW on the
noise intensityD. The width of the noise-induced peak in
creases linearly with the increase ofD, as is known for a
classical self-sustained oscillator perturbed by noise@8#. On
the other hand, the height of the peak increases linearly fo
small noise intensity and then flattens out and saturates
to the nonlinearity of the system. Appropriate scalings f

FIG. 1. The power spectrum of the noisy Feigenbaum map~1! at
a51.24 for different noise intensities:~1! D51023, ~2! D51022,
and ~3! D5531022.
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W andH were found to beW}W01D, H}12exp(2aD),
with constantsW0 anda. Competition between the growt
in the height of the peak and its width therefore gives rise
a bell shaped curve for the SNR which can be fitted as

SNR}
12exp~2aD !

W01D
. ~2!

The optimal noise intensityDopt , at which the SNR is maxi-
mum, corresponds to the situation in which the nois
induced peak is most pronounced~cf. Fig. 1!.

The behavior of the precursors versus the control par
etera is of interest as well. We therefore introduce the cri
cal parametere5ak2a, whereak is the parameter value o
thekth period-doubling bifurcation. For any fixed noise lev
D, we found that the SNR(D) scales withe as SNR(D)
}e23 which fits the theoretical predictions of Ref.@7#. Fig-
ure 2 also shows that as the control parametera approaches
the point of bifurcationa251.25, the optimal noise intensit
Dopt shifts towards smaller values and the SNR increas
Our simulations revealed that the optimal noise intensity a
control parameter near a period-doubling bifurcation are c
nected linearly: Dopt}e. Beyond the bifurcation point
a*a251.25, there is a period-four fixed point withd peaks
at the subharmonicvp5p/2 in the power spectrum. How
ever, as noise increases, these peaks are gradually ‘‘wa
out’’ and the SNR monotonically decreases. Finally, we a
analyzed Eq.~1! for parameter values close to other perio
doubling bifurcations and obtained results in close agreem
to all those reported above.

Let us now consider thetorus-birth bifurcation. In the
language of Poincare´ maps this bifurcation refers to the cas
when a pair of complex conjugate characteristic multiplie
cross the unit circle. This bifurcation is thus closely akin
the Hopf bifurcation in a flow system@11#. A system of two
coupled Feigenbaum maps, for example, can easily gene

FIG. 2. SNR atvp5p/2 vsD for the noisy Feigenbaum ma
near the second period-doubling bifurcation for different values
the parametera: (s) a51.2, (h) a51.22, and (n) a51.23. The
solid lines represent the approximation given by Eq.~2!. Inset: the
dependence ofH (h, right scale! andW (s, left scale! vs D for
a51.23.
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272 56ALEXANDER NEIMAN, PETER I. SAPARIN, AND LEWI STONE
such a bifurcation@12,11#. With additive noise applied, the
system is described by the two stochastic difference eq
tions

xn11512axn
21g~yn2xn!1ADjn ,

yn11512ayn
21g~xn2yn!1ADhn , ~3!

whereg is the coupling strength andjn , hn are statistically
independent white noises. The bifurcations in the noisele
system~3! have been studied in detail~see, for example,
@11#!. The stable fixed point of period 1 is born asa in-
creases beyonda520.25, with a bifurcation to a period-two
fixed point whena5(4g228g13)/4. Increasing the param-
eter a further leads to the characteristic multipliers of th

FIG. 3. The power spectrum of the coupled Feigenbaum map~3!
ata50.405,g50.4 for different noise intensities:~1! D51023, ~2!
D51022, and~3! D51021.

FIG. 4. SNR vsD for the coupled Feigenbaum map atg50.4
for several values of parametera: (s) a50.4, (h) a50.407, and
(n) a50.408. The solid lines represent the approximation given
Eq. ~2!.
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period-two fixed point to become a complex conjugate an
whena is large enough, the multipliers cross the unit cycle
This Hopf bifurcation corresponds to the birth of an invarian
curve or torus in the phase space of the system.

Consider now the case wheng50.4, and for which a
Hopf bifurcation is known to occur ata5at'0.409 98. With
a50.405,at the system is below the Hopf bifurcation and,
in the absence of noise, the power spectrum contains only
singled peak at the frequencyp corresponding to the stable
period-two fixed point. With noise applied to the system, the
noisy precursors of the Hopf bifurcation become readily ap
parent~see Fig. 3! and two new peaks in the power spectrum
appear. These peaks correspond in frequency to the case
torus dynamics that arises when there is no noise an
a.0.405 ~i.e., after the Hopf bifurcation!. A close analysis

y

FIG. 5. The power spectrum of the Ro¨ssler system~4! at
a5b50.2, c52.7 for several values of noise intensity:~1! D50,
~2! D51024, and~3! D5231023.

FIG. 6. SNR vsD at the noise-induced frequency~left subhar-
monic! of the Rössler system. The solid line represents the approx
mation given by Eq.~2!. The parameter values are the same as i
Fig. 5.
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56 273COHERENCE RESONANCE AT NOISY PRECURSORS OF . . .
revealed that increasing noise intensity in Eq.~3! results in
exactly the same effects observed for the preceding cas
the period-doubling bifurcation. Figure 4 makes clear
dependence of the SNR at one of the noise-induced pea
a function of noise intensity. The SR-like behavior is clea
seen again.

Qualitatively the same behavior is also observed in fl
systems. To demonstrate this we present a numerical s
of the noisy Ro¨ssler system@13# near a period-doubling bi
furcation. With additive white noise the system is govern
by the three-dimensional stochastic differential equations

ẋ52~y1z!1A2Dj1~ t !, ẏ5x1ay1A2Dj2~ t !

ż5b1z~x2c!1A2Dj3~ t !, ~4!

wherea, b, andc are the parameters andD is the intensity of
the statistically independent white noisesj i(t). In the ab-
sence of noise (D50), and with the parameter value
a5b50.2, the first period-doubling bifurcation occurs
c5c1'2.835. Forc52.7,c1 and in the absence of noise
there is a stable cycle of period 1. With noise switched
the precursors of period-doubling become visible. The po
spectra of thex coordinate~4! is shown for three differen
noise intensities~Fig. 5!. As can be seen, the evolution of th
power spectrum is qualitatively equivalent to that of t
Feigenbaum map~cf. Fig. 1!. The dependence of the SN
versusD is shown in Fig. 6 and again displays the SR-li
behavior.
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The effect we report here is very simple, and, in fa
extremely general. Nonlinear dynamical systems when
cited by noise give rise to precursors of instabilities of pe
odic motion. These noisy precursors, which are prominen
close to points of bifurcation, manifest themselves as no
induced peaks in the power spectrum of the system.
peaks are most strongly expressed at an optimal leve
noise, and thus the SNR at the noise-induced peaks
through a maximum as noise intensity increases. This p
nomenon has a simple physical interpretation that can
stated in terms of two competing mechanisms. The first
the increase of the height of the noise-induced peak as
noise strength increases; a tendency which makes the pre
sor more visible above the noise background. The growth
the height is, nevertheless, bounded by the nonlinearity
the system. The second mechanism is the increase of
width of the peak with noise, which tends to create difficu
ties in resolving the peak. In short these two quantities,
peak’s height and width, vary differently with noise inte
sity. The competition in the growth of these quantities yie
an optimal noise intensity at which the SNR takes its ma
mal value. The effect reported here appears to be quite g
eral and provides an interesting interpretation of cohere
resonance in autonomous noisy systems.
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