
Coherency Sensitive Hashing

Simon Korman and Shai Avidan

Dept. of Electrical Engineering

Tel Aviv University

simonkor@mail.tau.ac.il avidan@eng.tau.ac.il

Abstract

Coherency Sensitive Hashing (CSH) extends Locality

Sensitivity Hashing (LSH) and PatchMatch to quickly find

matching patches between two images. LSH relies on hash-

ing, which maps similar patches to the same bin, in order

to find matching patches. PatchMatch, on the other hand,

relies on the observation that images are coherent, to prop-

agate good matches to their neighbors, in the image plane.

It uses random patch assignment to seed the initial match-

ing. CSH relies on hashing to seed the initial patch match-

ing and on image coherence to propagate good matches.

In addition, hashing lets it propagate information between

patches with similar appearance (i.e., map to the same bin).

This way, information is propagated much faster because it

can use similarity in appearance space or neighborhood in

the image plane. As a result, CSH is at least three to four

times faster than PatchMatch and more accurate, especially

in textured regions, where reconstruction artifacts are most

noticeable to the human eye. We verified CSH on a new,

large scale, data set of 133 image pairs.

1. Introduction

Computing Approximate Nearest Neighbor Fields

(ANNF) is an important building block in many computer

vision and graphics applications such as texture synthesis

[10], image editing [18] and image denoising [7]. This is a

challenging task because the number of patches in an image

is in the millions and one needs to find Approximate Nearest

Neighbors (ANN) for each patch in real or near real time.

In the past, it was customary to compute ANNF with

traditional approximate nearest neighbor tools such as Lo-

cality Sensitive Hashing (LSH) [13] or KD-trees [1, 16].

These tools perform well in terms of accuracy but are not as

fast as one would hope. Recently, a novel method, termed

PatchMatch [4], proved to outperform those methods by up

to two orders of magnitude, making applications that rely

on ANNF run at interactive rate. The key to this speedup

is that PatchMatch relies on the fact that images are gener-

ally coherent. That is, if we find a pair of similar patches,

in two images, then their neighbors in the image plane are

also likely to be similar. PatchMatch uses a random search

to seed the patch matches and iterates for a small number

of times to propagate good matches. Unfortunately, Patch-

Match is not as accurate as LSH or KD-trees and increasing

its accuracy requires more iterations that cost much more

time. In addition, the main assumption it relies on (i.e. co-

herency of the image) becomes invalid in some cases (e.g.

in strongly textured regions), with noticeable influence on

mapping quality. It is therefore beneficial to develop an al-

gorithm that is as fast, or faster, than PatchMatch, and more

accurate.

Coherency Sensitive Hashing (CSH) replaces the ran-

dom search step of PatchMatch with a hashing scheme, sim-

ilar to the one used in LSH. As a result, the process of seed-

ing good matches is much more targeted and information

is propagated much more efficiently. Specifically, informa-

tion is propagated to nearby patches in the image plane, as is

done in PatchMatch, and to similar patches that were hashed

to the same value. In other words, we propagate information

to patches that are close in the image plane or are similar in

appearance. The end result is that our algorithm runs faster

and gives more accurate results, in terms of RMS of the re-

trieved patches, compared to PatchMatch. This increased

speed and accuracy comes at a modest increase in memory

footprint since we need to store the hashing tables.

An interesting property of our algorithm is that its recon-

struction errors are significantly lower than those obtained

by PatchMatch. To measure this, we define incoherency to

measure the number of neighboring patches in one image

that are mapped to neighboring patches in the other image.

We find that mapping produced by CSH is much less co-

herent than the one produced by PatchMatch. This is be-

cause CSH does not rely on the image coherency assump-

tion as much as PatchMatch does. Experiments suggest a

strong correlation between the coherency of the mapping

and RMS error. The less coherent the mapping, the lower

the error. We also characterized the errors by image con-

tent and found that CSH works better than PatchMatch in



textured regions. We demonstrate the advantages of CSH

over PatchMatch on a new data set of 133 image pairs with

2 mega pixel resolution1.

2. Related Work

Patch-based methods have been very successful in a wide

variety of computer vision and graphics applications. Efros

and Leung [10] introduced a simple non-parametric tex-

ture synthesis algorithm. It was quickly followed on and

improved by [9, 15, 21]. Non-parametric texture synthe-

sis was then used for various image editing applications by

Simakov et al. [18] and it also inspired the method of non-

local means for image denoising [7].

Common to all these techniques is the need to find, for

each patch in image A, a similar (i.e., ANN) patch in image

B, where in some cases images A and B can be the same

image. Wei and Levoy [20] proposed a Tree Structure Vec-

tor Quantization (TSVQ) method to quickly find the neces-

sary matches. Others relied on existing ANN search tech-

niques such as kd-trees [1], perhaps enhancing them with

PCA, to reduce dimensionality.

Ashikhmin [2] was the first to introduce the concept of

coherency and used it to accelerate non-parametric texture

synthesis. This was later extended to k-coherence by Tong

et al. [19] that pre-computed a set of k nearest neighbors

for each patch and used it to accelerate the search for ANN.

They have also demonstrated it for texture synthesis.

Two leading methods for ANN search are kd-trees [1]

and Locality Sensitive Hashing (LSH) [13]. Both partition

the space, either deterministically (KD-tree) or randomly

(LSH) in order to allow for quick query time. In this work

we focus on LSH and show how to extend it to deal with

coherent data, such as patches in an image.

The work most closely related to ours, and indeed the

one that inspired ours, is that of PatchMatch [4]. Patch-

Match takes image coherence to the extreme and uses it for

various image editing applications. It was recently general-

ized and applied to other applications as well, such as image

denoising [5] and an attempt to add appearance-guided in-

formation to its search was reported in [3].

PatchMatch works in rounds. Given a pair of images it

randomly assigns each patch in image A to a patch in im-

age B. Most assignments yield poor matches, but some are

quite good. PatchMatch then propagates the good matches

to nearby patches, in the image plane. To avoid being

trapped in a local minima, it also performs a number of

random patch assignments for each patch, keeping the best

match after each stage. The algorithm usually converges

after a small number of iterations.

1Code and data-set is available at www.eng.tau.ac.il/

˜simonk/CSH/index.html

3. LSH for Nearest Neighbor Search

The notion of locality sensitive hashing (LSH) was first

introduced by Indyk and Motwani [13]. Given a set of

points in a metric space, LSH function families have the

property that points that are close to each other have a

higher probability of colliding (under random members of

the family) compared to points that are far apart. The first

usage of LSH for nearest neighbor search in high dimen-

sions worked in high dimensional binary Hamming space

[11]. Our algorithm will follow the general lines of an LSH-

based approximate nearest neighbor search scheme later

proposed by Datar et al. [8]. In the rest of this section

we outline their algorithm.

At the base of the algorithm is a family H of LSH func-

tions and the ANN search algorithm consists of two stages:

indexing and search (query). In the indexing stage, prim-

itive hash functions from H are used to create an index
in which similar points map into the same hash bins with

high probability. M such primitive hash functions are con-

catenated to create a code which amplifies the gap between

the collision probability of far away points and the colli-

sion probability of nearby points. Such a code creates a

single hash table, by evaluating it on all data-set points. In

the search stage, a query point is hashed into a table bin,

from which the nearest of residing data-set points is cho-

sen. In order to decrease the probability of falling into an

empty bin (with no data-set points), multiple (L) random

codes are used to create L hash tables, which are searched

sequentially at search stage. Datar et al.[8] show that the

above scheme results in significantly improved efficiency

compared to previous methods in the case of L2 distances,

which are the ones of interest in our case.

4. Coherency Sensitive Hashing (CSH)

In this section we layout our algorithm for approximate

dense nearest patch search. The straight forward way to

use the LSH search scheme for image patches is by treating

each d-by-d patch as a d2 vector in Euclidian space and the

rest follows. However, it wouldn’t take advantage of the

wide extent of overlaps between nearby patches.

Instead, we follow the general lines of the LSH scheme,

but replace several of its main ingredients with new ones,

which are designed to exploit the image patches setup. At

the Indexing stage, we replace the family of LSH functions

with a new set of functions, which make use of the Walsh-

Hadamard kernels (details in section 4.1). At the search

stage, we dramatically extend the set of candidate patches

that are considered, compared to the limited set of patches

that point to the same index (details in section 4.2). We term

the resulting scheme Coherency Sensitive Hashing (CSH).

The CSH Algorithm is given in algorithm 1, while the de-

tails are given in the next subsections.

www.eng.tau.ac.il/~simonk/CSH/index.html
www.eng.tau.ac.il/~simonk/CSH/index.html


4.1. Indexing

The LSH scheme of Datar et al. [8], uses the particu-

lar family of LSH functions of the form ha,b(v) = a·v+b
r

,

where r is a predefined integer, b is a value drawn uniformly

at random from [0, r] and a is a d-dimensional vector with

entries chosen independently at random from a Gaussian

distribution. The action of such a random function of this

distribution (family) on a vector v (or patch) could be de-

scribed by the 3 following stages: (1) Take a random line,

defined by the vector a, divide it into bins of constant width

r and shift this division by a random offset of b ∈ [0, r) (2)

Project the vector v on to the line (3) Assign it a hash value,

being the index of the bin it falls into. The role of the ran-

dom offset b is to neutralize the quantization limits of fixed

binning. Specifically, it ensures that similar patches (which

project to nearby locations on the line) will collide (fall into

the same bin) with high probability.

In our case, the vector is a patch and we don’t project it

onto a random line, but rather on one of the first (most sig-

nificant) 2D Walsh Hadamard (WH) kernels. The reasons

for doing this are twofold. First, it is an extremely efficient

(only 2 additions per patch per kernel) method of computing

these projections [6]. More importantly, when projecting all

the patches onto a line, we would like the dispersion to be

as large as possible, since this would make this line very

discriminative with respect to patch similarity (namely, the

distance between the projection of dissimilar patches will be

large, while in the case of similar patches - small). There-

fore, the optimal strategy would have been to take the lead-

ing eigenvectors of the covariance matrix of the entire set

of image patches. In the case of natural images (not letting

the choice of lines be image dependent), these turn out to

be a sinusoidal basis, ordered in increasing frequency [17].

The 2D WH kernels, when ordered by increasing frequency

form such an optimal sequence of projection lines. These

have been shown by Hel-Or et al. [12, 6] to be extremely

descriptive and efficient for pattern matching in images.

4.2. Search

In the Indexing stage we built a set of L hash tables,

with the desired property of local sensitivity in the appear-

ance plane. Namely, that similar patches (disregarding their

image location) are likely to be hashed to the same entry.

The straight forward LSH search scheme would have

simply implied, for each patch in image A, considering the

set of patches of image B, which are hashed to the same

entry as itself in any of the L tables. This set of potential

candidates is rather small, doesn’t exploit the known spatial

arrangement of the patches and doesn’t allow propagation

of information between patches. Rather, CSH creates a rich

set of candidates by combining cues of both appearance and

coherence (of location) in a novel manner.

Algorithm 1 Coherency Sensitive Hashing (CSH)

Input: color images A and B
Output: A dense nearest patch map ANNF

Indexing (of all patches of images A and B)

1. Compute the projection of each of the patches in A and

B on M Walsh-Hadamard kernels : {WHj}
M
j=1, using

the Gray Code Kernels technique of [6].

2. Create L hash tables {Ti}
L
i=1 . Table Ti is constructed

as follows:

(a) Define a code gi(p) = h1(p) ◦ ... ◦ hM (p) which

is a concatenation of M functions {hj}
M
j=1 of the

form:
hj(p) =

WHj · p+ bj
r

where r is a predefined value and bj is drawn uni-

formly at random from the interval [0, r)

(b) Then, each patch p (of both A and B) is stored in

the entry Ti[gi(p)]

Search

1. Arbitrarily initialize the best candidate map ANNF

2. Repeat for i = 1, ..., L (for each hash table):

(a) For each patch a in A

i. Create a set of candidate nearest patches PB

using the table Ti and the current mapping

ANNF (as described in section 4.2.1)

ii. Let b be the patch from PB which is most

similar to a

iii. If dist(a, b) < dist(a,ANNF(a)) then up-

date: ANNF(a) = b (distances are only

approximated, see section 4.2.2)

3. return ANNF

4.2.1 Candidate Creation

Let gi denote the hash code (function) used to create the

hash table Ti. To simplify the discussion, we’ll drop the

subscript and refer to a hash function g and the resulting

hash table T . Furthermore, the hash function g will be de-

noted gA when applied on patches of image A and gB when

applied on patches of image B. Let g−1

A (g−1

B ) be the inverse

of gA (gB) and Left(p)/Right(p)/Top(p)/Bottom(p) be

the patch obtained as a result of shifting a patch p one single

pixel to the left/right/top/bottom. In addition, let Cand(a)
for any patch a in A be its nearest currently known patch in

B.

Here are four observations that we use to create a large

pool of candidates per patch of image A. Considering



(a) Type 1 (b) Types 2 (c) Type 3

Figure 1. Candidate types for a patch. In each of the sub-figures, Image A is on the left, image B is on the right and the hash table in

use is in the center. Arrows relating to a pixel actually relate to the patch who’s top left corner is at the pixel. Red arrows represent the

hashing (notice their direction), while green arrows point to the patch’s current best known representative. The highlighted pixels (patches)

in image B on the right are the candidates of the highlighted pixel (patch) in image A on the left. If the width of the hash table is defined

to be k (i.e. it stores k representative patches from each of the two images) then the total number of candidates is between 4k and 4k + 2
(types 1 and 3 each contribute k candidates, while type 2 appears both in left/right and top/bottom configurations and contributes k or k+1
in each configuration). In our implementation (and this illustration) we use k = 2.

patches a, a1 and a2 of image A and patches b, b1 and b2 of

image B:

observ. 1 (appearance-based)

If gA(a) = gB(b), then b is a (good) candidate for a

observ. 2 (appearance-based)

If b is a candidate for a1 and gA(a1) = gA(a2), then b
is a candidate for a2

observ. 3 (appearance-based)

If b1 is a candidate for a and gB(b1) = gB(b2), then b2
is a candidate for a

observ. 4 (coherence-based)

If b is a candidate for Left(a), then Right(b) is a can-

didate for a 2

Observations 1 - 3 follow from the local sensitivity prop-

erty of the function g (which follows from the local sensi-

tivity of its parts h). This happens in appearance space. On

the other hand, Observation 4 follows from the coherency

of patches in the image.

Here are 3 types of candidate patches we generate for a

patch a of image A, via compositions of observations 1-4:

type definition using observ.

1 g−1

B (gA(a)) 1 and 3

2 g−1

B (gB(Right(Cand(Left(a)))) 3 and 4

3 Cand(g−1

A (gA(a))) 2

These candidate types are further illustrated in figure 1.

In our implementation, we set the width of the table k (the

number of patches of each of A and B that can be stored in

a hash table entry) to be 2. We end up with 4k + 2 candi-

dates (10 in our case) and a rough estimate on the individual

type contributions to the final match is 20%,50%,30%, re-

spectively.

We can now compare the candidate patches used by CSH

to those used by the different algorithms and notice how

2This holds also for Right/Left Top/Bottom and Bottom/Top pairs

CSH generalizes them. LSH uses exactly the candidates

of type 1. These candidates on their own are especially

limited, mainly since they don’t exploit image coherency

(which is generally very high), but also since they don’t take

advantage of appearance similarity (hash collisions) be-

tween patches in image A. On the other hand, PatchMatch

exploits only image coherency. It uses exactly 2 out of the

4-6 candidates of type 2 (Namely, Right(Cand(Left(a))
and Bottom(Cand(Top(a))), in addition to random loca-

tion candidates, using no cues of appearance whatsoever.

One clear limitation of PatchMatch, which our algo-

rithm overcomes, is its assumption that mappings that are

mostly (spatially) smooth may achieve pleasing approxima-

tions. The PatchMatch algorithm looks around the patch’s

neighbor’s nearest patch (propagation) as well as at random

patches around the current known nearest patch, with prob-

ability dropping exponentially with increase in distance.

This approach works well on large contiguous areas that

appear in both images, since a proper random guess will

propagate to the whole area. However, it has difficulties in

textured areas, which aren’t replicated in both images. In

our approach, we intensively relate patches which collide

under some hash function. Such collisions occur based en-

tirely on the appearance of the pair of patches without any

relation to their spatial arrangement. The spatial layout of

our mapping is much less continuous compared to that of

PatchMatch. This is evident in the second row of figure 7,

where the x-coordinates of both algorithm’s mappings are

presented.

4.2.2 Candidate Ranking

Given the candidate set (of size 4k + 2), all that remains is

to find the nearest one. This step of the algorithm is actually

the main overall time consumer. We therefore resort to an

approximation of the process, which has a negligible impact

on the overall precision but greatly reduces run time.



This is where we make a second use of the Walsh

Hadamard (WH) projections, which we already computed

in the indexing stage. We use the WH kernels here in the

way Hel-Or et al. use them in their rejection scheme for

pattern matching [12]. The idea is that accumulating the

projections of the differences of patches on the WH kernels,

one at a time, produces an increasingly tighter lower bound

on the Euclidean distance between the patches. We use only

the leading kernels out of the full basis (in decreasing fre-

quency ordering), which capture a large enough portion of

the patch’s energy. This method incorporates an early ter-

mination mechanism, rejecting a candidate once the sum of

projected differences exceeds the current nearest approxi-

mation of patch distance.

4.3. Implementation Details

All our experiments were done in a fixed setting of the

following options. Our hash functions gi concatenate pro-

jections of M = 8 leading WH kernels (6 on Y and and

1 on each of the chroma channels). In terms of bin width

r (which is equivalent to the number of bins, in our finite

projection scheme), we found that the higher the frequency

of the WH kernel - the lower the dispersion of the projected

patches and therefore we reduce the number of bins from

32 (on first DC kernel) down to 2, at exponential rate. Also,

the number of patches that fall into equally spaced bins is

extremely image dependent and unbalanced in general. We

handle this to improve hashing by using variable bin widths,

achieving approximately a balanced distribution, based on

an on-the-fly estimation of the distribution using a sparse

sample of the image patches. We note that our extensive use

of the WH kernels, limits our patch dimensions to powers

of 2. In all our experiments, 8×8 patches were used. Aside

from the clear need to store the source, target, mapping and

error images in memory, CSH requires some extra memory

in order to store the hash tables as well as the pre-computed

projections of the image patches on the WH kernels. How-

ever, instead of constructing the complete index of L hash

tables and then searching through them sequentially (as de-

scribed in algorithm 1), our implementation performs L it-

Figure 2. Video Pairs data set (8 out of the 133 pairs)

erations (cycles) of the index and search steps, using only

one table at a time. For further improvement in memory

consumption, one could compute the WH projections on the

fly, while making a slight change in ordering in the ranking

stage. This is possible, since we use them in a sequential or-

der that complies with the Gray Code ordering [6] of these

kernels.

5. Experiments

We collected 133 pairs of images, taken from 1080p HD

(∼2 megapixel) official movie trailers. Each pair consists of

images of the same scene with usually some motion of both

camera and subjects in the scene (The images are between

1 and ∼30 frames apart in the video). We note that pairs of

images with only slight camera and subject motion aren’t

very challenging in the dense patch matching framework

and could be handled specifically via registration or optic

flow techniques. See figure 2 for some example image pairs

of this database. Our implementation of CSH is in Matlab,

using Mex functions in critical sections. PatchMatch imple-

mentation was taken from the PatchMatch website3. Both

algorithms were run in a single core configuration on a 2.66

GHz machine, with 8 GB of RAM.

5.1. Efficiency

The goal of this experiment is to compare the error-to-

time tradeoff of CSH to that of PatchMatch, whose tradeoff

was shown [5] to be superior relative to previous methods,

in the sense that it reaches reasonable error rates faster.

Our algorithm goes one step forward by being able, on

the one hand, to reach reasonable error rates much faster

than PatchMatch and on the other - reaching error rates that

are out of PatchMatch’s reach, as do the (much slower) LSH

and KD-Tree algorithms.

We ran both algorithms on the Video Pairs data-set at

original resolution using 8 × 8 patches4. The error to time

performance of the algorithms was measured by averaging

(errors and run-times) over all image pairs. The results are

shown in figure 3. The mapping error (as in [4, 5]) is the av-

erage L2 distance between the matching patches. For com-

parison, we also computed the exact nearest neighbor match

to serve as a ground truth.

In terms of speed, it is clear that our algorithm is much

faster than PatchMatch. In order to compare speed, take a

certain error rate and compare how long it would take to

reach it by each of the algorithms. For instance, the error

rate that PatchMatch reaches after 5 iterations (as suggested

in [4]) is reached by our algorithm 3 or 4 times faster.

3www.cs.princeton.edu/gfx/pubs/Barnes_2010_TGP/

index.php
4Similar results were observed in different settings, when using lower

image resolutions as well as different patch sizes [14]

www.cs.princeton.edu/gfx/pubs/Barnes_2010_TGP/index.php
www.cs.princeton.edu/gfx/pubs/Barnes_2010_TGP/index.php


Figure 3. Error/Time tradeoffs of PatchMatch and CSH. Aver-

ages are over the 133 image pairs of the data set. Markers on the

lines indicate the time it took each algorithm to complete an itera-

tion, and errors are average L2 distances between patches. Lower

error rates (such as those reached by CSH on its third iteration) are

reached more than 4 times faster by CSH compared to PatchMatch.

Notice that CSH errors are significantly lower and approach the

ground truth average error (denoted by solid red line).

5.2. Other Properties

Aside from its good error to time tradeoff, CSH pos-

sesses other pleasing properties, which are of high impor-

tance (not less than the error rate itself), in the common us-

ages of such dense patch mappings. In this section we will

review these properties, in comparison to the PatchMatch

mapping and ground-truth (exact) mappings.

5.2.1 Image Energy and Mapping Quality

PatchMatch and CSH differ in the way the quality of a

match depends on the energy level of the patch (i.e. how

textured is the patch). Generally speaking, PatchMatch

copes slightly better with flat areas, while CSH does better

in the mid range and going towards textured, edgy patches.

This is, again, due to the locality of the PatchMatch search

and propagation, which will work well in large homoge-

neous areas, but will fail in high energy areas where usually

nearby patches might only be well matched to patches that

are very distant in the target image.

For our experiment we used the same 133 image pairs.

For each such pair, we ordered the source image’s patches

according to their spatial energy (mean of gradient magni-

tudes) in increasing order and divided them into ten equal

sized deciles. For each such decile of patches we calculated

the mean error of the patch matches, produced by each of

the algorithms. In figure 4, we plot the difference between

the PatchMatch error and the CSH error for each of the

Figure 4. Mapping errors ordered by patch energy. x-axis:

Patches of the source image are divided into 10 deciles, according

to their energy level (mean gradient magnitude). y-axis: the differ-

ence between PatchMatch and CSH mapping errors, averaged over

each of the deciles. On the lower end, the first decile represents

patches with low energy in the range [0, 14] on which PatchMatch

error (mean L2 patch distances) is slightly lower (2 graylevels),

while at the tenth decile (high energy in the range [155, 255]) -

CSH error is significantly lower (over 11 graylevels).

deciles. The general trend of the plot is clear and consis-

tent across the range of patch energies. We argue that the

distribution of errors produced by CSH is preferable to that

of PatchMatch, since it is known that errors along edges and

textured areas have a much stronger visual impact compared

to inaccuracies in textureless areas. This is the reason that

CSH is able to avoid many artifacts along edges (compared

to PatchMatch) when reconstructing a source image from

a target image patches using the dense mapping between

them (this is shown in section 5.3).

5.2.2 Incoherence of the Mapping

Given a dense patch mapping from image A to image B, we

define the incoherence of the mapping at each pixel a of A
to be the number of different pixels in B that a is mapped to

under all of the patches that contain it. For instance, inco-

herence of 1 (the minimum possible) at a pixel, means that

all the patches containing it map coherently (by a constant

translation). The maximal coherence is the patch size. This

definition is illustrated in figure 5.

The higher incoherence of the CSH mapping (compared

to the PatchMatch mapping) is due to the different way in

which the patches are found. In PatchMatch, the vast major-

ity of final matches are ones that were directly propagated

from neighboring patches or randomly found extremely

close to them. In CSH, different good quality matches that

are spatially spread in the target image have a fair chance



Figure 5. Incoherence of a pixel. In this example patches are 2-

by-2. There are 4 patches containing the pixel on the left. Each of

these patches is mapped to the patch of the corresponding color on

the right. The incoherence of the mapping at the pixel is 3.

to be found by the algorithm. This is especially true for

regions that do not appear as a whole in the target image.

Large incoherence of a dense mapping is a crucial prop-

erty, when it comes to some of the applications that make

use of dense patch mappings. This is true for applications,

where an image area is reconstructed, pixel by pixel, ac-

cording to ’votes’ that come from patches in the target im-

age of an ANN mapping. The reason being simply that

the incoherence measures the number of votes a pixel gets.

Therefore, for different mappings of the same error level,

regardless of how the votes are integrated into a single deci-

sion (e.g. by taking the median or some weighted average)

- the precision of the estimate increases with the incoher-

ence. This (negative) correlation between incoherence and

reconstruction will be shown experimentally in section 5.3.

The average incoherence over the entire data-set was found

to be 15% higher in CSH compared to PatchMatch.

5.3. Image Reconstruction

The combination of these CSH properties is useful in

various image editing and denoising applications. We

demonstrate this in the most direct manner, using the re-

construction of a source image A, given a target image B
and a dense patch map from A to B. This kind of recon-

struction is the main ingredient of the patch based versions

of the above mentioned applications. We use the code sup-

plied with PatchMatch to calculate the image reconstruction

and its quality. It simply replaces each pixel with the aver-

age of the corresponding pixels that it is mapped to by all

patches that contain it. This kind of averaging was shown

[18] to maximize the (Bi-)Directional Similarity from A to

B. For this experiment we used all images from the Video

Pairs data-set, resized to 0.4 MP.

We use as a baseline the ground-truth (exact) mapping,

which results in the best possible reconstruction under the

Bidirectional Similarity framework. The results are summa-

rized in table 1. The RMSE error is the square root of the

mean (over pixels in all images) of the squared L2 (in RGB)

norm between original and reconstructed pixels. It can be

seen from the table that the CSH average error is more than

20 percent lower than that of PatchMatch. Figure 6 clearly

shows the correlation which we discussed in section 5.2.2

PatchMatch CSH Ground Truth

reconst. RMSE 7.62 6.29 5.81

Table 1. Average reconstruction errors - PatchMatch vs. CSH,

relative to using ground truth mapping. Averages are over the 133

image pairs data-set, at 0.4 MP. CSH achieves reconstruction er-

ror rates that are only 8% higher than those produced using the

ground truth mapping, while PatchMatch’s errors are more than

30% percent higher than those produced using the ground truth

mapping.

between mapping incoherence and reconstruction error.

Figure 6. Incoherence and Reconstruction Error. Each point

denotes the reconstruction error and incoherency of one of the 133

image pairs. The x-axis is the difference between reconstruction

error when using the algorithm (CSH or PatchMatch) and recon-

struction error when using the ground truth mapping. Similarly,

the y-axis is the difference between ground truth mapping incoher-

ence and algorithm (CSH or PatchMatch) mapping incoherence.

Being close to the origin, means being close to the ground truth.

The two separate clusters emphasize the negative correlation, be-

tween incoherence and reconstruction error, which we discussed

in section 5.2.2.

A typical reconstruction example5 is shown in figure 7,

in which the reconstructions produced using PatchMatch

and CSH mappings are compared with the reconstruction

produced using the ground truth mapping.

6. Conclusions

We proposed an algorithm for computing ANN fields

termed Coherency Sensitivity Hashing, which follows the

concepts of LSH search scheme, but combines image co-

herency cues, as well as appearance cues in a novel man-

ner. It was shown to be faster than PatchMatch and more

accurate, especially in textured areas. In addition, its high

incoherence improved reconstruction results, which are at

the basis of many patch based methods.

5Please refer to CSH web page [14] for additional examples.



Figure 7. Reconstruction Example. We visually compare re-

construction results using PatchMatch, CSH and Ground truth

mappings on a typical pair of 0.5 MP images. Row 1: The

dense mappings are computed from A (left) to B (right). Row

2: x-coordinates of PatchMatch mapping (left) and CSH mapping

(right). Blue/red areas in A are mapped to the left/right side of

B. These images illustrate the lower coherency of the CSH map-

ping compared to that of PatchMatch. As discussed in the text

- this enables better reconstruction. Rows 3-5: Enlarged areas

from reconstructed image A, using ground-truth, CSH and Patch-

Match mappings (in this order). In this example, reconstruction

RMS errors are: 19.4 (ground-truth), 20.1 (CSH) and 22.0 (Patch-

Match). Visually, the PatchMatch reconstruction is less accurate

(especially around edges), introducing blur and color distortion.

Acknowledgments: This work was partially supported

by Israel Science Foundation grant 1556/10 and European

Community grant PIRG05-GA-2009-248527. We thank

Yonatan Hyatt and Guy Shwartz for their assistance.

References

[1] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu.

An optimal algorithm for approximate nearest neighbor

searching. Journal of the ACM, 45(6):891–923, 1998.

[2] M. Ashikhmin. Synthesizing natural textures. In Proc. sym-

posium on Interactive 3D graphics, pages 217–226, 2001.

[3] C. Barnes. PatchMatch: A Fast Randomized Matching Al-

gorithm with Application to Image and Video. PhD thesis,

Princeton University, 2011.

[4] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Gold-

man. PatchMatch: A randomized correspondence algorithm

for structural image editing. In SIGGRAPH, 28(3), 2009.

[5] C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkel-

stein. The generalized PatchMatch correspondence algo-

rithm. In European Conference on Computer Vision, 2010.

[6] G. Ben-Artzi, H. Hel-Or, and Y. Hel-Or. The gray-code filter

kernels. In PAMI, pages 382–393, 2007.

[7] A. Buades, B. Coll, and J. Morel. A non-local algorithm for

image denoising. In CVPR, volume 2, pages 60–65, 2005.

[8] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-

sensitive hashing scheme based on p-stable distributions.

In Proc. of annual symposium on Computational geometry,

pages 253–262, 2004.

[9] A. A. Efros and W. T. Freeman. Image quilting for texture

synthesis and transfer. SIGGRAPH, pages 341–346, 2001.

[10] A. A. Efros and T. K. Leung. Texture synthesis by non-

parametric sampling. In ICCV, pages 1033–1038, 1999.

[11] A. Gionis, P. Indyk, and R. Motwani. Similarity search in

high dimensions via hashing. In International Conference

on Very Large Data Bases, pages 518–529, 1999.

[12] Y. Hel-Or and H. Hel-Or. Real-time pattern matching using

projection kernels. In PAMI, pages 1430–1445, 2005.

[13] P. Indyk and R. Motwani. Approximate nearest neighbors:

towards removing the curse of dimensionality. In Symposium

on Theory of Computing, pages 604–613, 1998.

[14] S. Korman. CSH webpage. www.eng.tau.ac.il/

˜simonk/CSH/index.html.

[15] V. Kwatra, A. Schdl, I. Essa, G. Turk, and A. Bobick. Graph-

cut textures: Image and video synthesis using graph cuts.

SIGGRAPH, 22(3):277–286, 2003.

[16] M. Muja and D. G. Lowe. Fast approximate nearest neigh-

bors with automatic algorithm configuration. In VISSAPP,

pages 331–340. INSTICC Press, 2009.

[17] D. Ruderman. Statistics of natural images. Network: Com-

putation in Neural Systems, 5(4):517–548, 1994.

[18] D. Simakov, Y. Caspi, E. Shechtman, and M. Irani. Sum-

marizing visual data using bidirectional similarity. In CVPR,

pages 1–8. IEEE, 2008.

[19] X. Tong, J. Zhang, L. Liu, X. Wang, B. Guo, and H. Shum.

Synthesis of bidirectional texture functions on arbitrary sur-

faces. ACM Trans. on Graphics, 21(3):665–672, 2002.

[20] L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-

structured vector quantization. In SIGGRAPH, 2000.

[21] Y. Wexler, E. Shechtman, and M. Irani. Space-time comple-

tion of video. PAMI, 29:463–476, 2007.

www.eng.tau.ac.il/~simonk/CSH/index.html
www.eng.tau.ac.il/~simonk/CSH/index.html

