
Figure 1: Measurement of sinusoidal profile using CSI 
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When applied to the measurement of smooth surfaces, coherence scanning interferometry can be described 
by a three-dimensional linear filtering operation that is characterized either by the point-spread function 
in the space domain or equivalently by the transfer function in the spatial frequency domain. For an ideal, 
aberration-free instrument, these characteristics are defined uniquely by the numerical aperture of the 
objective lens and the bandwidth of the illumination source. In practice, however, physical imperfections 
such as lens aberrations, reference focus and source alignment mean that the instrument performance is 
not ideal. Currently these imperfections often go unnoticed as typically the instrument performance is only 
verified using rectilinear artefacts, such as step-heights and lateral grids. If an object of varying slope is 
measured, however, significant errors are often observed as the surface gradient increases. In this paper, a 
new method of calibration and adjustment using a silica micro-sphere as a calibration artefact is 
introduced. The silica micro-sphere is used to compute the point-spread and transfer function 
characteristics of the instrument, and the effect of these characteristics on instrument performance is 
discussed. Finally, a straightforward method to correct for phase and amplitude imperfections in the 
transfer function is described using a modified inverse filter.  
OCIS Codes: 070.0070, 120.0120, 120.4800, 120.6650, 180.1655, 180.6900 
 

 

1. Introduction 
With the lateral resolution of a high power microscope 
and the axial resolution of an interferometer, 
coherence scanning interferometry (CSI) is an 
increasingly popular method to measure surface 
topography [1,2]. Compared to traditional stylus based 
instrumentation, CSI is non-contacting, easy to use 
and provides an efficient means to collect the large 
data sets that are required to estimate areal surface 
texture parameters [3]. CSI typically exploits 
broadband, incandescent or LED sources and an 
interference objective, of Mirau or Michelson type, to 
record the interference between light reflected from a 
reference surface and that scattered by the object as it 
is scanned though focus. Since the source illumination 
is limited in both temporal and spatial coherence, the 
interference fringes are observed over a finite scan 
range and it is relatively straightforward to locate the 

bright zero order fringe that identifies when path 
length is balanced in the interferogram. This makes 
CSI particularly suitable for the measurement of 
discontinuous surfaces such as those manufactured in 
the microelectronics industry. 

Despite these significant advantages, it has been 
noted by several authors that surface parameters 
reported by CSI can vary considerably from those 
obtained by contacting metrology; particularly when 
there are appreciable changes in surface gradient [4, 
5]. An example of this type of error, that was observed 
in the measurement of a sinusoidal grating of 8 μm 
pitch and 466 nm peak-to-peak amplitude, is shown in 
figure 1. It is clear that the measured output (solid 
line) approximately follows the ideal profile (dotted 
line) in regions of low gradient (i.e. the peaks and 
troughs). 
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As the gradient increases, fringe order (or 2π) errors 
become more prevalent resulting in spurious peaks in 
the measured peak-to-peak amplitude. Interestingly, 
detailed inspection shows that the measurement 
systematically underestimates the curvature of the 
troughs and overestimates that of the peaks in the 
sinusoidal profile. Gradient-related errors such as 
these have brought into question the use of CSI as a 
traceable measurement tool and for this reason 
contacting metrology is often used for primary 
standard instruments (see for example, [6]).  

It has been noted elsewhere that gradient-related 
errors are closely correlated to the frequency response 
of the system [7]. The frequency response or transfer 
function has been defined in several ways, however, 
and it is useful to discuss these briefly here. The 
instrument transfer function (ITF) characterizes the 
2D response of the whole system to the function, 
𝑠𝑠�𝑟𝑟𝑥𝑥, 𝑟𝑟𝑦𝑦�, that describes the surface topography [8]. It is 
important to note that the ITF is only relevant to small 
departures from a planar surface (s<λ/8) since the 
system as a whole is highly non-linear otherwise [9]. 
The ITF can be used to determine the instrument 
spatial frequency cut-off and is closely associated with 
errors observed at step discontinuities [7]; but it does 
not explain why gradient-related errors occur. The 
optical transfer function (OTF) is a characteristic that 
describes the frequency response of the imaging 
system. The OTF is also defined in 2D and relates the 
intensity of the field in the object plane to that 
observed at the image plane. Equivalently the OTF can 
be defined in terms of the complex amplitude of the 
fields in which case it is more often called the coherent 
transfer function (CTF) [10]. The 2D CTF explains why 
the system is restricted in terms of gradient as the 
spatial frequency content of the amplitude field 
exceeds the cut-off frequency; but it is not clear how 
the field in a given plane is related to the surface 
topography.  

In order to understand the errors associated with 
CSI and other optical instruments it is useful to 
determine their 3D transfer characteristics [11, 12]. In 
a recent work the process of scattering from the 
smooth interface between homogenous materials was 
considered, and it was shown that, with appropriate 
assumptions, CSI can be described by a 3D filtering 
operation [13]. In this work, the surface is 
characterized by an infinitely thin membrane called 
the “foil model” of the surface. The corresponding 
filtering operation is characterized in the frequency 
domain by the 3D transfer function which, for an ideal 
system, is determined uniquely by the numerical 
aperture (NA) of the objective lens and the bandwidth 
of the illumination source. The foil model clearly shows 
the link between the transfer function and gradient-
dependent measurement errors. Furthermore, it is 
straightforward to introduce the effect of aberration on 
the 3D transfer function [14].  

It is noted that although there is a clear relationship 
between measurement errors and surface gradient, 
errors often go unnoticed in practice since it is usual to 
calibrate CSI instrumentation using rectilinear 
artefacts such as step heights and lateral grids of 
known geometry [15,16]. While this type of artefact is 
appropriate to stepped surfaces such as etched micro-

electronic components, it is insufficient to estimate 
uncertainty in the measurement of sloped surfaces. 

In this paper, calculation of the 3D transfer 
characteristics from measurements of a spherical 
calibration artefact is discussed and, in certain cases, 
phase and amplitude errors can be corrected. This 
process forms the basis of a calibration and adjustment 
protocol for CSI instrumentation. 

The paper is organized as follows: In section 2, the 
linear theory of 3D imaging is briefly introduced and 
the 3D transfer function (TF) and point spread 
function (PSF) are defined with reference to the foil 
model of the object surface. The measurement of these 
characteristics using a spherical artefact is then 
explained in Section 3. Section 4 describes how a 
modified inverse filter can be designed to compensate 
the systematic errors present in the system and the 
application of this adjustment protocol is presented 
Section 5.  
 
2. Theory 
 
Mathematically, the output, 𝑂𝑂(𝐫𝐫), of a CSI instrument 
can be written as a 3D linear filtering operation that is 
characterized in the space domain by the convolution 
[13],  

𝑂𝑂(𝐫𝐫) =  ∫𝐻𝐻(𝐫𝐫 − 𝐫𝐫′)∆(𝐫𝐫′) 𝑑𝑑3𝑟𝑟′                 (1) 
 
where 𝐻𝐻(𝐫𝐫)  is the point-spread function (PSF). 
Equivalently, in the frequency domain (k-space) the 
filtering operation is characterized by the product,   
 

𝑂𝑂�(𝐤𝐤) = ∆�(𝐤𝐤)𝐻𝐻�(𝐤𝐤)                   (2) 

where tilde denotes Fourier transformation such that 
the transfer function (TF) is 𝐻𝐻�(𝐤𝐤) = ∫𝐻𝐻(𝐫𝐫)𝑒𝑒−2𝜋𝜋𝐤𝐤.𝐫𝐫 𝑑𝑑3𝑟𝑟 . 
In these expressions ∆(𝐫𝐫) and ∆�(𝐤𝐤) are functions that 
define the 3D object distribution in the frequency and 
space domains respectively. Provided the surface is 
smooth, such that at any point the radius of curvature 
is greater than the wavelength, the interface between 
of two homogeneous media can be represented as a 
thin foil-like object such that, 

Δ(𝐫𝐫) = 4𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋�𝑟𝑟𝑥𝑥, 𝑟𝑟𝑦𝑦�𝛿𝛿 �𝑟𝑟𝑧𝑧 − 𝑠𝑠�𝑟𝑟𝑥𝑥, 𝑟𝑟𝑦𝑦��                     (3) 

where, R is the reflection coefficient, 𝑊𝑊�𝑟𝑟𝑥𝑥, 𝑟𝑟𝑦𝑦�  is a 
window function that defines the illuminated area and 
𝑠𝑠�𝑟𝑟𝑥𝑥, 𝑟𝑟𝑦𝑦� is the 2D function that defines the height of 
the surface of interest. To illustrate the foil model, a 
micro-sphere and the foil model of a region from its 
upper surface is shown in figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: a) Micro-sphere and b) foil model 



For a perfect conductor the reflection coefficient is 
independent of incidence angle and equal to unity. In 
general, however, the reflection coefficient is complex, 
polarisation-dependent and varies slightly with 
incidence angle. Nevertheless, increased reflection of 
one polarisation state is approximately compensated 
by a decrease in the other and, over the range of NA of 
interest to CSI (NA < 0.7), to a good approximation the 
reflection coefficient can be replaced by its value at 
normal incidence,  𝑅𝑅 = (1 − n) (1 + n)⁄  such that, 

Δ(𝐫𝐫) ≈ 4𝜋𝜋𝜋𝜋 �1−n
1+n

�𝑊𝑊�𝑟𝑟𝑥𝑥, 𝑟𝑟𝑦𝑦�𝛿𝛿 �𝑟𝑟𝑧𝑧 − 𝑠𝑠�𝑟𝑟𝑥𝑥, 𝑟𝑟𝑦𝑦��.                (4) 

Equation 4. defines the foil model of the surface [13]. 
With this definition it can be shown that, for a CSI 
system using a source of spectral density, 𝑆𝑆(𝑘𝑘0) , 
(represented as a function of wavenumber, 𝑘𝑘0 = 1/𝜆𝜆), 
the 3D transfer function, 𝐻𝐻�(𝐤𝐤), is given by  

𝐻𝐻�(𝐤𝐤) =  � |𝐤𝐤|𝟐𝟐

2𝐤𝐤 .𝐨𝐨�
� ∫∫  𝐺𝐺�𝑁𝑁𝑁𝑁(𝐤𝐤𝐫𝐫,𝑘𝑘0)𝐺𝐺�𝑁𝑁𝑁𝑁(𝐤𝐤 −

𝐤𝐤𝐫𝐫,𝑘𝑘0)𝑑𝑑3𝑘𝑘𝑟𝑟  𝑆𝑆(𝑘𝑘0)𝑑𝑑𝑘𝑘0     (5) 

where  𝐺𝐺�𝑁𝑁𝑁𝑁(𝐤𝐤𝐫𝐫,𝑘𝑘0)  is the Green’s function of the 
imaging system (equivalent to the 3D CTF) expressed 
in the frequency domain  and is given by, 

𝐺𝐺�𝑁𝑁𝑁𝑁(𝐤𝐤,𝑘𝑘0 ) = 𝑗𝑗
4𝜋𝜋𝑘𝑘0

𝛿𝛿(|𝐤𝐤| − 𝑘𝑘0) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝐤𝐤.𝒐𝒐�
𝑘𝑘0
− �1 − 𝑁𝑁𝑁𝑁2  � 

                                                                           (6) 

where 𝐨𝐨� is a unit vector in the direction of the optical 
axis and 𝛿𝛿(𝑥𝑥)  and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥)  represent a Dirac delta 
function and a Heaviside step function respectively. 

Equations 2, 4, 5 and 6 define the output of an ideal 
CSI in terms of its NA and source spectrum. Figure 3 
illustrates the TF and PSF of an ideal instrument 
having NA = 0.55, a mean wavelength of 𝜆𝜆 = 600 nm 
and a Gaussian spectral density, 𝑆𝑆(𝑘𝑘0) , with a 
bandwidth of 120 nm (FWHM at 1/e2). 

According to equations 5 and 6, the lateral extent (y 
direction) of the TF (figure 3a) is determined by the 
system NA while the axial extent (z direction) is 
dictated by both the NA and the source bandwidth. 
The corresponding PSF shown in figure 3b) is 
essentially a packet of fringes and (according to the 
Fourier transform relationship) its dimensions are 
inversely proportional to those of the TF. In this case 
the lateral dimension is approximately 0.5 μm and its 
axial extent is approximately 1.5 μm (both FWHM at 
1/e2). It is noted that the dimensions of the PSF 
provide a direct measure of the 3D resolution of a CSI 
system that determines the surface position by way of 
the fringe envelope. If phase estimation is used, 
however, a comparable measure of resolution is the 
fringe spacing or mean effective wavelength [17], 
which is approximately 300 nm in this case.  

As a final point, it should be noted that there is a 
maximum surface gradient that can be measured 
using a CSI instrument. This is due to the 
convolutional form of equation 1, which means that the 
output of CSI at a given point can be viewed as the 
PSF integrated over the surface defined by an 
appropriately positioned foil. If the foil surface is 
normal to the optical axis it will pass through a single 
fringe and the absolute value of the surface integral 
will be a maximum. If, however, the surface is tilted 
the foil will pass through several fringes and the 

surface integral will be substantially reduced. 
Equivalently, considering the Fourier transform of a 
tilted surface in k-space, it is straightforward to show 
that the maximum surface gradient, 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚, is given by 

 
 𝜃𝜃𝑚𝑚𝑎𝑎𝑎𝑎 = 𝑠𝑠𝑠𝑠𝑠𝑠−1�𝑘𝑘𝑦𝑦 𝑘𝑘𝑧𝑧⁄ �

𝑚𝑚𝑚𝑚𝑚𝑚
                  (7) 

where �𝑘𝑘𝑦𝑦 𝑘𝑘𝑧𝑧⁄ �
𝑚𝑚𝑚𝑚𝑚𝑚

takes its maximum value for any 
non-zero valued point within the TF and, due to the 
Fourier transform relationship, is directly proportional 
to the ratio of the minimum fringe spacing to the 
lateral extent of the PSF.  

 

 

 

 

 

From the discussions above it is clear that the 3D 
PSF/TF characteristics are directly related to the 
performance of CSI instruments. In practice, however, 
the PSF/TF can depart significantly from the ideal 
characteristics due to the effect of aberrations. For 
example it is often possible to defocus the reference 
arm of a high power objective and this can significantly 
change the lateral resolution and maximum 
measurable surface gradient of the instrument. In a 
previous publication, the effect of axial (shift invariant) 
aberrations (defocus, spherical and axial chromatic 
aberration) on CSI have been modelled and errors 
similar to those reported in figure 1 have been 
observed [14]. It can be concluded from this work that 
in order to properly characterize performance it is 
essential to calibrate CSI instruments using artefacts 
with sloped surfaces. In the following section a method 
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Figure 3: Sections through a) TF (absolute value) and 
b) PSF (real part) 



to measure the TF/PSF characteristic using a spherical 
artefact is discussed.  

 
3. Measurement of PSF/TF characteristics 

By definition, the PSF is the response of the system to 
an ideal point-like object. Although a particle that is 
significantly smaller than a wavelength might be 
considered to be a suitable candidate for a calibration 
artefact, it would be difficult to implement in practice, 
would have poor scattering efficiency and moreover, 
invalidates the fundamental assumptions of the foil 
model. As mentioned previously, the foil model rests on 
the assumption that the object is smooth such that the 
radius of curvature exceeds the wavelength. In this 
case, if the form of the calibration artefact, ∆�𝑐𝑐𝑐𝑐𝑐𝑐(𝐤𝐤), is 
known, the instrument TF, 𝐻𝐻�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐤𝐤), is given by 

𝐻𝐻�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐤𝐤) =
𝑂𝑂�𝑐𝑐𝑐𝑐𝑐𝑐(𝐤𝐤)
∆�𝑐𝑐𝑐𝑐𝑐𝑐(𝐤𝐤)

 

(8) 

where 𝑂𝑂�𝑐𝑐𝑐𝑐𝑐𝑐(𝐤𝐤)  is the Fourier transform of the 
interferogram that is output by the instrument while 
measuring the calibration artefact. It is clear from this 
expression that the calibration artefact must be chosen 
such that ∆�𝑐𝑐𝑐𝑐𝑐𝑐(𝐤𝐤)  adequately covers the frequency 
domain, such that �∆�𝑐𝑐𝑐𝑐𝑐𝑐(𝐤𝐤)� > 0 for all �𝑂𝑂�𝑐𝑐𝑐𝑐𝑐𝑐(𝐤𝐤)� > 0. 

In practice, a spherical surface that fits within the 
instrument’s field of view is ideally suited to this task. 
To the authors’ knowledge, however, a spherical 
calibration artefact with suitable form deviation (sub-
nanometre) is not commercially available. In previous 
work a small mercury droplet deposited on glass was 
reported for this task since surface tension demands a 
spherical form to the required tolerance [18]. For 
routine calibration, a more stable transferable artefact 
is required and for this reason a calibration and 
adjustment protocol for CSI instrumentation based on 
measurements of silica micro-spheres was investigated.  

The spheres used in this work were NIST standard 
silica micro-spheres of diameter 53 μm ± 1 μm, 
purchased from Corpuscular Inc., Cold Spring, NY 
10516. Although neither the diameter nor the form of 
these particles is known to the required tolerance, the 
manufacturing process ensures that the shape is 
spherical. In principle, the sphericity can be 
determined using a statistical argument by measuring 
the form at different orientations using, for example, 
an un-calibrated CSI instrument [19]. For the purpose 
of illustrating the calibration process, however, in the 
following it is assumed that the calibration artefact is 
an exact silica sphere that is in direct contact with a 
planar silica substrate. Note that there is work at the 
National Physical Laboratory to develop a primary 
instrument to measure the form of micro-spheres with 
an uncertainty of approximately 1 nm. 

The calibration procedure was as follows: 

i) The scales of the CSI instrument were 
calibrated using a 1.844 μm ± 0.011 μm step 
height and 9.996 μm ± 0.019 μm pitch lateral 
grid (from VLSI) to determine the xyz 
amplification coefficients.  

ii) With the micro-sphere centred approximately 
within the field of view, an interferogram was 
recorded. 

iii) The interferogram was processed to remove 
electronic noise by a) introducing a Hanning 
window, b) calculating the amplitude 
spectrum and c) setting all frequency 
components outside of the pass-band defined 
by the theoretical TF (equation 5) to zero. A yz 
section through the inteferrogram and its 
spectrum before filtering are shown in figure 
4a) and 4b), while the images of the band-pass 
filter and the fringe after filtering are shown 
in figure 5a) and 5b) respectively.  

           
 

      

 

 

iv) The diameter of a silica micro-sphere was 
determined using the CSI instrument by 
measuring the distance between the top of the 
sphere and the plane of best fit to the 
substrate surface. By this method the mean 
diameter of the micro-sphere used for this 
work was found to be 53.626 μm ± 0.005 μm. It 
is noted that this measurement rests on the 
assumption that the sphere is in direct contact 
with the substrate and the difference between 
the radius of curvature at the top surface and 
the substrate does not significantly affect the 
measurement.   

v) Using the diameter obtained from step iv), the 
foil model of the surface was generated. It is 
noted here that the 1D delta function that 
defines the foil model of the surface (equation 
4) has infinite bandwidth and to avoid 
aliasing in the numerical analysis a 1D 
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Figure 4: Sections through a) interferogram and b) its 
spectrum (real part) 



Gaussian function was used to define the 
profile of the surface in the z-direction. The 
position of the modified foil surface was 
approximately aligned with the central fringe 
in the interferogram. The modified foil surface 
is shown in figure 6.  

 

           

 

             

 

vi) The transfer function was then calculated by 
dividing the Fourier transform of the 
interferogram by that of the modified foil, as 
defined by equation 8. The result is shown in 
figure 7.  

vii) Finally, the PSF was calculated by inverse 
Fourier transformation of the TF shown in 
figure 7 and is illustrated in figure 8. 

Comparison of figure 7 with the ideal TF shown in 
figure 3a) reveals that the measured TF does not 
extend to the same extent laterally and consequently 
both the lateral resolution and maximum gradient that 
can be measured by the system, is less than ideal. 
Comparing the PSF shown in figure 7 with that in 
figure 3b) it can be seen that the lateral extent of the 
instrument PSF is increased resulting in lower 
resolution. The increased axial extent makes 
identification of the zero order fringe more difficult and 
increases the likelihood of fringe order errors.  

Although the extent of the TF can be used to provide 
an estimate of resolution and measurable gradient 
limitations, its phase has an even greater importance 
if it is used to determine the position of the surface. 
According to equation 5, the TF of an ideal system is 
real valued. Figure 7b) shows, however, that although 
the real value dominates, the imaginary value is non-
zero and consequently there is a small but significant 
phase variation across the measured TF. It is possible, 
however, to use inverse filtering techniques to correct 
phase errors and boost the amplitude response of CSI 
instrumentation as described in the following section.  
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Figure 5: Sections through the a) filter and b) fringe 

pattern after filtering (real part) 

Figure 6: Sections through the foil model of the surface 

(a) 

(b) 

Figure 7: Sections through the measured TF a) real 
part and b) imaginary part 



 

 

4. Correction of PSF/TF using inverse filtering 

An inverse filter attempts to correct for phase and 
amplitude errors in a system response and is 
commonly used in digital image processing for image 
de-blurring [20]. If the measured transfer function is 
𝐻𝐻�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐤𝐤) = 𝐴𝐴(𝐤𝐤)𝑒𝑒𝑒𝑒𝑒𝑒 (𝑗𝑗𝜑𝜑(𝐤𝐤)), then an inverse filter has 
transfer function, 𝐻𝐻�𝑖𝑖𝑖𝑖𝑖𝑖(𝐤𝐤), that is given by, 

𝐻𝐻�𝑖𝑖𝑖𝑖𝑖𝑖(𝐤𝐤) = 1
𝐴𝐴(𝐤𝐤) 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑗𝑗𝜑𝜑(𝐤𝐤))   (9) 

An inverse filter compensates for the phase variation 
and boosts the amplitude with a gain, 1/𝐴𝐴(𝐤𝐤), in an 
attempt to flatten the frequency response. For CSI, 
this has the effect of reducing the lateral dimensions of 
the PSF and consequently increasing the resolution. In 
practice, however, the gain should not be allowed to 
take any value as a significant boost results in a 
corresponding decrease in signal-to-noise ratio (SNR). 
For this reason, a modified inverse filter was designed 
to limit the gain to ten times before dropping to unity 
gain. The transfer function of the modified filter, 
𝐻𝐻�𝑚𝑚𝑚𝑚𝑚𝑚(𝐤𝐤), was defined such that, 

 
𝐻𝐻�𝑚𝑚𝑚𝑚𝑚𝑚(𝐤𝐤) = 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑗𝑗𝜑𝜑(𝐤𝐤))

𝑊𝑊(𝐤𝐤)                       (10) 

where 𝑊𝑊(𝐤𝐤) is a weighting function given by, 
𝑊𝑊(𝐤𝐤) = (𝐴𝐴𝑛𝑛(𝐤𝐤) + 0.027)(1 + exp (−𝐴𝐴𝑛𝑛(𝐤𝐤) × 58 + 3.9)/1.5 
and 𝐴𝐴𝑛𝑛(𝐤𝐤) = 𝐴𝐴(𝐤𝐤)/ max[𝐴𝐴(𝐤𝐤)]  is the normalised 
amplitude. The modified inverse filter is a combination 
of sigmoid curve and a general inverse filter. The 
coefficients of the weighting function are calculated to 
satisfy the specification described before. A plot of the 
gain of the modified inverse filter as a function of 
normalized amplitude is shown in figure 9. 

The modified inverse filter is applied in the 
frequency domain and is multiplied by the Fourier 
transform of the interferogram.  Figure 10 shows a) a 
yz section through a modified spectrum and b) the 
resulting modified interferogram of a silica micro-
sphere.  

Comparing figure 5b) with figure 10b) it can be seen 
that the amplitude of the fringes is greater at larger 
tilt angles and the envelope is also reduced. This is 
mainly due to the gain of the modified inverse filter 
boosting the frequencies at the edge of the pass band 
and, to a limited extent, by the phase correcting 

properties of the filter. The following section discusses 
these effects further.  

 

     

           

 
 
 
 

5. Application of the modified inverse filter 

Once the transfer characteristics are measured the 
inverse filter can be designed and it is straightforward 
to apply the filter to subsequent interferograms 
recorded by the CSI instrument. This, in essence, is a 
process of calibration and adjustment. To illustrate the 
effect of this process, the modified inverse filter was 
applied to the same micro-sphere that was used to 
measure the transfer characteristics. The surface 
height was estimated using the frequency domain 
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analysis (FDA) method [21] and this was subtracted 
from the ideal form of the sphere to give the error 
surface. 

 

 
 
 
 
 
 

In figure 11 the surface obtained from the 
interferogram, filtered using the modified inverse filter 
is compared with that obtained from the instrument. It 
can be seen that before filtering, a height variation in 
the range of -10 nm to 25 nm and fringe order or 2π 
errors at the top and bottom (outside of the scale) is 
observed in the error surface. Using the modified 
inverse filter no fringe order errors are apparent and 
the form error is reduced to approximately 2 nm (rms). 

It is perhaps not surprising that the modified inverse 
filter was able to correct errors in the measurement of 
the sphere which was used to construct it. A more 
challenging task is to correct interferograms of known 
objects placed at different places within the field of 
view thereby establishing that the calibration and 
adjustment process is shift invariant. To examine this 
property, interferograms of the test micro-sphere were 
obtained at the approximate locations shown in figure 
12.  

The previous result shown in figure 11 is that 
obtained at the centre of the field – position A. In the 
same manner Figures 13 and 14 show comparison of 
the error surfaces found with and without the use of 
the modified inverse filter for spheres located at the 
edge of the field. It can be seen that a similar reduction 
in the measurement error is possible. 
 

 

6. Conclusions 

It has recently been shown that the interferogram that 
is output by a CSI instrument can be described by a 
linear filtering operation that is characterized by the 
PSF in the space domain or equivalently the TF in the 
frequency domain. The linear filter is applied to a foil-
like membrane placed at the sample interface which is 
called here the foil model of the surface. The 3D 
PSF/TF characteristics are directly related to the 
resolution of the instrument and also define the 
maximum surface gradient that the instrument can 
measure. 

In this paper a method to measure and correct the 
3D TF/PSF characteristics of a CSI instrument was 
presented. The proposed method goes beyond the 
standard rectilinear calibration methods that use step 
height and lateral grid artifacts to determine the 
lateral and axial magnifications of the instrument 
respectively. In this case a calibration artifact with a 
continuously varying surface gradient – a silica micro-
sphere - is used to determine the PSF/TF 
characteristics. A modified inverse filter has been 
demonstrated as a means to correct non-ideal PSF/TF 
characteristics. This filter is straightforward to apply 
and significantly improves the fidelity of the fringes 
observed in the interferogram. Moreover, phase 
changes which are directly related to errors in surface 
height measurement are compensated by this 
calibration and adjustment procedure. Although 
further work is necessary to determine the statistical 
uncertainty of the resulting measurements, these 
preliminary findings suggest an uncertainty of 1 nm to 
2 nm is possible in surface measurements made using 
typical CSI instrumentation if the form of the 
calibration artefact is known. 
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Figure 13: Error surfaces extracted from instrument measurements at positions CBDE (clockwise from top left) 



 

 

 

 

x (µm)

y 
( µ

m
)

 

 

10 20 30 40 50 60

10

20

30

40

50

60

-10

-5

0

5

10

15

20

25

x (µm)

y 
( µ

m
)

 

 

80 90 100 110 120 130 140

10

20

30

40

50

60

-10

-5

0

5

10

15

20

25

x (µm)

y 
( µ

m
)

 

 

10 20 30 40 50 60

40

50

60

70

80

90

100

-10

-5

0

5

10

15

20

25

x (µm)

y 
( µ

m
)

 

 

80 90 100 110 120 130 140

40

50

60

70

80

90

100

-10

-5

0

5

10

15

20

25
nm nm 

Figure 14: Error surfaces using modified inverse filter at positions CBDE (clockwise from top left) 


