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Abstract— Deep fully connected networks are often
considered “universal approximators” that are capable of
learning any function. In this article, we utilize this particular
property of deep neural networks (DNNs) to estimate
normalized cross correlation as a function of spatial lag
(i.e., spatial coherence functions) for applications in
coherence-based beamforming, specifically short-lag
spatial coherence (SLSC) beamforming. We detail the
composition, assess the performance, and evaluate the
computational efficiency of CohereNet, our custom fully
connected DNN, which was trained to estimate the spatial
coherence functions of in vivo breast data from 18 unique
patients. CohereNet performance was evaluated on in vivo
breast data from three additional patients who were not
included during training, as well as data from in vivo liver
and tissue mimicking phantoms scanned with a variety of
ultrasound transducer array geometries and two different
ultrasound systems. The mean correlation between the
SLSC images computed on a central processing unit
(CPU) and the corresponding DNN SLSC images created
with CohereNet was 0.93 across the entire test set. The
DNN SLSC approach was up to 3.4 times faster than the
CPU SLSC approach, with similar computational speed,
less variability in computational times, and improved
image quality compared with a graphical processing
unit (GPU)-based SLSC approach. These results are
promising for the application of deep learning to estimate
correlation functions derived from ultrasound data in
multiple areas of ultrasound imaging and beamforming
(e.g., speckle tracking, elastography, and blood flow
estimation), possibly replacing GPU-based approaches
in low-power, remote, and synchronization-dependent
applications.
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I. INTRODUCTION

D
EEP learning has achieved state-of-the-art performance

for many imaging tasks, including object detection,

image segmentation, and image formation. In the field of

ultrasonic imaging, this success has resulted in many groups

studying how deep learning can replace the well-known,

physics-based process of beamforming. Beamforming relies

on knowledge of the speed of sound in tissue in order to

accurately reconstruct an image from raw channel data. As

an alternative to applying physics-based models that assume

specific values of this critical speed-of-sound property, recent

approaches [1]–[5] use simulated data that incorporate these

basic physical principles during training in order to replace the

mathematical component of image formation with deep neural

networks (DNNs) that learn parameters governing speed-of-

sound changes, aberration correction, and other information

needed for standard amplitude-based beamforming algorithms

(e.g., delay-and-sum (DAS) beamforming).

In particular, when studying the beamforming process from

a robotic tracking perspective, Nair et al. [1] used plane

wave images to produce segmentation maps directly from

the RF channel data, bypassing the beamforming step alto-

gether. Allman et al. [2] demonstrated the ability to identify

true sources and reflection artifacts in photoacoustic images

using the Faster R-CNN network configuration, generating

high-contrast, artifact-free, high-resolution images of point-

like sources by segmenting and displaying only the identified

sources with potential applications to ultrasound imaging.

Hyun et al. [4] demonstrated speckle reduction using a cus-

tom CNN, aiming to preserve resolution in comparison to

state-of-the-art speckle reduction techniques. Luijten et al.

[6] presented a deep learning approach to minimum vari-

ance beamforming, where ideal weights were learned and

applied during the summation step. Additional ultrasound-

related deep learning approaches were summarized by

van Sloun et al. [7].

Although these and other methods have proven to be suc-

cessful with generating amplitude-based ultrasound (or pho-

toacoustic) images with improved image quality metrics, there

are additional advanced imaging methods that can be explored

with deep learning approaches. Many of these advanced

methods rely on fundamental cross-correlation measurements

that can be time consuming to compute. For example, elas-
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tography relies on temporal correlations between subsequent

frames following the application of an external force [8].

Speckle tracking allows clinicians to estimate cardiac function

by tracking ventricular motion through temporal correlations

[9]. Doppler imaging uses fundamental cross correlations to

compute displacement vectors and calculate blood flow [10].

Recent speed-of-sound estimation approaches [11], [12] rely

on the fundamental van Cittert–Zernike theorem applied to

ultrasound imaging [13], which requires the calculation of

multiple spatial correlation functions (also known as spa-

tial coherence functions). In addition, advanced beamforming

algorithms such as the generalized coherence factor [14] and

minimum variance beamforming [15] use fundamental cross-

correlation measurements to improve contrast and resolution,

respectively. As a result, one possible application of deep

learning is to remove this critical bottle neck and learn cor-

relation functions, thereby bypassing the repeated correlation

calculations that are required for these techniques.

We previously introduced the CohereNet DNN architecture

for learning spatial coherence functions [16] with applications

to short-lag spatial coherence (SLSC) beamforming [17].

SLSC beamforming is an advanced technique that is based

on the fundamental van Cittert–Zernike theorem applied to

backscattered ultrasound echo data [13] and therefore relies on

the computation of multiple spatial coherence functions, which

requires multiple cross-correlation calculations. Specifically,

SLSC images are formed by calculating and then summing

the spatial coherence of backscattered pressure waves received

across the ultrasound transducer, demonstrating improvements

over traditional ultrasound image quality in a variety of in vivo

imaging applications, including breast [18], [19], liver [20],

[21], fetal [22], [23], cardiac [24], [25], and thyroid [17]

imaging. Benefits of SLSC images include improved visual-

ization of anechoic targets of interest, including breast [18],

[19] and thyroid cysts [17] as well as improved endocardial

border detection [24], [25]. However, clinical implementation

was initially limited by the computational expense associated

with multiple repeated correlation calculations.

A graphical processing unit (GPU) SLSC approach was

recently introduced to enable real-time clinical implemen-

tation [26]. This GPU implementation relies on simplifica-

tions, which provide approximations to the underlying spatial

correlation. For example, the GPU implementation does not

average over an axial kernel to compute the cross correlation

and instead includes the kernel dependence after the cross-

correlation computations are complete. In the original SLSC

algorithm (which we refer to as central processing unit (CPU)

SLSC), averaging over an axial kernel enables us to include

multiple observations across the aperture, which adds robust-

ness to the cross-correlation estimation.

Therefore, two outstanding challenges for clinical imple-

mentation include expected deviations relative to the original

CPU SLSC algorithm proposed by Lediju et al. [17] and the

speed of delivering real-time results that are faithful to the

original SLSC algorithm. Deep learning is one possible option

to address these two challenges, which is the focus of this man-

uscript. Specifically, we expand on the work presented in our

associated conference paper [16] to summarize the technical

details of CohereNet, further developing and deploying it to

bypass the repeated correlation calculations needed to other-

wise form SLSC images, without requiring the mathematical

simplifications described in [26]. We explore this approach

considering the “universal approximation” property of DNNs,

relying on this particular property to estimate spatial coherence

functions and create SLSC images. We then investigate the

similarity of the resulting images relative to the originally

proposed CPU SLSC algorithm and the GPU simplification

approach.

The remainder of this article is organized as follows.

Section II provides an overview of the SLSC algorithm,

describes its mathematical relationship to CohereNet input

data, details the methods used to generate training data, and

describes the custom CohereNet architecture built for the pro-

posed task of learning spatial coherence functions. Section III

demonstrates the performance and computational efficiency

of CohereNet, using a variety of in vivo breast lesions, as

well as data from tissue-mimicking phantoms, and in vivo

liver. Section IV discusses our findings and their implications

for other areas of ultrasound imaging. Finally, Section V

summarizes the major contributions of this article.

II. METHODS

A. SLSC Beamforming

SLSC beamforming calculates and directly displays the

spatial coherence of backscattered ultrasound pressure waves

received across an array of ultrasound transducer elements.

This approach can be contrasted with traditional DAS

beamforming, which provides images of recorded pressure

amplitude (as illustrated in Fig. 1). To implement SLSC beam-

forming, after standard receive delays are applied, normal-

ized correlation measurements are calculated between equally

spaced elements, or lags, resulting in the normalized spatial

correlation, defined as

R̂(m) =
1

N − m

N−m
�

i=1

�

k sk,i (n)sk,i+m (n)
�

�

k s2
k,i (n)

�

k s2
k,i+m (n)

(1)

where m is the lag in the number of elements, N is the number

of receive elements in the transducer, and sk,i (n) is a time-

delayed, zero-mean kernel consisting of k axial samples, each

received at element i and centered at depth n.

The resulting spatial coherence function, R̂(m), is then

summed up to a specific short-lag value, M , yielding the value

of the SLSC pixel

Rsl =

� M

1

R̂(m)dm ≈

M
�

m=1

R̂(m). (2)

This process was repeated for each lateral and axial positions

in the image, with an axial correlation kernel length of approx-

imately one wavelength, based on previous investigations of

optimal kernel lengths [27]. One wavelength ranges from 3 to

13 axial samples for transmit frequencies in our data set. We

selected a fixed kernel length near the midpoint of these values

(i.e., seven axial samples) for our implementations throughout

this article.
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Fig. 1. Process flow diagram comparing DAS beamforming to SLSC beamforming and demonstrating where CohereNet is implemented in the
SLSC image formation pipeline.

The axial kernel of channel data is related to the CohereNet

architecture as follows:

sk(n) = {sk,i (n) ∀ i = 1, . . . , N} (3)

which states that sk(n) is equivalent to sk,i (n) when all

channels from i = 1 to i = N are stacked side-by-side and

ordered from 1 to N . Equation (3) is a mathematical represen-

tation describing one axial kernel of ultrasound channel data

consisting of k axial samples, each measured across the entire

receive aperture and centered at depth n.

In contrast, the single sample ensemble GPU implemen-

tation does not use an axial kernel to compute the cross

correlation [i.e., k in (1)] and computes each cross correlation

in the numerator of (1) separately from the normalization

in the denominator. These modifications result in a general

normalization factor applied to multiple values at a particular

lag, instead of each value being normalized individually, as in

CPU SLSC [26].

B. Training, Testing, and Validation Data Sets

A data set was generated using in vivo breast ultrasound data

from 24 different patients, obtained after informed consent

and approval from the Johns Hopkins Medicine Institutional

Review Board [18], [19]. Data were acquired with an Alpinion

ECUBE-12R research ultrasound scanner connected to an

Alpinion L8-17 linear array ultrasound transducer (Alpinion,

Seoul, South Korea). The transducer has 128 elements, with

64 elements allowed to receive at one time (i.e., N = 64).

The acquired data were split into training, validation, and

testing sets by patient. A total of 18 patients were included

during training, three additional patients were used for

validation, and three additional patients were used for testing.

The data from each patient consist of two orthogonal scans

(i.e., radial and anti-radial), each with 10 frames/scan. One

training example is defined as one axial kernel of channel

data, that is, sk(n), and its corresponding coherence function,

that is, R̂(m). Considering that there were approximately 2000

axial kernels/scan line, a total of 92.2 million examples were

included in the training data set. Similarly, 15.4 million exam-

ples were included in either the validation or test data sets.

To test generalizability, additional test frames were acquired

using three additional ultrasound transducers, each with 64

receive elements and a minimum of 128 scanlines, with

transmit focal depths ranging from 7 mm to 6.9 cm: 1) an

Alpinion SP1-5 phased array transducer; 2) an Alpinion

EC3-10 curvilinear array transducer; and 3) a Verasonics

P4-2v phased array attached to a Verasonics research-based

ultrasound system (Verasonics, Kirkland, WA). Each of the

three additional transducers were used to acquire images of

a CIRS Model 054GS phantom (CIRS, Norfolk, VA). In

addition, an in vivo liver data set acquired with an Alpinion

L3-8 linear array transducer [20] was also included during

testing.

To acquire volumetric data with multiple anechoic

regions of interest (ROIs) for SLSC imaging, data from a

CIRS Model 050 small parts phantom was acquired with an

Alpinion L3-8 linear array transducer, while scanning in an

L-shaped motion, moving from the 5-mm anechoic cyts, to

the 3-mm anechoic cysts, and over to the 10-mm anechoic

cyst and point targets.

C. Network Input Data

In order to build a data set that contained enough valid

measurements of coherence, the acquired raw data were first

delayed and filtered prior to network input. Due to the slid-

ing window of selected active receive subapertures of the
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TABLE I

CohereNet ARCHITECTURE

Alpinion L8-17 linear array, the training data were filtered

to include only the center scanlines, which ensured not less

than 64 receive elements for each computation. The coherence

functions were then computed (using an axial kernel length

of seven samples, as noted in Section II-A). The first and

last three axial SLSC image pixels of each acquisition were

ignored, in order to avoid introducing errors due to coherence

measurements over an incomplete kernel of data.

D. CohereNet Architecture

In order to model (1), a custom DNN architecture was

implemented using Keras [28] with a Tensorflow backend [29].

The input to the network is represented as sk(n) ∈ R
k×N ,

and the output is R̂(m) ∈ R
1×m , where m is the number of

lags to be computed. Modeled after the mathematical cross-

correlation function, the network comprises of an input layer

followed by four fully connected layers and an average pooling

layer as shown in Table I. A rectified linear unit (ReLU) acti-

vation function was used for the first three fully connected lay-

ers due to its promotion of sparsity in the activation map and

ability to avoid vanishing gradients [30]. A hyperbolic tangent

(tanh) activation function followed on the final fully connected

layer in order to limit the output of the network between −1

and 1, similar to the mathematical cross-correlation function.

The dependence on an axial kernel is retained throughout the

network until the final layer. We call this network architecture

CohereNet. CohereNet contains 37 248 parameters and has a

memory requirement of 149 kB (when using a 32-bit floating

point value to store each parameter).

CohereNet was trained using a modified mean squared error

(MSE) loss function, defined as

MSE =
1

M

M
�

m=1

wm(ym − ŷm)2 (4)

where m is the lag, ym is the computed coherence function,

ŷm is the ground truth coherence function, and w is a vector

of Gaussian weights with µ = 0 and σ = 25.6. This custom

Gaussian weighting scheme was used to place larger weight

on errors in the short-lag region (i.e., the region used to

create SLSC images, and therefore the region most critical

to improving SLSC image quality).

CohereNet was trained using empirically optimized hyper-

parameters including: a batch size of 128, an Adam optimizer

[31], five epochs, and a learning rate of 0.001. The PC used

for training was an Intel Core i5-6600k CPU with 32 GB of

RAM alongside an Nvidia GTX Titan X (Pascal) with 12 GB

of VRAM and a core clock speed of 1531 MHz.

E. Computational Speed and Complexity

In order to compare previous implementations of SLSC

with CohereNet, the same channel data were processed on

the same computer (i.e., the PC described in Section II-D)

for each implementation. The three implementations for com-

parison were: 1) the original SLSC algorithm, implemented

on a CPU with MATLAB mex functions (i.e., CPU SLSC);

2) GPU SLSC, implemented on a GPU with mathematical

simplifications to the spatial coherence function summarized

in Section II-A and described in [26]; and 3) DNN SLSC,

which utilizes CohereNet and was implemented on a GPU

with Tensorflow and Keras.

Computational speed was measured over ten iterations of

the same image. In addition, speed was reported as a function

of resampled image sizes prior to calculations. For this image

size comparison, images were both upsampled by a factor of

2 and downsampled by factors of 2, 4, and 8.

In addition, the number of floating point operations (FLOPs)

required to create GPU SLSC and DNN SLSC images

were calculated to compare the computational cost of each

approach. For GPU SLSC, the number of FLOPs was mea-

sured using the CUDA Nsight tool and Visual Studio 2017.

For DNN SLSC, because the Nsight estimation tool is not

available for Keras, we calculated the number of FLOPs

manually by counting the matrix multiplication and vector

additions required for one forward pass through the network

[6]. Each fully connected layer requires 2Ni Ni+1 + Ni+1

FLOPs, where Ni and Ni+1 are the number of input and output

nodes, respectively, within each layer i [32]. ReLU requires

a comparison and a multiplication, therefore it requires two

FLOPs, tanh requires five multiplications and three additions,

therefore it requires eight FLOPs [33], and average pool

requires one multiplication and six additions, therefore it

requires seven FLOPs. The overall number of FLOPs required

for one forward pass through the network, resulting in the

network output R̂(m), can be represented by

OR̂ = k

⎡

⎢
⎣

L−2
�

i=0

(2Ni Ni+1 + Ni+1
	 
� �

FC layer

+ 2Ni+1
	 
� �

activation

)

+ 2NL−1 NL + NL
	 
� �

last FC layer

+ 8NL
	
��

activation

+ 7NL
	
��

avg. pool

⎤

⎥
⎦ (5)

where NL−1 and NL are the number of input and output nodes,

respectively, within the last layer, L = 4, and k = 7 as defined

in Section II-A. Fully connected is abbreviated as FC in (5).

The total number of FLOPs to form each SLSC image was

determined by multiplying OR̂ by the total number of axial ×

lateral samples in the image.

F. Image Quality Metrics

The quality of images were quantitatively compared by

computing the contrast, signal-to-noise ratio (SNR), contrast-

to-noise ratio (CNR), and generalized CNR (gCNR) [34], [35]
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Fig. 2. (a) One example coherence function from the focus of in vivo
breast data. (b) Mean ± standard deviation coherence function of a
1 mm × 1 mm region surrounding the focus of in vivo breast data.

of matched CPU SLSC and DNN SLSC images created from

the same channel data, defined as follows:

Contrast = 20 log10

�
Si

So

�

(6)

SNR =
So

σo

(7)

CNR =
|Si − So|
�

σ 2
i + σ 2

o

(8)

gCNR = 1 −

1
�

x=0

min
x

{pi(x), po(x)} (9)

where Si and σi are the mean and standard deviation, respec-

tively, within an ROI inside of the target, So and σo are

the mean and standard deviation, respectively, within an ROI

outside of the target (both computed prior to log-compression),

and pi and po are the probability density functions of the

signal inside and outside the target, respectively.

For each of the in vivo breast masses in the test set, the

inside ROI was selected from inside the mass, and the outside

ROI was selected at the same axial depth and size outside

of the mass wherever possible. For the phantom and in vivo

liver data sets, the inside ROI was inside the most anechoic or

hypoechoic region, with a corresponding outside ROI at the

same axial depth within the tissue portion of the phantom or

liver. All images were normalized to the brightest pixel within

the image and displayed on a linear scale with a maximum

normalized brightness of 1 and a minimum of 0.

In addition, the correlation between each CPU SLSC image

and its corresponding GPU SLSC or DNN SLSC image

created from the same channel data was computed for these

matched image pairs in order to provide a more global measure

of similarity that is not dependent on ROI selection.

III. RESULTS

A. In Vivo Breast Test Set

Fig. 2(a) shows an example coherence function measured at

the focus of one of the images in the test set of in vivo breast

data. The DNN result appears to fit the CPU result better at low

lags (i.e., ≤25) compared with higher lags (i.e., >25), which

is expected given the weighted loss function in (4). Although

the MSE difference between these two functions is 0.02, when

considering the region where penalties for mismatch was larger

Fig. 3. Example images from the test set containing in vivo breast data,
showing radial (top) and anti-radial (bottom) views. Each image triplet
was generated using CPU (left), GPU (center), and DNN (right) SLSC
images, created from the same channel data. All images were normalized
and displayed on a linear scale from 0 to 1.

(i.e., lags ≤25), the MSE is 0.002. Otherwise, for lags >25,

the MSE is 0.03.

Fig. 2(b) shows the mean ± standard deviation of coherence

functions within a 1 mm × 1 mm region surrounding the

focus of the data set used to make Fig. 2(a). While the DNN

result in Fig. 2(a) seems to smooth the coherence function in

comparison to the CPU result, we observed other cases where

CohereNet produced results that more closely followed the

CPU-generated coherence functions in the short-lag region.

Therefore, the results in Fig. 2(b) are a better representation

of the average match that we observed. These results further

emphasize the trend of better matches between CPU- and

DNN-generated coherence functions in the short-lag region

(compared with results obtained outside of the short-lag

region).

Fig. 3 shows two triplets of matched CPU, GPU, and DNN

SLSC images of two orthogonal (i.e., radial and anti-radial)

acquisitions in the test set of one in vivo breast mass from one

patient. The radial and anti-radial scans of this breast mass

are shown in the top and bottom rows of Fig. 3, respectively.

Each triplet shows CPU, GPU, and DNN SLSC images, from

left to right, respectively. Qualitatively, within each triplet,

the DNN SLSC image looks more similar to the CPU SLSC

image than the GPU SLSC image. Each image is normalized

and displayed from 0 to 1. The GPU SLSC image appears

smoother and brighter, with higher contrast than the CPU

SLSC image. Quantitatively, over the entire test set of in vivo

breast data, the mean correlation between CPU SLSC and

DNN SLSC images was 0.93, which highlights the observed

similarity between the CPU SLSC images and the DNN SLSC

images. In comparison, the mean correlation between CPU and

GPU SLSC images was lower at 0.86.
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Fig. 4. Differences in contrast, SNR, CNR, and gCNR when comparing
CPU SLSC images to GPU or DNN SLSC images. The mean is shown
as a bar, with ± one standard deviation shown as an error bar on the
mean.

The blue bars in Fig. 4 show mean differences in contrast,

SNR, CNR, and gCNR between CPU and DNN SLSC images

over the entire test set of in vivo breast ultrasound data, with

error bars representing ± one standard deviation of these

difference measurements. Averaged over the entire test set,

the mean contrast, SNR, CNR, and gCNR differences were

0.5 dB, 0.1, 0.07, and 0.04, respectively. For comparison, the

green bars in Fig. 4 show the mean differences in contrast,

SNR, CNR, and gCNR between CPU and GPU SLSC, demon-

strating larger mean differences of 0.8 dB, 0.3, 0.1, and 0.06,

respectively, and larger standard deviations.

B. Demonstration of Network Generalizability

Fig. 5 shows matched pairs of CPU and DNN SLSC images

created after testing with in vivo liver, multiple probe geome-

tries, and a Verasonics (as opposed to Alpinion) ultrasound

system. Specifically, Fig. 5(a) shows the result of applying

CohereNet to in vivo liver data acquired with the Alpinion

L3-8 linear array. Fig. 5(b) shows the results obtained with

the CIRS 054GS phantom and the Alpinion L3-8 linear array.

Fig. 5(c) and (d) shows the results obtained from two orthog-

onal planes of the CIRS 050 phantom with the Alpinion L3-8

linear array. Fig. 5(e)–(g) shows phantom results obtained

with the Alpinion SC1-6 curvilinear array, the Alpinion SP1-5

phased array, and the Verasonics P4-2v phased array, respec-

tively. A majority of these images have a notable dark-region

artifact at the top of the image due to the use of focused

transmits [36]. The dark regions to the left and right of the

point targets and hyperechoic cyst in Fig. 5(e) are caused by

the high-amplitude signals from these targets generating high-

amplitude off-axis scattering lateral to the targets [37].

When averaged over the entire test set of phantom and

in vivo liver data, the mean contrast, SNR, CNR, and gCNR

are similar (i.e., ≤12% difference) when comparing CPU

SLSC images to DNN SLSC images. In addition, over the

entire test of phantom and in vivo liver data, the mean cor-

relation between CPU SLSC and corresponding DNN SLSC

images was 0.96. When the in vivo breast test data set was

included, the mean correlation over the entire test set of

phantom, in vivo liver, and in vivo breast data was 0.93.

A summary of the image-to-image correlation for each test

set appears in Table II.

C. Computational Comparisons

Fig. 6(a) shows computation times, FLOPs, and image-to-

image correlations (from top to bottom, respectively) plotted

against the number of axial × lateral samples shown in the

radial view of Fig. 3, after applying resampling factors ranging

from 1/8 to 2. The standard deviations for the processing times

are shown as error bars on the mean. No standard deviations

are reported for the FLOPs or the correlation results because

the processing times were computed with the exact same data

run through each algorithm ten times (i.e., ten iterations), and

each iteration returned identical values per resampling factor.

The computation times shown in Fig. 6(a) improve rapidly

as the number of samples decreases for CPU SLSC. Both GPU

SLSC and DNN SLSC have similarly improved computational

speed as the number of samples decreases. With 128 scanlines

and 130 axial samples (i.e., 0.2 × 105 samples), the minimum

processing times for CPU, GPU, and DNN SLSC in Fig. 6(a)

are 0.31, 0.09, and 0.09 s, respectively. These processing times

correspond to frame rates of 3, 11, and 11 Hz, respectively.

The corresponding FLOP results in Fig. 6(a) suggest that

DNN SLSC requires more FLOPs than GPU SLSC for

each resampling factor. However, the increased number of

FLOPs does not directly translate to an increase in processing

time, considering that the processing times for GPU SLSC

and DNN SLSC with ≤0.7 × 105 samples are comparable.

Although FLOPs are representative of computational complex-

ity, processing time is a better representation of computational

speed because SLSC is ultimately intended to be a real-time

imaging method.

The corresponding image-to-image correlation results

shown in Fig. 6(a) demonstrate a degradation in image quality

as the number of axial samples decreases. Note that the corre-

lation for CPU SLSC is consistently equal to one because it is

correlated with itself, and each CPU SLSC image is the inde-

pendent baseline for the corresponding DNN and GPU images

created with the same resampling factor in order to correlate

images containing the same number of samples. Over all of the

sampling schemes, the DNN SLSC image has higher correla-

tion with the CPU SLSC image than the GPU SLSC image.

To provide example images of the DNN SLSC images that

were created with similar processing times to those of GPU

SLSC images, Fig. 6(b) and (c) show images downsampled

by factors of 1/2 and 1/4, respectively. These images can

be compared with their original versions appearing in the

top of Fig. 3 which have a resampling factor of 1 (i.e.,

no resampling). The downsampled images demonstrate the

decreased resolution that is responsible for the decreased

correlations observed in the bottom of Fig. 6(a). Although the

processing times for the 1/4 resampling results are similar

between GPU and DNN SLSC images, the degraded resolution

observed in Fig. 6(c) can render this image as unacceptable.

At the next highest resolution evaluated (i.e., 1/2 resampling

factor), Fig. 6(a) demonstrates that the mean processing time

for the DNN SLSC image is within one standard deviation of

the processing times for GPU SLSC images, while producing
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Fig. 5. Example pairs of matched CPU and DNN SLSC images from the additional test set acquired with an Alpinion L3-8 linear array to image (a)
in vivo liver tissue, (b) CIRS Model 054GS phantom, and (c and d) two orthogonal views of a CIRS Model 050 phantom. The CIRS Model 054GS
phantom was additionally imaged with (e) Alpinion SC1-6 curvilinear array, (f) Alpinion SP1-5 phased array, and (g) Verasonics P4-2v phased array
connected to a Verasonics ultrasound imaging system. All images were normalized and displayed on a linear scale from 0 to 1.

TABLE II

SUMMARY OF NETWORK GENERALIZABILITY

a mean image-to-image correlation similar to that achieved

with higher resolution DNN images. Qualitatively, the images

in Fig. 6(b) also appear to be similar to the original images

displayed in Fig. 3(a).

IV. DISCUSSION

A. Advantages of DNN Approach
to Correlation Calculations

There are two main advantages to using a DNN to esti-

mate spatial coherence functions. First, the DNN enables

bypassing of the repeated and time-intensive mathematical

correlations calculation step, providing speedup by a factor of

3.4 when compared with the CPU SLSC approach. It is also

remarkable that the network is sufficiently generalizable across

two ultrasound system manufacturers, multiple data types,

and multiple ultrasound transducer array geometries. Because

the network was trained with in vivo breast data, which

is known to be highly heterogeneous, we hypothesize that

multiple variations in coherence functions from this training

data set provided sufficient variations for the network to learn

multiple examples of coherence functions. As a result, the

network was able to generalize to multiple unseen cases. For

example, Fig. 5(f) and (g) show the same phantom imaged

using an Alpinion phased array and a Verasonics phased
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Fig. 6. (a) Processing times, FLOPs, and image-to-image correlations as functions of the number of samples (i.e., lateral × axial samples) included
in each SLSC implementation (i.e., CPU, GPU, or DNN SLSC). Example images created with resampling factors of (b) 1/2 and (c) 1/4.

array. Although these channel data were generated using two

different ultrasound imaging systems, the network nonetheless

accurately estimated coherence regardless of the differing

ultrasound systems.

The second advantage to a DNN-based approach is the

reduced estimation error compared with the GPU implemen-

tation. The GPU approach uses mathematical simplifications

in order to parallelize the mathematical calculations, which

also cause estimation errors. In addition, the accuracy and

performance of operations performed on the GPU depend

on the resolution of the floating-point variables (i.e., the

spatial coherence calculated on a CPU uses the double class

of variables, whereas the GPU uses floating-point variables).

The DNN calculations are performed on the same GPU and

are therefore also subject to floating-point errors. However,

because the DNN is trained to mimic the coherence function,

particularly in short-lag regions, we suspect that the DNN

inherently corrects for errors in floating point values, resulting

in DNN images that are both quantitatively and qualitatively

more similar to the CPU images than their GPU counterparts,

as demonstrated in Fig. 3 and quantified in Fig. 4. Outside of

the short-lag region (i.e., >25 lags), less weight was placed on

DNN estimation errors, resulting in the smoother coherence

functions at these lags (see Fig. 2), which is acceptable for

SLSC image formation.

While the current study focused on learning the coherence

function only, DNN architectures like CohereNet could be

extended to learn more complex operations found in other

advanced beamforming algorithms, such as R-SLSC [20] or

LW-SLSC [38], which may otherwise be challenging or not

feasible to implement in parallel on a GPU. These additional

applications will be the focus of future work.

B. Implications for Computationally Efficient Systems
Aside from being the most mathematically accurate, one

main advantage of the CPU SLSC approach is the ability

to process data on the same CPU where raw data may be

stored, thus bypassing the transfer of the raw data to the GPU

that is required for any GPU-based approach. However, the

advantages of beamforming coherence images in parallel on

a CPU are limited and often depend on additional processors

or servers, such as the Message Passing Interface workflow

[39], which introduces additional memory transfer issues.

Therefore, without multiple core processors or servers with a

fast data transfer channel, a CPU SLSC implementation cannot

be currently applied to real-time imaging applications. On the

other hand, the GPU SLSC approach effectively manages the

multiple processor architectures. With sufficient samples to

overcome the memory transfer requirement, it is advantageous

to use some level of estimation to allow parallel processing,

which can be achieved with either a GPU or a GPU-based

DNN approach.

Fig. 6(a) demonstrates that the GPU and DNN SLSC algo-

rithms both increase processing times as the number of sam-

ples increases. However, the standard deviations of processing

times are smaller when using DNN SLSC compared with GPU

SLSC, which is likely due to the stability of the Tensorflow

and Keras GPU packages and efficiency in memory transfer.

While downsampling to 1/2 the size of the original image is

sufficient to visualize breast mass features (compare Fig. 6(b)

with Fig. 3), and the computation times for GPU and DNN

SLSC algorithms are similar for this reduced number of

samples [see Fig. 6(a)], the lower standard deviation of the

DNN approach would be more desirable for applications

that require synchronization with consistent and predictable
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frame rates. In addition, network optimizations are likely

possible in order to improve the computation time of DNN

SLSC [40].

Another option for fast and computationally efficient imple-

mentations are field-programmable gate arrays (FPGAs),

which can be used to implement DNNs [41]–[43] with low

energy consumption per float-point operation at lower com-

putational cost than GPU implementations [44]–[46]. These

low-power implementations would be useful for embedded

system applications in remote areas of the world, where high-

energy computing is not feasible. An additional potential

benefit is low-power DNN-based FPGA implementations of

SLSC for miniaturized ultrasound imaging systems. When

comparing CohereNet to compact DNNs targeted for use in

mobile applications (which have >4 million parameters [47]),

our network requires at least 100× less memory than these

compact designs. Therefore, we consider CohereNet to have

a memory footprint that is sufficiently compact for low-power

applications.

C. Potential Clinical Applications

SLSC has previously been shown to successfully distinguish

solid from fluid-filled hypoechoic breast masses [18], which

is one possible clinical application of a real-time DNN-based

approach to SLSC imaging that is closely aligned with the

originally proposed algorithm implemented on a CPU. Other

previously demonstrated clinical advantages of SLSC imaging

[21]–[26], including an SLSC-based approach to blood flow

imaging [48], [49], would also benefit from the CohereNet

architecture. In addition, given the demonstrated generilizabil-

ity of the network, CohereNet is promising for other areas of

ultrasound imaging where fundamental cross-correlation cal-

culations are required, including elastography, speckle track-

ing, sound speed correction, and other advanced beamforming

algorithms, such as minimum variance beamforming.

V. CONCLUSION

This work is the first to use the universal approximation

properties of DNNs in order to estimate spatial coherence

functions and create coherence-based SLSC ultrasound images

that are both qualitatively and quantitatively similar to their

CPU SLSC counterparts. Over the entire test set (which

includes in vivo breast and liver data), the average correlation

between the DNN SLSC image and the matched CPU SLSC

image was 0.93, which demonstrates the in vivo clinical

feasibility of CohereNet. DNN SLSC images were generated

with a frame rate as high as 11 fps with 128 scanlines and

130 axial samples, which is comparable to current GPU imple-

mentations. In addition, CohereNet was able to generalize

across a variety of tissue types, transducer geometries, and

ultrasound imaging systems, which is promising for learning

the correlation calculations needed for extended applications

of correlation-based ultrasound imaging, possibly replacing

GPU-based approaches in low-power, remote, miniaturized,

and synchronization-dependent applications.
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