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Coherence resonance near the Hopf bifurcation in coupled chaotic oscillators
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We uncover a coherence resonance near the Hopf bifurcationdnawsin coupled chaotic oscillators. At
the bifurcation, a nearly periodic rotating wave becomes stable as the state of synchronous chaos is destabi-
lized. We find that noise can induce the bifurcation and, more strikingly, it can enhance the temporal regularity
of the wave pattern in the coupled system. This resonant phenomenon is expected to be robust and physically
observable.
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Coherence resonance has been a topic of recent interepling strengthy is the parameter characterizing the degree of
The phenomenon generally refers to resonant enhancemesgymmetry in the coupling, and the boundary condition is
of the temporal regularity of a dynamical system by noiseassumed to be periodic. An elementary Fourier analysis
which was first noticed by Sigeti and Horsthenidd. The  [8,10,11 indicates that Eq(1) possesse® spatial eigen-
work by Pikovsky and Kurth§2] laid a solid foundation for modes with the following wave vectors:mk/N, wherek
the phenomenon and since then, a plethora of theoreticat0,1,... N—1, is the wave numbek=0 governs the dy-
works [3,4] and experimental works has appeaf&l The  namics in the synchronization manifold defined y=x,
common setting for investigating the coherence resonance is . .. =x,,, andk#0 correspond to the motions in the sub-
excitable systems$2], where the time trace of dynamical spaces transverse to the synchronization manifold, which are
variables of physical interest consists of an infinite sequencgodes in the space with the wavelendifk. Assume that
of bursts occurring at random time intervals. At both smallfor r=0, the parametet is large enough so that the syn-
and large noise levels, the time series appear random in théhronous chaos is stable. Wheis increased through a criti-
sense that their Fourier spectra are broadband and apparenglyl value so that the synchronization state becomes unstable,
exhibit no pronounced peaks. At some intermediate Nois@yo conjugate spatial modes dominate the dynamics, trigger-
levels, the bursting time series appears more regular, as chafyg a rotating wave in the systefi,8]. The frequencies of
acterized by the appearence of a finite set of peaks at certajfie wave can be related to the generalized winding numbers
frequencies. If one defines a measure, say the ratio of thgssociated with the corresponding transverse modes, which
height of the most pronounced peak in the Fourier spectrurappear to be well defined for many known chaotic oscillators
to its width, to quantify the temporal regularity of the burst-[7]. Forrs>r., the rotating wave is periodic and has been
ing time series, one finds that the measure tends to increag@®served experimentally in coupled electronic circliig
as the noise is Strengthened and reach a maximum value Shbsequent WOFkB7,8] indicate that fon‘zrc, an approxi_
some optimal noise level. More recently, this resonant phemately periodic wave can still be observed with respect to
nomenon has been studied for coupled chaotic sysféins  the state of synchronous chaos. The onset of the periodic

In this paper, we report coherence resonance near thgave is the result of a Hopf bifurcation directly from syn-
Hopf bifurcation from chaosin coupled chaotic systems chronous chaos, where a pair of complex conjugate eigenval-
which, to the best of our knowledge, has not been noticeqies associated with the particular transverse spatial mode
before. In particular, it is known that when identical or nearly crosses the unit circle in opposite directids8,13. This
identical chaotic oscillators are coupled together in an asymjfyrcation from chaosis an interesting high-dimensional
metric fashion, a rotating wave of relatively high frequencyphenomenon that is different from the commonly known
can appeaf6], as the consequence of a Hopf bifurcation phenomenon of Hopf bifurcation where a periodic motion is
from the state of synchronous chdds-9]. To be concrete, porn from a steady state.

consider the following system ofN, nearest-neighbor  The general question to be addressed in this paper is: what

coupled, identical chaotic oscillators: is the effect of noise on the Hopf bifurcation from chaos?
Our findings are the following.1l) In parameter regimes be-
dx; low the Hopf bifurcation where synchronous chaos is stable,
gt [+ (e+NC (Xipa=Xi) +(e=1C- (Xi-1=X), noise can destabilize the synchronous chaotic motion, induce

(1) the bifurcation and, consequentbfabilizea rotating wave in
the coupled chaotic system. The stable wave pattern is ob-
wherei=1, ... N is the index specifying the location of the servable even for weak noise. More strikingly, the temporal
ith oscillator in the spacé(x) is the vector field of an indi- regularity of the wave can be greatly enhanced as the noise
vidual oscillator that generates a chaotic attractris an  level is increased, in a resonant manri2y.In the parameter
NXN coupling matrix,e is the nominal value of the cou- regime slightly above the Hopf bifurcation point where a
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chaotic rotating wave is already stable, noise can again en-
hance the regularity of the wave. These phenomena are ro-
bust in the sense that they persist under small perturbations,
such as parameter mismatches among coupled oscillators.
We expect our findings to be important in addressing role of
noise in high-dimensional dynamical systefi8].

As a numerical example, we consider the following ring
of coupled Lorenz oscillators7—9]:

dx;
E—10(Yi_xi)+D§i(t)1

dy;
—= = BiXi—Yi—XZi+ (e +1)(Xi11—X)
dt

+(e=1)(Xi—1—X),

dz .
gr Witz (i=1.2,...N), (2
where B;=28, D is the noise amplitude,(t)'s (i
=1,... N) are independent Gaussian random variables of
zero mean and unit variance, and periodic boundary condi-
tion is utilized. Each Lorenz oscillator for the set of standard
parameter values as in Eq®), when uncoupled, exhibits a y 2 3
chaotic attractor. For illustrative purpose, we k=6 and N =
e=15.1, and choose to be the bifurcation parameter, as in
Refs.[7,8]. For small values of, the state of synchronous FIG. 1. Space-time plot oAx;(t), i=1,..., 6 for therotating
chaos is transversely stable. The Hopf bifurcation from chaowave induced by noise far=5.8<r.. The noise amplitude i®
occurs atr .~5.87, at which the largest transverse Lyapunov= 1.0. The period of the wave is approximately Q%e frequency is
exponent crosses zero and becomes positive far,. For  f~2.0).
the coupled system Eq$2), the wave number associated o . ) )
with the largest transverse Lyapunov exponfhg] is k served in Flg._l is thus md_uced by noise. The frequency of
=1. Thus, forr=r, the synchronous chaotic state is trans-the wave, which isf~2.0, is nothing but the generalized
versely unstable and a rotating wave of wavelenyth 6 wmdmg ngmber associated with the=1 transverse mode,
(k=1) emerges$7]. which is given by[7]

The remarkable phenomenon is that noise can induce a
similar rotating wave even far<r. where the state of syn- — i —fTé Hdt 3)
chronous chaos would be transversely stable without noise. (@) TTLT 0 (hdt,
For instance, for=5.8<r_, a rotating wave is observed
even when the noise amplitude is small. To visualize thevhere6(t) is defined via ta®=Ay/Ax, Ax andAy are two
wave pattern, it is necessary to focus on quantities that dearbitrary) components of the infinitesimal tangent vector as-
not involve the chaotic dynamics in the synchronizationsociated with the&k=1 transverse Lyapunov exponent. For
manifold. The following set of derivation vectors is thus in the vicinity of r, this frequency remains approximately
convenient [9]: AXi(t):Xi(t)_(1/N)EJN:1Xj(t), for i constant, which is the reason why the wave induced by noise
=1,... N, on which our subsequent analysis will be basedfor r <r_ appears similar in characteristics to that fo¥r,
Figure 1 shows, foD=1.0, the evolution of the wave pat- in the absence of noise.
tern in this variable-difference space, where the abscissa de- To better assess the influence of noise on the wave pat-
notes the spatial location of the oscillator, the ordinate is theern, we show in Figs.(2—09 the power spectra of the tem-
time axis, and the gray scale is determined by the values qdoral oscillations of the wave at the location of a specific
AX;(t). Apparently, there is an approximate periodicity in oscillator, sayAx,(t), for D=0.01, D=1.0, andD=50.0,
time for all the oscillators, and the phase differences amongespectively. For small noise, the wave is weak in the sense
the neighboring oscillators are roughly/N: AXx;,4(t) that the peak af,~2.0 is low, as in Fig. &). The wave
~Ax(t—[1/N]T) (i=1,... N), whereT~0.5 is approxi- becomes increasingly strong as the noise level is raised, as
mately the period ofAx(t). Simulations suggest that the exemplified by Fig. g). If the noise amplitude is too large,
wave pattern in Fig. 1 is not a transient phenomenon. Noticthe wave pattern is smeared out and the power spectrum
that if the state of synchronous chaos is stable, then there isecomes broadband, as in Figc2 These observations point
no wave becausax;(t)=0 for all i. The wave pattern ob- to a resonant behavior: the approximately periodic wave be-
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FIG. 4. Schematic illustration of the mechanism of coherence
resonance of wave in coupled chaotic oscillators: the dashed hori-
zontal line denotes the deterministic wave frequency that hardly
changes with noise, and the solid curve indicates the general behav-
ior of the first-passage frequency of the underlying stochastic pro-
cess. Coherence resonance occurs because there can be a match
between the two independent time scales at some optimal noise
level D*.

variation of the spectral peak &t with the noise amplitude

in Fig. 2(a—9 suggests a resonant behavioidg: it is small

for weak noise, increases with noise and reaches a maximum

at some optimal noise level, and then decreases as the noise
FIG. 2. Forr=5.8<r., power spectra of\x,(t) from the amplitude is increased further, as shov_vn in Fi.g. 3 for

noise-induced wave) D =0.01,(b) D=1.0, and(c) D =50.0. |=5.8bl/vhgrg the measur@s achieves its maximum at

0g;oL" ~0.b.

comes more regular in temporal evolution as the noise am- The characteristics of the wave versus the noise, as exem-

plitude is increased initially, but the regularity becomes de-plified by Figs. 1-3, appear to be general for the model

teriorated when the noise is large and strengthened furthersystem Eqs(2). For instance, a similar resonant behavior is
The temporal regularity of the noise-induced wave can b@bserved for =r., where the nearly periodic wave is gen-

quantified by the following measuifd4], defined with re- erated through the Hopf bifurcation in the absence of noise.

spect to the dominant spectral pegig=Hf,/Af, whereH In this case, the temporal periodicity of the wave can be

is the height of the spectral peak fat, andAf is the half- enhanced by noise, although the wave itself is not induced by

width of the peak. The higher the peak and/or the narrowepoise. We have also tested cases where the coupled Lorenz

the peak, the more temporally regular the wave pattern. Thehaotic oscillators are nonidentical with small amounts of
random parameter mismatdfor example,B;’s have been

60 - . varied from 26 to 3D Although the notions of the synchro-
nization manifold and transverse Lyapunov exponents no

5071 longer hold upon such a symmetry-breaking perturbation, the
wave pattern and the resonant behavior under noise persist.
407 Thus, coherence resonance with respect to the wave pattern

® a9l appears to be a robust phenomenon in coupled chaotic oscil-

el lators.

o0k We now present a physical theory for the observed reso-
nance phenomenon. In order for a resonance to occur, it is

10} necessary to have two independent and competing time
scales. At least one time scale should depend on noise. Reso-

0 nance occurs for a proper noise level when the two time

-4 scales match. In our problem of wave, one apparent scale is

the average wave periodicity, which is a fundamental time
Iog 10 D scale of the coupled chaotic system determined by one of the
generalized winding numbers. This time scale is thus deter-
FIG. 3. The measurg, versus the noise amplitude. The reso- ministic and it hardly changes with noise. L&t be the
nant behaviofcoherence resonancis apparent. frequency corresponding to this deterministic time scale. The
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second time scale is determined by the stochastic dynamicary conditions, the Fokker-Planck equation can be solved to
In particular, when there is noise, if the system has an invariyield the following expression for the first-passage t{h§:

ant subspace, such as the synchronization manifold, then

noise can cause a trajectory initiated in the invariant sub-
space to wander away from it. But if the system is bounded,
at a later time the trajectory will come back to the invariant
subspace. On an average, this process defines a time scal
which is the stochastic first-passage time with respect to th . ,
invariant subspace. This timpe cha?\ges with the ngse amplehavior of the first-passage frequerfgy(D)=1/T) ver-
tude. The existence and behavior of this stochastic time scafe the noise amplitudd, Wh'Ch 1S Q_btamed _gtlhzmg an
can be understood more quantitatively by considering thgrbltrary value ob and an arbitrary initial conditiony. The

following simple one-dimensional model with a steady stateg.eneral feature is_ _thgt the frequency increa}ses with noise.
under the influence of noise: Since the deterministic frequendy, is approximately con-

stant, generically thé-p(D) curve can intersedt, at some
optimal noise amplitud®*, leading to the time-scale match
required for coherence resonance, as schematically shown in
Fig. 4. The optimal noise levé* depends on the details of
the system and cannot be predicted by our heuristic theory.
where A determines the asymptotic stability of the steady In summary, we have investigated the effect of noise on
statev =0, which mimics the largest transverse Lyapunovwave pattern associated with the Hopf bifurcation from syn-
exponent of the invariant subspat€t) is a zero-mean cha- chronous chaos in coupled chaotic oscillators. A resonant
otic process that models the fluctuations of the finite-timébehavior is identified and a heuristic theory is given. The
Lyapunov exponent, an®&(t) is the external noise. The general conclusion is that noise can induce and, more impor-

a y
<T>:2f dy( 77y2+ D))\/n—llzf (7722+ D)—l/Z—)\/ndZ,
l}o b
(6)

‘?ierevo is the initial value ofv (t). Figure 4 shows a typical

dv
gt [ Ah(1)]o+DED), 4)

probability distribution functiorP(v,t) of the stochastic pro-
cessV(t) obeys the Fokker-Planck equation

+l ” 2+D)P
5;[(770 )P1,

1%

Jv

(9P_

—= P
at

1
[(‘7\0"‘57711
5

where 7 is the amplitude ofh(t). To compute the first-
passage time, imagine there is an absorbing boundawy at

tantly, has the ability to enhance the temporal regularity of
the wave pattern in such high-dimensional systems. Regular
wave patterns are ubiquitous in nature, and our work may
provide a hint to the observability and robustness of such
waves, despite the fact that the underlying local dynamics
may potentially be chaotic.
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