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Coherence transformations in 
single qubit systems
Hai-Long Shi1,2, Xiao-Hui Wang2,3, Si-Yuan Liu1,3,4, Wen-Li Yang1,3, Zhan-Ying Yang2,3 & Heng 

Fan4,1,3

We investigate the single qubit transformations under several typical coherence-free operations, such 
as, incoherent operation (IO), strictly incoherent operation (SIO), physically incoherent operation 
(PIO), and coherence-preserving operation (CPO). Quantitative connection has been built between IO 
and SIO in single qubit systems. Moreover, these coherence-free operations have a clear hierarchical 
relationship in single qubit systems: CPO ⊂ PIO ⊂ SIO=IO. A new and explicit proof for the necessary 
and sufficient condition of single qubit transformation via IO or SIO has been provided, which indicates 
that SIO with only two Kraus operators are enough to realize this transformation. The transformation 
regions of single qubits via CPO and PIO are also given. Our method provides a geometric illustration 
to analyze single qubit coherence transformations by introducing the Bloch sphere depiction of the 
transformation regions, and tells us how to construct the corresponding coherence-free operations.

Quantum resource theory has become a powerful tool in quantitatively describing many intriguing and novel 
characteristics of quantum systems1. A general quantum resource theory includes two basic ingredients: “free” 
states and “free” quantum operations. A major concern of any resource theory is how to quantify and manipulate 
these resource states, i.e., non-free states. Much attention has been paid to this direction2–15. For instance, in 
the resource theory of entanglement, the free operations are local quantum operations with classical commu-
nication (LOCC), and possible entanglement manipulations between bipartite entangled states via LOCC are 
determined by majorization11. Recently, quantum coherence, as another embodiment of quantum states super-
position principle, has received widespread attention and scrutiny since it can be viewed as a vital quantum 
resource in various quantum information processes, such as, quantum algorithms16–20, quantum metrology21,22, 
and quantum channel discrimination23,24. Besides, many coherence-free operations have been proposed, includ-
ing incoherent operation (IO)6, strictly incoherent operation (SIO)25,26, physically incoherent operation (PIO)13, 
coherence-preserving operation (CPO)27, and “maximal” incoherent operation (MIO)28. A natural question is 
how to utilize this precious quantum resource via coherence-free operations for the realization of quantum state 
transformations.

In ref.12, it has been shown that a pure state ψ| 〉 can be transformed to another pure state φ| 〉 using IO if and 
only if the square moduli of superposed coe�cients ( , , )d

t
1

2 2ψ ψ| | … | |  are majorized by ( , , )d
t

1
2 2φ φ| | … | | . For the 

case of mixed state, Chitambar and Gour13–15 considered the transformations of single qubit mixed states and �rst 
obtained a necessary and su�cient condition for single qubit transformations by either SIO, DIO, IO, or MIO. �e 
proof of this condition also tells us how to construct the corresponding SIO for possible single qubit transforma-
tions. However, this construction for realization of the single qubit transformation from ρ to ρ′ needs an interme-
diate state maxρ′ , i.e., ρ ρ ρ→ ′ → ′max

15. �us four Kraus operators are needed to construct a SIO for a direct 
transformation: ρ ρ→ ′. For this reason, we would like to provide a direct approach to complete transformation 
from ρ to ρ′, where less Kraus operators are needed. In addition, we will use the Bloch sphere depiction of single 
qubit29 to better illustrate and understand the coherence transformation of single qubit.

In this paper, we discuss how to implement single qubit transformations via four kinds of incoherent opera-
tions, namely, IO, SIO, PIO, and CPO. Firstly, we use the Bloch sphere depiction to parameterize single qubit and 
discover that the transformation ability of single qubit via four kinds of incoherent operations has rotational 
symmetry around z-axis in the cylindrical coordinates, which simpli�es the following discussion. Secondly, in 
single qubit systems, the relation between IO and SIO is IO = SIO, which has been proposed by Chitambar and 
Gour14,15. Further, we build the quantitative connection between them in single qubit systems. �en we o�er a 
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new method to construct the map for realization of single qubit transformation via IO, where the intermediate 
state ρ′max is no longer necessary and only two special Kraus operators are needed. One of them is represented by 
a diagonal matrix and the other is represented by an anti-diagonal matrix. Additionally, by exploring these two 
special Kraus operators, we provide a di�erent and explicit proof for the necessary and su�cient condition of 
single qubit transformation via IO. �e transformation regions of CPO, IO, PIO are also obtained in the Bloch 
sphere depiction. Finally, we discuss two examples: maximally coherent state transformations via IO and pure 
state transformations via IO. Our results o�er new insight into the power of incoherent operations in quantum 
state manipulation by introducing the Bloch sphere depiction of the transformation region.

Results
Definition. To begin with, let us �rst give a brief review of several typical incoherent operations and coher-
ence measures. In quantifying coherence6, a particular base | 〉i{ } should be chosen and �xed. �e density opera-
tors of incoherent quantum states δ are diagonal in this base, i.e., δ = ∑ | 〉〈 |c i ii i . A set of these incoherent quantum 
states is labeled by  , and IO is denoted as ΛIO, where Kraus operators =K{ }n n

r
1 ful�l

†

†


K K

Tr K K[ ] (1)

n n

n n

δ

δ
∈ .

Lemma 1. �ere30exists at most one nonzero entry in every column of the Kraus operator Knbelonging toΛIO.
According to Lemma 1, the Kraus operators of IO can be expressed as K c f i i( )n i

d
ni n0

1= ∑ | 〉〈 |=
− , =n r1 , where 

… − → … −f d d:{0, , 1} {0, , 1}
n

 and d is the dimension of Hibert space. An incoherent operation is called SIO 
if its Kn also satis�es25,26

K K

K KTr[ ] (2)

n n

n n


†

†

δ

δ
∈ .

Similarly, we can get the form of SIO that every column and row of its Kn has at most one nonzero entry.
�e CPO was introduced in ref.27 to reveal that coherence of a state is intrinsically hard to preserve when there 

is a lack of information about the state and the quantum channel. A unitary and incoherent operation is CPO, 
which keeps the coherence of quantum states invariant, i.e., ρ ρΛ =C C[ ( )] ( )CPO  (C is a coherence measure). �us, 
the Kraus operator of CPO takes the following form27:

∑ π= | 〉〈 |θK e i i( ) ,
(3)i

i i

where π is a permutation. Note that a CPO belongs to a class of IO with only one Kraus operator due to 

∑ =†K K In n n .
To establish a physically consistent resource theory, the PIO was proposed to replace IO in quantifying coher-

ence13. Since a set of Kraus operators can be physically realized by introducing auxiliary particles and making 
appropriate unitary operations and projective measurement, a PIO requires that they are all incoherent. Following 
this ideal, the expression of PIO has been obtained in ref.13. �e PIO can be expressed as a convex combination of 
maps, which have Kraus operators =K{ }n n

r
1 of the form:

∑ π= = | 〉〈 |θK U P e i i P( ) ,
(4)

n n n
i

i
n n

ni

where the Pn form an orthogonal and complete set of incoherent projectors. Hence, these incoherent operations 
have a clear hierarchical relationship: CPO ⊂ PIO ⊂ SIO ⊂ IO.

�e �rst rigorous framework of quantifying coherence was proposed in ref.6, where a function C can be taken 
as a coherence measure if it satis�es the following conditions6:

(B1) ρ ≥C( ) 0 for all quantum states and ρ =C( ) 0 if and only if ρ ∈  ;
(B2) C p C( ) ( )n n n

ρ ρ≥ ∑ , where †p K KTr( )
n n nρ= , K K p/

n n n n
†ρ ρ= , and Kn are the Kraus operators of IO; 

ρ ρ′ ≥ ΛC C(B2 ) ( ) [ ( )]; and
IO

(B3) p C C p( ) ( )n n n n n n
ρ ρ∑ ≥ ∑  with ≥p 0

n
 and p 1n n∑ = . On the basis of this framework, the relative entropy 

of coherence and l1 norm of coherence were put forward to measure coherence degree of quantum states. �e l1 
norm of coherence is de�ned as6

C ( ) ,
(5)

l
i j

ij1 ∑ρ ρ= | |
≠

which comes from a simple fact that coherence is linked with the o�-diagonal elements of considered quantum states.

Relation between IO and SIO. In the cylindrical coordinates, density matrices of single qubit systems can 
be written as

z re

re z

1
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1
,
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where − ≤ ≤z1 1, r0 1≤ ≤ , and 0 θ π≤ ≤ . We first prove the following Lemma 2 to simplify our 
discussion.

Lemma 2. ( )
2 1
ρ ρ= Λ if and only if ( )

2 1
ρ ρ= Λ

∼
   where Λ and Λ

∼
 are IO, and

ρ =
+

−
.( )z r

r z
1

1 (7)

Proof. It is clear that ρ ρ= U U † with = θ θ−U e ediag( , )i i/2 /2 . If ( )
2 1
ρ ρ= Λ  then we have

  U U U U U K U U K U( )
(8)n

n n2 2 1 1 1 2 2 1 1 1 2∑ρ ρ ρ= Λ = .† † † † †

Let =
∼
K U K Un n2 1

† . It is easy to check that 
†

K K In n n∑ =
∼ ∼

. Now let us show that 
∼
Kn is also incoherent. Suppose 

= ∑ | 〉〈 |K c f i i( )n i ni n
 then we have

∑ ∑= = | 〉〈 | | 〉〈 | | 〉〈 | = | 〉〈 |
∼
K U K U u i i c f j j u k k u u c f k k( ) ( ) ,

(9)
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ijk

i
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k

k

f k k
nk n2 1 2

( )
1
( )

2
[ ( )]

1
( )n† ⁎ ⁎

which means that 
∼
Kn is also incoherent. By using the same approach, we can prove that there exists an IO making 

ρ ρ= Λ( )
2 1

 when  ( )
2 1
ρ ρ= Λ

∼
. ◻

Lemma 2 also holds for SIO, PIO, or CPO. �is lemma implies that the coherence transformation ability of single 
qubit is depended only on two parameters (z, r) and not on the parameter θ, i.e., rotational symmetry around 
z-axis. �erefore, we only need to consider the coherence transformations between the quantum states of ρ . In the 
following text, we use symbol ρ to represent ρ for convenience. Meanwhile, we denote initial qubit ρ by (z, r) and 
represent transformation region ρ′ of the initial qubit ρ via coherence-free operations by (z′, r′). With these 
notions, we prove the following theorem.

�eorem 1. In single qubit systems, the transformation region given by IO is equal to the transformation region given 
by SIO.
Proof. De�ne four types of Kraus operators as follows

( ) ( )
( ) ( )0 0

, 0 0 ,

0
0

, 0
0

,
(10)

1 2

3 4

 

 

=
× ×

=
× ×

= ×
×

= ×
×

where “×” means that the elements of matrix may not equal to zero. �e above four types of Kraus operators 
depict all IO applied in single qubit transformations and the maps whose Kraus operators belonging to 3 or 4 
are SIO.

Suppose that we have any IO represented by a set of Kraus operators Λ = { }K K K, ,IO
i j l  where

=










=








K
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K C D0 0

,
0 0

,
(11)

i
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j
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and ∪∈Kl 3 4  . Next we would like to replace IOΛ  with ΛSIO while keeping ( ) ( )SIO IOρ ρΛ = Λ . Here, the SIO 
is in the form of Λ = K K K{ , , }SIO

l0 1  and K0,  ∪∈K1 3 4. De�ne

( ) ( )K a
b

K d
c

0
0

and 0
0 (12)0 1= = .

Now we prove that there exist a, b, c, and d making

K K K K K K I

( ) ( );

(13)

SIO IO

l
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By using the relationship K K K K K K Ii i i j j j l l l∑ + ∑ + ∑ =† † † , Eq. (13) reduces to
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where = | | + + ∑ + + | | −⁎ ⁎h A z r B A A B B z(1 ) ( ) (1 )i i i i i1
2 2 , A Ai i

2 2| | = ∑ | | , | | = ∑ | |B Bi i
2 2, C Cj j

2 2| | = ∑ | | , and 
| | = ∑ | |D Dj j

2 2. �e Eq. (14) can be rewritten as

| | | | = | | | | .a b c d (15)
2 2 2 2
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since we can choose suitable phases for a, b, c, and d to satisfy Eq. (14). Solving it we obtain

a A C
h

h h

b
h

z

z A C h

z h h

c A C
h

h h

d
h

z

z A C h

z h h

( ) ;

1
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where ⁎ ⁎= | | + + ∑ + + | | −h C z r D C C D D z(1 ) ( ) (1 )j j j j j2
2 2 . Note that the solutions: | |a 2, b 2| | , | |c 2, and | |d 2 in Eq. 

(16) may be negative. �erefore, if we prove that they are always non-negative, then we can �nd SIO to replace IO. 
Clearly, h1 and h2 are non-negative due to h Tr K K2 ( )i i i1 ρ= ∑

†  and ρ= ∑h Tr K K2 ( )j j j2
† . Hence, the a 2| | , | |b 2, c 2| | , 

and d 2| |  of Eq. (16) are non-negative. ◻

In ref.15, the authors have proved this result IO = SIO in single qubit systems by the following two arguments: 
SIO ⊂ IO ⊂ MIO and MIO = SIO. We provide a new and direct proof and establish a quantitative correspondence 
between IO and SIO in coherence transformations of single qubit systems. By using Eq. (16), we can accurately 
construct a SIO to realize the role (quantum state transformations) of IO in single qubit systems.

The transformation region given by CPO. In the case of IO with only one Kraus operator K, the K must 
be unitary. Hence, the K also describe a CPO, which can be expressed as π= ∑ | 〉〈 |θK e i i( )i

i i . For single qubit sys-
tems, the Karus operator of CPO has two forms:
•	 Case 1: = | 〉〈 | + | 〉〈 |θ θK e e0 0 1 1i i1 2 . By using this type of CPO, the transformable quantum states are

K K
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1
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where initial state is ρ =
+

−( )z r
r z

1
1

1

2
. We only need to consider quantum states in the form of real param-

eters due to lemma 1.
�erefore, the transformable quantum states are z r( , ) and z r( , )−
•	 Case 2: K e e0 1 1 0i i1 2= | 〉〈 | + | 〉〈 |θ θ . We have
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†K K
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( )

1 2

2 1

�e same procedure is easily adapted to obtain the transformable quantum states, z r( , )−  and − −z r( , ), under 
this kind of CPO.

By using CPO, the initial quantum state z r( , ) can be transformed to (z, ±r) and (−z, ±r) (see Fig. 1). Besides, 
these transformations between four quantum states are reversible.

The transformation region given by IO. In this section, we will construct a special IO with only two 
Kraus operators belonging to 3  and 4, respectively. From this case, we will get a transformation region of 
single qubit under IO, and then we will prove it is also a maximal transformation region in the section of Methods.

Now we consider a special IO in the form of

= | 〉〈 | + | 〉〈 |

= | 〉〈 | + | 〉〈 |.

K c c

K c c

0 0 1 1 ,

1 0 0 1 (19)

0 00 11

1 10 01

According to Lemma 1, the above Kraus operators are incoherent. Substituting the Eq. (19) in to K K Ii n n∑ =† , 
we obtain

| | + | | =

| | + | | = .

c c

c c

1,

1 (20)

00
2

10
2

11
2

01
2

We suppose that ∈c c c c, , ,00 01 10 11  and consider the following cases:
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α α β β

α α β β

α α β β

α α β β

= = − = = −

= = − − = = −

= − = − = = −

= − = − − = = − .

c c c c

c c c c

c c c c

c c c c

Case 1: , 1 , and 1 ;

Case 2: , 1 , and 1 ;

Case 3: , 1 , and 1 ;

Case 4: , 1 , and 1

00 10 11 01

00 10 11 01

00 10 11 01

00 10 11 01

�e qubit ρ =
+

−( )z r
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1
1

1

2
 a�er this type of IO becomes

z r

r z
( )

1

2

1
1 (21)

IO ρΛ =





+ ′ ′

′ − ′






where z z z1 (1 ) (1 )(1 )α β+ ′ = + + − −  and r rλ′ =  with λ αβ α β= + − −(1 )(1 )  in case 1. In case 
2, λ αβ α β= − − −(1 )(1 ) . In case 3, (1 )(1 )λ αβ α β= − + − − . In case 4, λ αβ= − −

(1 )(1 )α β− − . Note that

λ αβ α β| | ≤ + − − ≤ .(1 )(1 ) 1 (22)

�erefore,

r r (23)| ′| ≤ | |.

Setting α α β= + − ( 1)1

2
 and ( )1

2
β α β= − , then we have

 
λ
α

λ
β+

−
=

2 2

1
1,

(24)2
2

2

2

where case 1 corresponds to αβ λ≤  and λ α β λ+ + − ≥( 1)/ 02 ; case 2 corresponds to αβ λ≥  and 
λ α β λ+ + − ≥( 1)/ 02 ; case 3 corresponds to αβ λ≥ −  and ( 1)/ 02λ α β λ+ + − ≤ ; and, case 4 corre-

sponds to αβ λ≤ −  and ( 1)/ 02λ α β λ+ + − ≤ . According to Eq. (24), α and β  can be parameterized via 

θ π≤ ≤0 2  in the form of α θλ= sin / 2  and β θ λ= −cos (1 )/22 . �e z′ expressed by θ is

λ λ θ φ′ = + − +z z( ) 1 sin( ), (25)
2 2

where

Figure 1. Single qubit transformations under CPO, i.e., IO with only one Kraus operator. �e initial quantum 
state is (z, r), and transformation regions are (z, ±r) and (−z, ±r). Particularly, these transformations are 
reversible.
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( ) 1

,
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1

( ) 1 (26)
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φ
λ

λ λ

=
+ −
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Above equation implies that

z z z( ) 1 ( ) 1 , (27)
2 2 2 2λ λ λ λ− + − ≤ ′ ≤ + −

whose boundary is an ellipse

z
z

r

r1
(1 ) 1

(28)

2
2

2

2

′
+ −

′
= .

According to Eqs (23) and (27), we obtain the transformation region (z′, r′)










′
+ −

′
≤

| ′| ≤ | |

z
z

r

r
r r

1
(1 ) 1,

, (29)

2
2

2

2

by using this special IO (see Fig. 2), where (z, r) represents the initial quantum states.

�eorem 2. In single qubit systems, the region given by Eq. (29) is the maximal transformation region of the initila 
state (z, r) by using IO or SIO.

In the section of Methods, we will provide a complete proof of �eorem 2. �eorem 2 suggests that only 
two Kraus operators, which have the form of Eq. (19), can describe all IO completely in single qubit systems. 
Calculating the l1 norm of coherence for single qubit systems via Eq. (5), we have

r( ) ,
(30)

l
i j

ij1
 ∑ρ ρ= | | = | |

≠

which is the boundary of transformation region (purple lines in Fig. 2). It is consistent with the condition (B2′) 
that the coherence of quantum states should not increase under IO. Note that �eorem 2 is also a necessary and 
su�cient condition to judge whether a qubit can be transformed to another qubit via IO. By using robustness of 
coherence and ∆ robustness of coherence, refs13–15 also provide a necessary and su�cient condition for single 
qubit transformations via IO, which is consistent with our Eq. (29).

Figure 2. �e transformation region of single qubit by IO or SIO is depicted by blue. �e absolute value r| | of 
purple lines is the l1 norm of coherence of the initial state (z, r).
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The transformation region given by PIO. According to Eq. (4), for any given orthogonal and complete 
set of incoherent projectors ( P P{ 0 0 , 1 1 }0 1= | 〉〈 | = | 〉〈 |  or =P I{ }0 ), the Kraus operators of single qubit systems 
have the following forms:
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(31b)
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i i3 0 1 4 0 1
00 11
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θ
K e

e
K e

e

0

0
or 0

0 (31c)

i

i

i

i5 6

00

01

01

00

�e PIO with Kraus operators of Eq. (31a) or (31b) are coherence-breaking channels31, and the PIO with 
Kraus operators of Eq. (31c) are CPO. �e transformable quantum states ρ′ by using PIO are

p( ) ( ),
(32)

PIO

i
i i

PIO

1

6

∑ρ ρ ρ′ = Λ = Λ
=

due to Eq. (4), where 
†K K( )i

PIO
K n nn i

ρ ρΛ = ∑ ∈ , ≥p 0
i

, ∑ =p 1i i
, and ρ is initial quantum state z r( , ). It is easy to 

check that ( )i
PIO ρΛ  ( =i 1 6) are ±z r( , ), − ±z r( , ), z( ,0)± , and ( 1, 0)±   in the Bloch sphere representation. 

�erefore, the transformation region of single qubit states via PIO is a convex hexagon with six vertexes: z r( , )± , 
− ±z r( , ), and ( 1, 0)±  , which is depicted by blue region in Fig. 3.

By introducing the Bloch sphere depiction of the transformation region, we can see that the coherence-free 
operations have a clear hierarchical relationship in single qubit systems: CPO ⊂ PIO ⊂ SIO = IO; see Fig. 4.

Example 1-Maximally coherent state transformations via IO. In ref.6 Baumgratz, Baumgratz et al. 
�rstly found that a d-dimensional maximally coherent state can be transformed to all other d-dimensional quan-
tum states by means of IO. However, the transformation in the proof of ref.6 is probabilistic. Hence, how to prove 
that a maximally coherent state allows for the deterministic generation of all other quantum states is still an open 
question. Here, we prove it in the case of single qubit systems. In our notation, the maximally coherent state is 
denoted by z( 0,= r 1)= ± . According to Eq. (29), the transformation region of maximally coherent state is

z r

r

1;

1, (33)

2 2





′ + ′ ≤

| ′| ≤

Figure 3. Single qubit transformations under PIO. �e initial quantum state ρ is z r( , ), and ρΛ ( )i
PIO  are depicted 

by yellow points. �e transformation region is represented by blue region.
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which contains all single qubits (see Fig. 5). �erefore, any single qubit can be determinately generated by a max-
imally coherent state by using IO.

Now we construct the corresponding IO for a target quantum state ′ =z( 1/2, ′ =r 1/2) as an example and 
(z = 0, r = 1) is chosen as the initial quantum state. By virtue Eq. (25) and (26), we obtain

θ =
′

− ′
.

z

r
cos

1 (34)2

Thus, α = ′ − ′ − ′ − ′ =r r z r(1 )/(2 2 ) 1/(2 3 )2 2 2  and  z / 2 1/(2 2 )β = ′ = . Since α α= + +(1 2 
β2 )/2 and (1 2 2 )/2α α β= + −  , we have α = +3/4 1/(2 6 ) and 1/4 1/(2 6 )β = + . Due to αβ=

(11 4 6 )/12 /2 1/2λ+ ≥ =  and ( 1)/ 1/2 2/ 6 02λ α β λ+ + − = + ≥ , we choose case 2 to construct Kraus 
operators and IO is

Figure 4. �e hierarchical structure of IO, SIO, PIO, and CPO in single qubit systems.

Figure 5. �e transformation region given by IO is depicted by blue.
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IOΛ =

















+

+













−

− −

















.

Example 2-Pure state transformations via IO. By using the Bloch sphere depiction of the transforma-

tion region, one can see clearly that ψ| 〉 denoted by (z = r1 ,2− r) transforms to φ| 〉 denoted by ′ = − ′z r( 1 ,2

′r ) using IO if and only if ψ φ| 〉 ≥ | 〉 ( ) ( )l l1 1
 (see Fig. 6).

Similarly, we can also construct the corresponding IO for z( 1/ 3 ,= r 2/3 )=  and ′ =z( 1/ 2 ,r 1/ 2 )′ =  
as a example, by using Eqs (19), (25) and (26). �e IO is

Λ =

















+ +

+ −













− +
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(36)

IO

Discussion
In this paper, we have systematically studied the single qubit transformations under IO, SIO, CPO, and PIO. By 
introducing the Bloch sphere depiction, we show that the transformation ability of single qubit via IO, SIO, 
CPO or PIO has rotational symmetry around z-axis. A quantitative correspondence between IO and SIO in 
single qubit systems has been established via Eq. (16). �erefore, we can concretely construct a SIO to replace 
a IO in single qubit transformations, while keeping the initial and �nal states unchanged. In the discussion of 
single qubit transformation via IO, we provide a new and direct approach to obtain the necessary and su�cient 
condition. �e maximally single transformation region given by IO is depicted, whose boundary is limited by 

Figure 6. �e transformation region given by IO is depicted by blue.
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the coherence value ( l1
 ) of initial state. Our proof indicates that we can use a kind of special operation, SIO 

with only two Kraus, to realize all possible single qubit transformations given by IO or SIO. And these special 
operations can be accurately constructed. One of its Kraus operators is represented by a diagonal matrix, and 
the other is represented by anti-diagonal matrix. Finally, by calculating the transformation regions given by the 
above four operations, we can understand the hierarchical relationship: CPO ⊂ PIO ⊂ SIO = IO in single qubit 
systems more directly.

An interesting question is whether the transformation region of an initial qubit given by IO can be de�ned as 
a coherence measure (denoted as a) for single qubit systems. From Fig. 2 and �eorem 2, we can see clearly that 

a  ful�ls conditions (B1) and (B2′). Other conditions, (B2) and (B3), for quantifying a suitable coherence measure 
need to be explored further. Our results lead to an easy-operated and visual geometric method to explore the 
power of coherence-free operations in single qubit manipulation, and is worth applying to investigate coherence 
transformations in multi-particle systems.

Methods

Proof of �eorem 2. According to �eorem 1, IO can be expressed as Λ = K K{ , }IO
i j , where

K
a

b
K

d

c

0

0
and

0

0 (37)
i

i

i
j

j

j

=










=











.

�e transformable states via IO are

K K K K( )IO

i
i i

j
j j∑ ∑ρ ρ ρΛ = +† †

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

=







| | + + | | −





+












+






| | − + | | +







.

⁎ ⁎

⁎ ⁎

a z d z a b d c r

b a c d r b z c z

1

2

(1 ) (1 )

(1 ) (1 )

(38)

i
i

j
j

i
i i

j
j j

i
i i

j
j j

i
i

j
j

2 2

2 2

In other words, the transformable range ′z( , ′r ) represented in the Bloch sphere is given by

∑ ∑










′ =

′ = | | + + | | − −

r gr

z a z d z

,

(1 ) (1 ) 1,
(39)i

i
j

j
2 2

with g a b d ci i i j j j= ∑ + ∑
⁎ ⁎. Another constraint is

a c b d 1,
(40)i

i
j

j
i

i
j

j
2 2 2 2∑ ∑ ∑ ∑| | + | | = | | + | | =

due to the condition of † †
∑ + ∑ =K K K K Ii i i j j j . By choose suitable phases for ai, bi, cj, and dj, we can get

g a b d c
(41)i

i i
j

j j∑ ∑| | = | | ⋅ | | + | | ⋅ | |.

Now we use the Lagrangian multiplier method to calculate the extremum of g| | under the constraints of Eqs 
(39) and (40). De�ne Lagrangian function λ λ λ= | | | | | | | |G G a b c d( , , , , , , )i i j j 1 2 3  as the following form:

∑ ∑

∑ ∑ ∑ ∑

λ

λ λ

= | | +








| | + + | | − − + ′








+





| | + | | −






+






| | + | | −






.

G g a z d z z

a c b d

(1 ) (1 ) (1 )

1 1
(42)

i
i

j
j

i
i

j
j

i
i

j
j

1
2 2

2
2 2

3
2 2

At the extreme point, the partial derivatives of G are equal to zero, and then we obtain that
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According to Eq. (43), we have

∑

∑

∑

∑

λ λ

λ λ
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λ λ
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λ λ
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| | =
−

−

| | =
−

−

| | =
−

−

| | =
−

−
.

a

b

c

d

4 (1 4 )
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Solving Eqs (43), we get

λ λ λ

λ λ λ

= −
− 




+ +
−






= −
+ 




+ +
−





.

z

z

z

z

1

2

1

1
,

1

2

1

1 (45)

3 1 1
2

2

2 1 1
2

2

Note that λ3 should not be greater than zero due to Eq. (43), and the solution of Eqs. (43) does not exist if we 
choose 01λ =  as the solution of Eq. (43). By substituting Eqs. (44) and (45) into Eq. (43), we have

z z z z(1 ) (1 ) 2 (1 ) 1 0, (46)2 2 2 2κ κ− − ′ − − + + ′ =

where z[ 1/(1 ) ]1 1
2 2 2κ λ λ= + + − . The solutions of Eq. (46) are z z z(1 )/[(1 )(1 )]1

2κ = + ′ − − ′  or 
κ = − z1/(1 )2

2 . Since λ ≠ 01 , we choose 1κ κ= . By using the above results, the extremum of | |g  is

g z
z

z
(1 )

1

1
,

(47)
opt

2

2
κ| | = − ′ =

− ′

−

which means that the transformable range by using IO is limited by

r gr g r
z

z
r

1

1 (48)
opt

2

2
| ′| = | | ≤ | | | | =

− ′

−
| |.

�e above equation can be rewritten as

z
z

r

r1
(1 ) 1,

(49)

2
2

2

2

′
+ −

′
≤

which is just a part of the boundary of transformation region calculated from a special kind of IO (Eq.19). 
�erefore, the maximal transformation region of initial qubit (z, r) via IO is given by Eq. (29). ◻
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