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Coherence resonance near the Hopf bifurcation in coupled chaotic oscillators
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We uncover a coherence resonance near the Hopf bifurcation fromchaosin coupled chaotic oscillators. At
the bifurcation, a nearly periodic rotating wave becomes stable as the state of synchronous chaos is destabi-
lized. We find that noise can induce the bifurcation and, more strikingly, it can enhance the temporal regularity
of the wave pattern in the coupled system. This resonant phenomenon is expected to be robust and physically
observable.
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Coherence resonance has been a topic of recent inte
The phenomenon generally refers to resonant enhance
of the temporal regularity of a dynamical system by noi
which was first noticed by Sigeti and Horsthemke@1#. The
work by Pikovsky and Kurths@2# laid a solid foundation for
the phenomenon and since then, a plethora of theore
works @3,4# and experimental works has appeared@5#. The
common setting for investigating the coherence resonanc
excitable systems@2#, where the time trace of dynamica
variables of physical interest consists of an infinite seque
of bursts occurring at random time intervals. At both sm
and large noise levels, the time series appear random in
sense that their Fourier spectra are broadband and appar
exhibit no pronounced peaks. At some intermediate no
levels, the bursting time series appears more regular, as c
acterized by the appearence of a finite set of peaks at ce
frequencies. If one defines a measure, say the ratio of
height of the most pronounced peak in the Fourier spect
to its width, to quantify the temporal regularity of the burs
ing time series, one finds that the measure tends to incr
as the noise is strengthened and reach a maximum valu
some optimal noise level. More recently, this resonant p
nomenon has been studied for coupled chaotic systems@4#.

In this paper, we report coherence resonance near
Hopf bifurcation from chaos in coupled chaotic system
which, to the best of our knowledge, has not been noti
before. In particular, it is known that when identical or nea
identical chaotic oscillators are coupled together in an as
metric fashion, a rotating wave of relatively high frequen
can appear@6#, as the consequence of a Hopf bifurcati
from the state of synchronous chaos@7–9#. To be concrete,
consider the following system ofN, nearest-neighbo
coupled, identical chaotic oscillators:

dxi

dt
5f~xi !1~«1r !C•~xi 112xi !1~«2r !C•~xi 212xi !,

~1!

wherei 51, . . . ,N is the index specifying the location of th
i th oscillator in the space,f(x) is the vector field of an indi-
vidual oscillator that generates a chaotic attractor,C is an
N3N coupling matrix,« is the nominal value of the cou
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pling strength,r is the parameter characterizing the degree
asymmetry in the coupling, and the boundary condition
assumed to be periodic. An elementary Fourier analy
@8,10,11# indicates that Eq.~1! possessesN spatial eigen-
modes with the following wave vectors: 2pk/N, where k
50,1, . . . ,N21, is the wave number,k50 governs the dy-
namics in the synchronization manifold defined byx15x2
5•••5xN , andkÞ0 correspond to the motions in the su
spaces transverse to the synchronization manifold, which
modes in the space with the wavelengthN/k. Assume that
for r 50, the parameter« is large enough so that the syn
chronous chaos is stable. Whenr is increased through a criti
cal value so that the synchronization state becomes unst
two conjugate spatial modes dominate the dynamics, trig
ing a rotating wave in the system@7,8#. The frequencies of
the wave can be related to the generalized winding numb
associated with the corresponding transverse modes, w
appear to be well defined for many known chaotic oscillat
@7#. For r @r c , the rotating wave is periodic and has be
observed experimentally in coupled electronic circuits@6#.
Subsequent works@7,8# indicate that forr *r c , an approxi-
mately periodic wave can still be observed with respect
the state of synchronous chaos. The onset of the peri
wave is the result of a Hopf bifurcation directly from syn
chronous chaos, where a pair of complex conjugate eigen
ues associated with the particular transverse spatial m
crosses the unit circle in opposite directions@7,8,12#. This
bifurcation from chaos is an interesting high-dimensiona
phenomenon that is different from the commonly know
phenomenon of Hopf bifurcation where a periodic motion
born from a steady state.

The general question to be addressed in this paper is: w
is the effect of noise on the Hopf bifurcation from chao
Our findings are the following.~1! In parameter regimes be
low the Hopf bifurcation where synchronous chaos is stab
noise can destabilize the synchronous chaotic motion, ind
the bifurcation and, consequently,stabilizea rotating wave in
the coupled chaotic system. The stable wave pattern is
servable even for weak noise. More strikingly, the tempo
regularity of the wave can be greatly enhanced as the n
level is increased, in a resonant manner.~2! In the parameter
regime slightly above the Hopf bifurcation point where
©2002 The American Physical Society01-1
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chaotic rotating wave is already stable, noise can again
hance the regularity of the wave. These phenomena are
bust in the sense that they persist under small perturbati
such as parameter mismatches among coupled oscilla
We expect our findings to be important in addressing role
noise in high-dimensional dynamical systems@13#.

As a numerical example, we consider the following ri
of coupled Lorenz oscillators@7–9#:

dxi

dt
510~yi2xi !1Dj i~ t !,

dyi

dt
5b ixi2yi2xizi1~«1r !~xi 112xi !

1~«2r !~xi 212xi !,

dzi

dt
5xiyi2zi ~ i 51,2, . . . ,N!, ~2!

where b i528, D is the noise amplitude,j i(t)’s ( i
51, . . . ,N) are independent Gaussian random variables
zero mean and unit variance, and periodic boundary co
tion is utilized. Each Lorenz oscillator for the set of standa
parameter values as in Eqs.~2!, when uncoupled, exhibits
chaotic attractor. For illustrative purpose, we fixN56 and
«515.1, and chooser to be the bifurcation parameter, as
Refs. @7,8#. For small values ofr, the state of synchronou
chaos is transversely stable. The Hopf bifurcation from ch
occurs atr c'5.87, at which the largest transverse Lyapun
exponent crosses zero and becomes positive forr .r c . For
the coupled system Eqs.~2!, the wave number associate
with the largest transverse Lyapunov exponent@7,8# is k
51. Thus, forr *r c , the synchronous chaotic state is tran
versely unstable and a rotating wave of wavelengthN56
(k51) emerges@7#.

The remarkable phenomenon is that noise can induc
similar rotating wave even forr ,r c where the state of syn
chronous chaos would be transversely stable without no
For instance, forr 55.8&r c , a rotating wave is observe
even when the noise amplitude is small. To visualize
wave pattern, it is necessary to focus on quantities tha
not involve the chaotic dynamics in the synchronizati
manifold. The following set of derivation vectors is thu
convenient @9#: Dxi(t)5xi(t)2(1/N)( j 51

N xj (t), for i
51, . . . ,N, on which our subsequent analysis will be bas
Figure 1 shows, forD51.0, the evolution of the wave pa
tern in this variable-difference space, where the abscissa
notes the spatial location of the oscillator, the ordinate is
time axis, and the gray scale is determined by the value
Dxi(t). Apparently, there is an approximate periodicity
time for all the oscillators, and the phase differences am
the neighboring oscillators are roughlyT/N: Dxi 11(t)
'Dxi(t2@1/N#T) ( i 51, . . . ,N), whereT'0.5 is approxi-
mately the period ofDx(t). Simulations suggest that th
wave pattern in Fig. 1 is not a transient phenomenon. No
that if the state of synchronous chaos is stable, then the
no wave becauseDxi(t)50 for all i. The wave pattern ob
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served in Fig. 1 is thus induced by noise. The frequency
the wave, which isf '2.0, is nothing but the generalize
winding number associated with thek51 transverse mode
which is given by@7#

^v&5 lim
T→`

1

TE0

T

u̇ ~ t !dt, ~3!

whereu(t) is defined via tanu5Dy/Dx, Dx andDy are two
~arbitrary! components of the infinitesimal tangent vector a
sociated with thek51 transverse Lyapunov exponent. Forr
in the vicinity of r c , this frequency remains approximate
constant, which is the reason why the wave induced by no
for r ,r c appears similar in characteristics to that forr .r c
in the absence of noise.

To better assess the influence of noise on the wave
tern, we show in Figs. 2~a–c! the power spectra of the tem
poral oscillations of the wave at the location of a spec
oscillator, sayDx1(t), for D50.01, D51.0, andD550.0,
respectively. For small noise, the wave is weak in the se
that the peak atf p'2.0 is low, as in Fig. 2~a!. The wave
becomes increasingly strong as the noise level is raised
exemplified by Fig. 2~b!. If the noise amplitude is too large
the wave pattern is smeared out and the power spect
becomes broadband, as in Fig. 2~c!. These observations poin
to a resonant behavior: the approximately periodic wave

FIG. 1. Space-time plot ofDxi(t), i 51, . . . ,6 for therotating
wave induced by noise forr 55.8,r c . The noise amplitude isD
51.0. The period of the wave is approximately 0.5~the frequency is
f '2.0).
1-2
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comes more regular in temporal evolution as the noise
plitude is increased initially, but the regularity becomes d
teriorated when the noise is large and strengthened furth

The temporal regularity of the noise-induced wave can
quantified by the following measure@14#, defined with re-
spect to the dominant spectral peak:bs5H f p /D f , whereH
is the height of the spectral peak atf p , andD f is the half-
width of the peak. The higher the peak and/or the narro
the peak, the more temporally regular the wave pattern.

FIG. 2. For r 55.8,r c , power spectra ofDx1(t) from the
noise-induced wave:~a! D50.01, ~b! D51.0, and~c! D550.0.

FIG. 3. The measurebs versus the noise amplitude. The res
nant behavior~coherence resonance! is apparent.
03620
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variation of the spectral peak atf p with the noise amplitude
in Fig. 2~a–c! suggests a resonant behavior inbs : it is small
for weak noise, increases with noise and reaches a maxim
at some optimal noise level, and then decreases as the n
amplitude is increased further, as shown in Fig. 3 forr
55.8, where the measurebs achieves its maximum a
log10D* '0.6.

The characteristics of the wave versus the noise, as ex
plified by Figs. 1–3, appear to be general for the mo
system Eqs.~2!. For instance, a similar resonant behavior
observed forr *r c , where the nearly periodic wave is gen
erated through the Hopf bifurcation in the absence of no
In this case, the temporal periodicity of the wave can
enhanced by noise, although the wave itself is not induced
noise. We have also tested cases where the coupled Lo
chaotic oscillators are nonidentical with small amounts
random parameter mismatch~for example,b i ’s have been
varied from 26 to 30!. Although the notions of the synchro
nization manifold and transverse Lyapunov exponents
longer hold upon such a symmetry-breaking perturbation,
wave pattern and the resonant behavior under noise pe
Thus, coherence resonance with respect to the wave pa
appears to be a robust phenomenon in coupled chaotic o
lators.

We now present a physical theory for the observed re
nance phenomenon. In order for a resonance to occur,
necessary to have two independent and competing t
scales. At least one time scale should depend on noise. R
nance occurs for a proper noise level when the two ti
scales match. In our problem of wave, one apparent sca
the average wave periodicity, which is a fundamental ti
scale of the coupled chaotic system determined by one of
generalized winding numbers. This time scale is thus de
ministic and it hardly changes with noise. Letf H be the
frequency corresponding to this deterministic time scale. T

FIG. 4. Schematic illustration of the mechanism of coheren
resonance of wave in coupled chaotic oscillators: the dashed h
zontal line denotes the deterministic wave frequency that ha
changes with noise, and the solid curve indicates the general be
ior of the first-passage frequency of the underlying stochastic p
cess. Coherence resonance occurs because there can be a
between the two independent time scales at some optimal n
level D* .
1-3
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second time scale is determined by the stochastic dynam
In particular, when there is noise, if the system has an inv
ant subspace, such as the synchronization manifold,
noise can cause a trajectory initiated in the invariant s
space to wander away from it. But if the system is bound
at a later time the trajectory will come back to the invaria
subspace. On an average, this process defines a time s
which is the stochastic first-passage time with respect to
invariant subspace. This time changes with the noise am
tude. The existence and behavior of this stochastic time s
can be understood more quantitatively by considering
following simple one-dimensional model with a steady sta
under the influence of noise:

dv
dt

5@2l1h~ t !#v1Dj~ t !, ~4!

where l determines the asymptotic stability of the stea
statev50, which mimics the largest transverse Lyapun
exponent of the invariant subspace,h(t) is a zero-mean cha
otic process that models the fluctuations of the finite-ti
Lyapunov exponent, andDj(t) is the external noise. The
probability distribution functionP(v,t) of the stochastic pro-
cessV(t) obeys the Fokker-Planck equation

]P

]t
52

]

]v F S 2lv1
1

2
hv D PG1

1

2

]2

]v2
@~hv21D !P#,

~5!

where h is the amplitude ofh(t). To compute the first-
passage time, imagine there is an absorbing boundaryv
5a.0. The boundedness of the system implies that th
must be a reflecting boundary atv5b,0. With these bound-
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I
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ary conditions, the Fokker-Planck equation can be solved
yield the following expression for the first-passage time@15#:

^T&52E
v0

a

dy~hy21D !l/h21/2E
b

y

~hz21D !21/22l/hdz,

~6!

wherev0 is the initial value ofv(t). Figure 4 shows a typica
behavior of the first-passage frequencyf FP(D)[1/̂ T& ver-
sus the noise amplitudeD, which is obtained utilizing an
arbitrary value ofb and an arbitrary initial conditionv0. The
general feature is that the frequency increases with no
Since the deterministic frequencyf H is approximately con-
stant, generically thef FP(D) curve can intersectf H at some
optimal noise amplitudeD* , leading to the time-scale matc
required for coherence resonance, as schematically show
Fig. 4. The optimal noise levelD* depends on the details o
the system and cannot be predicted by our heuristic theo

In summary, we have investigated the effect of noise
wave pattern associated with the Hopf bifurcation from sy
chronous chaos in coupled chaotic oscillators. A reson
behavior is identified and a heuristic theory is given. T
general conclusion is that noise can induce and, more im
tantly, has the ability to enhance the temporal regularity
the wave pattern in such high-dimensional systems. Reg
wave patterns are ubiquitous in nature, and our work m
provide a hint to the observability and robustness of su
waves, despite the fact that the underlying local dynam
may potentially be chaotic.
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