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Coherent Acoustic Array Processing and
Localization on Wireless Sensor Networks

JOE C. CHEN, MEMBER, IEEE, LEN YIP, JEREMY ELSON, HANBIAO WANG, MEMBER, IEEE,
DANIELA MANIEZZO , STUDENT MEMBER, IEEE, RALPH E. HUDSON, KUNG YAO, FELLOW, IEEE,
AND DEBORAH ESTRIN, SENIOR MEMBER, IEEE

Invited Paper

Advances in microelectronics, array processing, and wireless
networking have motivated the analysis and design of low-cost in-
tegrated sensing, computing, and communicating nodes capable
of performing various demanding collaborative space–time pro-
cessing tasks. In this paper, we consider the problem of coherent
acoustic sensor array processing and localization on distributed
wireless sensor networks. We first introduce some basic concepts of
beamforming and localization for wide-band acoustic sources. A re-
view of various known localization algorithms based on time-delay
followed by least-squares estimations as well as the maximum–like-
lihood method is given. Issues related to practical implementation
of coherent array processing, including the need for fine-grain time
synchronization, are discussed. Then we describe the implemen-
tation of a Linux-based wireless networked acoustic sensor array
testbed, utilizing commercially available iPAQs with built-in micro-
phones, codecs, and microprocessors, plus wireless Ethernet cards,
to perform acoustic source localization. Various field-measured re-
sults using two localization algorithms show the effectiveness of the
proposed testbed. An extensive list of references related to this work
is also included.

Keywords—Ad hoc network, beamforming, distributed sensor
network, microphone array, source localization, time synchroniza-
tion, wireless network.

I. INTRODUCTION

Recent developments in integrated circuit (IC) technology
has allowed the construction of low-cost small sensor nodes
with signal processing and wireless communication capabil-
ities that can form distributed wireless sensor network sys-
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tems. These systems can be used to perform detection, lo-
calization, tracking, and identification of objects in diverse
military, industrial, scientific, office, and home applications
[1]–[5].

Beamforming is a space–time operation in which a
waveform originating from a given source but received at
spatially separated sensors are combined in a time-syn-
chronous manner. If the propagation medium preserves
sufficient coherency among the received waveforms, then
the beamformed waveform can provide an enhanced
signal-to-noise ratio (SNR) compared to a single sensor
system. Beamforming can be used to determine the di-
rection(s) of arrival and the location(s) of the source(s).
Beamforming and localization are two interlinking prob-
lems, and many algorithms have been proposed to tackle
each problem individually and jointly (i.e., localization is
often needed to achieve beamforming, and some localization
algorithms take the form of a beamformer).

In this paper, we consider coherent processing dealing
with acoustic sources and sensors. The processing of
seismic/vibrational sensor data is similar to that of acoustic
sensors except for the propagation medium and unknown
speed of propagation. Source types such as RF, magnetic, in-
frared, and visual have other distinct features and will not be
considered here. Acoustic source localization and the beam-
forming problem is challenging due to its wide-band nature,
near- and far-field geometry (relatively near/far distance of
the source from the sensor array), and arbitrary array shape.
In contrast, RF source can be considered to be narrow-band,
far-field, and the array shape is often controlled. Many
tutorial papers [6], [7] and books [8]–[10] have dealt with
beamforming and localization. Recent developments in
single-frame acoustic source localization can be categorized
into two classes, namely, two-step methods (for single
source only) with an intermediate time-delay estimation
followed by a least-squares (LS) estimation [11]–[13] and
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a single-step maximum-likelihood (ML) approach that is
capable of estimating multiple source locations and directly
provide beamforming outputs [14], [15]. The ML approach
has an obvious advantage (at the cost of computational
complexity) over the time-delay LS-type methods, since
in most practical scenarios multiple signals coexist and
must be considered in order to achieve high performance
in localization and signal-to-interference-and-noise-ratio
(SINR) enhancement.

The design of acoustic localization algorithms mainly
focuses on high performance, minimal communications
load, and computationally efficient and robust methods
to reverberant and interference effects. In [16], a robust
method for relative time-delay estimation was proposed
by reformulating the problem as a linear regression of
phase data and then estimating the time delay through
minimization of a robust statistical error measure. When
several signals coexist, the relative time delay of the dom-
inant signal was shown to be effectively estimated using a
second-order subspace method [13]. A recent application
of particle filtering to acoustic source localization using
a steered beamforming framework also promises efficient
computations and robustness to reverberations [15]. Another
attractive approach using the integration (or fusion) of
distributed microphone arrays can yield high performance
without demanding data transfer among nodes [17]. Unlike
the aforementioned approaches that perform independent
frame-to-frame estimation, a tracking framework was also
developed in [18] to provide power-aware, low-latency lo-
cation tracking that utilizes the historical source information
(e.g., trajectory and speed) with the single-frame updates.

Besides various physical phenomena, many system con-
straints also limit the performance of coherent array signal
processing algorithms. For instance, the system performance
may suffer dramatically due to sensor location uncertainty
(due to unavailable measurement in random deployment),
microphone response mismatch and directivity (which may
be serious for some types of microphones in some geometric
configurations), and loss of signal coherence across the array
(i.e., widely separated microphones may not receive the
same coherent signal) [7]. In a self-organized wireless sensor
network, the collected signals need to be well time-synchro-
nized in order to yield good performance. These factors must
be considered for practical implementation of the sensor
network. In the past, most reported sensor network systems
performing these processing operations usually involve
custom-made hardware. In this paper, we propose to use
iPAQ 3760s by Compaq, which are handheld, battery-pow-
ered devices normally meant to be used as personal digital
assistants (PDAs). We select the iPAQ for its compactness,
reasonable battery life, Linux open-source operating system
support, and its availability as a commercial off-the-shelf
(COTS) product. Each iPAQ has a built-in microphone and
codec for sound acquisition, and it supports a spread-spec-
trum wireless Ethernet card for the transmission of data. As
will be described later in more detail, the CPU clocks of
the iPAQs are synchronized using the reference-broadcast
synchronization (RBS) method [30], and the synchronized

collected data is processed offline using Matlab to provide
various localization and beamforming results. Extensive
experiments using the wireless iPAQ testbed have been
conducted to demonstrate the effectiveness of the RBS algo-
rithm and localization/beamforming algorithms in various
scenarios.

The paper is organized as follows. In Section II, we in-
troduce the general framework of acoustic source localiza-
tion and beamforming. Some practical coherent array pro-
cessing issues, including fine-grained time synchronization,
are considered in Section III. In Section IV, the testbed setup
is described and the experimental results are demonstrated.
Finally, in Section V we make some conclusions.

II. A RRAY SIGNAL PROCESSINGALGORITHMS

A. Acoustic Source Localization

For an array of microphones simultaneously receiving
independent, spatially separated sound signals ,

the acoustic waveform arriving at theth microphone is given
by

(1)

for , where is the th source signal,
is the impulse response from the th source to

the th sensor (i.e., a delta function in free space cor-
responding to the time delay or a filtered response to
include the reverberation effect), is the additive
noise, and denotes the convolution operation. For each
chosen frame time (a function of the source motion and
signal bandwidth), the received signal is appropriately
digitized and collected into a space–time data vector

of length . The corresponding frequency spectrum data
vector is then given by ,
for , where is the number of fast Fourier
transform (FFT) bins.

Denote as the estimation parameter, which in the
near-field case is the source location vector
and is the th source location, and in the far-field case
is the angle vector , and
and are the azimuth and elevation angles of theth
source, respectively. In general, the ML estimation with
additive white Gaussian noise is given by

(2)

where is the weighting function by design (e.g.,
zero for insignificant bins and stronger weighting on
dominant bins and/or high-frequency bins),

is the projection matrix that projects
the data vector into the parameter space,

is the pseudoinverse of
the steering matrix [14], and only the positive
frequency bins are considered (negative frequencies are
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simply mirror images for real-valued signals). Note that no
closed-form solution is available for (2), and efficient itera-
tive computational methods have been proposed, including
the alternating projection [14], particle filtering [15], and
the SAGE method [20]. For the actual implementation of
the approximate maximum-likelihood (AML) algorithm
in the experiments shown in Section IV-B, we select the
100 highest frequency bins of the received sensor data for
processing. A finite grid search [with equal vertical and hor-
izontal spacing of 0.001 m for source localization and 0.3
for direction-of-arrival (DOA) estimation] is then conducted
to find the global maximum of the log-likelihood function.
Note that a refinement of the estimation can be performed
using iterative methods, but is not considered in this paper.

In the case of a single source, the time-delay-LS methods
can also be applied [11]–[13]. The time difference of arrival
(TDOA) can be estimated by using various correlation oper-
ations among sensors [16] or a blind beamforming method
proposed in [13]. Without a loss of generality, we choose

as the reference sensor for differential time delays. Let
the reference sensor be the origin of the coordinate system for
simplicity. The TDOA for sensors satisfies

(3)

for , where and
are the source location andth sensor

location, respectively, and is the speed of propagation.
This is a set of nonlinear equations, which after
some manipulations can be formulated as a closed-form
LS solution (with or without constraints) [11]–[13] of the
form , where the system matrix contains the
sensor locations and measured TDOAs, the unknown vector

contains the source location, source range, and(if
unknown), and the vector is a function of sensor locations.
An overdetermined LS solution can be given in the case
of six or more sensors (for three-dimensional localization
and unknown ). For a two-dimensional scenario, the con-
strained LS (CLS) solution to estimate the source location
has the form of

...
...

...

The constraint of the previous equations is given by
, where

, and

The CLS solution can be obtained by the Lagrangian mul-
tiplier method. The solution of the unknown vectorcan
be given by . The La-
grangian multiplier can be obtained by substitutingback
to the previous constraint equation. The resulting equation is
a fourth-order equation. We then select the root which gives
estimate the most physical meaning. A similar LS formula-
tion is also available for DOA estimation [19].

B. Wide-Band Beamforming

The main purpose of beamforming is to improve the SINR,
which is often performed after a desired source location is
obtained (except for the blind beamforming methods). In the
most general sense of digital wide-band beamforming in the
time-domain, the digitized received array signal is combined
with appropriate delays and weighting to form the beam-
former output

(4)

where is the chosen beamforming weight to satisfy
some criterion, and here denotes the digitized version of
the received signal. Numerous criteria exist in the design
of the beamforming weight, including maximum SINR
with frequency and spatial constraints. Other robust blind
beamforming methods have also been proposed to enhance
SINR without the knowledge of the sensor responses and
locations. For instance, the blind maximum power (MP)
beamformer in [13] obtains array weights from the dominant
eigenvector (or singular vector) associated with the largest
eigenvalue (or singular value) of the space–time sample cor-
relation (or data) matrix. This approach not only collects the
maximum power of the dominant source, but also provides
some rejection of other interferences and noise.

In some cases, especially for multiple sources, fre-
quency-domain beamforming may be more attractive for
acoustic signals due to their wide-band nature. This is
especially advantageous when a ML localization algorithm
is useda priori, since the beamforming output is a direct
result of the ML source signal vector estimate
given by

(5)

where is the beamformed spectrum vector for the
sources [14]. The ML beamformer in effect performs signal
separation by utilizing the physical separation of the sources,
and for each source signal, the SINR is maximized in the

ML sense. When only a single source exists,
degenerates to a vector and only the SNR is maximized.

III. PRACTICAL COHERENTARRAY PROCESSINGISSUES

Practical coherent array processing design must consider
ill effects of the propagation medium and channel distur-
bances and the imperfections of the sensor array system.
ML array processing under reverberation and various types
of non-Gaussian channel noises have been considered in
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Fig. 1. A critical path analysis for traditional time synchronization protocols (left) and RBS (right).
For traditional protocols working on a LAN, the largest contributions to nondeterministic latency
are the send time (from the sender’s clock read to delivery of the packet to its network interface
card (NIC), including protocol processing) and access time (the delay in the NIC until the channel
becomes free). The receive time tends to be much smaller than the send time because the clock can be
read at interrupt time, before protocol processing. In the RBS, the critical path length is shortened to
include only the time from the injection of the packet into the channel to the last clock read.

[21]–[23], under imperfect spatial coherence across the
array [24], and uncalibrated/partially calibrated sensor array
[25], [26]. Equalization of the mismatched sensor responses
under known conditions [27] and blind conditions [28] using
various blind equalization methods proposed for wireless
communication systems [29] can also be used here.

Another important issue for coherent array processing
is the need for fine-grain time synchronization among the
sensors. Time synchronization comes easily for a sensor
array connected by wires to a multichannel A/D converter.
However, precise time synchronization becomes a critical
performance limiting factor when low-cost sensor nodes
digitize their signals locally and are used for coherent pro-
cessing in a digital wireless network. Over the years, many
protocols have been designed for maintaining synchro-
nization of physical clocks over computer networks. Most
share the same basic design: a server periodically sends a
message containing its current clock value to a client. A
simple one-way message suffices if the typical latency from
server to client is small compared to the desired accuracy.
A common extension is to use a client request followed
by a server’s response. By measuring the total round-trip
time of the two packets, the client can estimate the one-way
latency. This allows for more accurate synchronization by
accounting for the time that elapses between the server’s
creation of a timestamp and the client’s reception of it. The
network time protocol (NTP) [31] is a ubiquitously adopted
protocol for Internet time synchronization that exemplifies
this design.

Synchronization algorithms that measure round-trip delay
have one major weakness: their one-way latency estimate
is confounded by differences in the forward and reverse
path delays. Of course, this is very likely in the Internet,
where time-varying cross traffic causes differences in
queueing delay from message to message. However, such
effects are also seen in LANs, where jitter on the order
of tens to thousands of microseconds can be introduced
by the medium-access control (MAC) layer. The value of
nondeterministic delay varies depending on the specific type
of network in use. For example, contention-based MACs
(e.g., Ethernet) must wait for the channel to be clear before
transmitting, and retransmit in the case of a collision. Wire-
less request to send/clear to send (RTS/CTS) schemes such
as those in 802.11 networks require an exchange of control

packets before data can be transmitted. Time-division
multiple access channels require the sender to wait for its
slot before transmitting. The jitter introduced is significant
compared to our order- synchronization precision goal.

The RBS scheme [30] is based on the observation that jitter
introduced within a LAN is dominated by these MAC de-
lays, unlike the Internet, where propagation delay dominates.
RBS, therefore, takes a different approach to reducing error:
nodes periodically send a message to their neighbors using
the network’s physical-layer broadcast. Recipients use the
message’s arrival time as a point of reference for comparing
their clocks. The message contains no explicit timestamp,
nor is it important exactly when it is sent. RBS, therefore,
does not synchronize a sender with a receiver, but rather
synchronizesa set of receivers with one another. By using
only receiver-to-receiver relations, the largest sources of non-
deterministic latency are removed from the critical path, as
seen in Fig. 1. While the delay incurred might vary unpre-
dictably from message to message, the nature of a broadcast
dictates that for aparticular message, these quantities arethe
same for all receivers. In addition, because the residual error
is often a well-behaved distribution (e.g., Gaussian), multiple
reference broadcasts can be sent over time, allowing both im-
proved precision of the phase offset estimate and correction
for clock skew.

IV. TESTBEDSETUP AND EXPERIMENTAL RESULTS

A. Wireless iPAQ Testbed

We selected the Compaq iPAQ 3760 Pocket PC as the
testbed node for the following reasons. It has a built-in mi-
crophone and audio codec that supports sampling at 8 to 48
kHz in signed 16-b integer. Its 206-MHz StrongARM-1110
CPU, 32-MB ROM, and 64-MB RAM provide reasonable
resources for signal processing. In addition, we insert an
11-Mb/s ORiNOCO PC card into each iPAQ for 802.11
wireless LAN connection. Thus, each node has integrated
sensing, processing, and communication capabilities. We
also chose the FAMILIAR distribution of the Linux op-
erating system [32] for the testbed. The combination of
COTS hardware and open-source operating system makes a
powerful and convenient development platform.

In the testbed, fine-grained network time synchronization
is realized by a daemon implementation of the RBS algo-
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Table 1
Rms Error Result of the Source Localization Experiments Using AML and TDOA-CLS Methods

rithm to reconcile the acoustic codecs’ sample clocks with
each other. The daemon simultaneously acts in both “sender”
and “receiver” roles. Every 10 s (slightly randomized to avoid
unintended synchronization), each daemon emits a reference
broadcast pulse packet with a sequence number and sender
ID. The daemon also watches for such packets to arrive; it
timestamps them and periodically sends a report of these
timestamps back to the pulse sender along with its receiver
ID. The pulse sender collects all of the pulse reception re-
ports and computes clock conversion parameters between
each pair of nodes that heard its broadcasts. These param-
eters are then broadcast back to local neighbors. The RBS
daemons that receive these parameters make them available
to users. RBS never sets the nodes’ clocks, but rather pro-
vides a user library that converts UNIX from one
node ID to another.

To test the precision of the time synchronization on our
platform, we connected a general purpose input/output
(GPIO) output from each of two iPAQs to an external logic
analyzer. The analyzer was programmed to report the time
difference between two pulses seen on each of its input
channels. In each trial, we used RBS clock conversion
parameters to command each iPAQ to raise their GPIO lines
high at the same time. We ran a total of 325 trials, each
separated by about 8 s, for a total test period of about 45
min. RBS achieved a mean 1.261.11 s synchronization
error. We believe this is primarily limited by the iPAQ’s
clock resolution under Linux, which is 1 .

All nodes are organized into clusters. The cluster head
commands other nodes to collect the same number of
acoustic data samples starting from the same time. However,
the low-end consumer-grade audio codecs on iPAQ 3760s
have large nondeterministic latencies when they are asked to
start recording. Simply starting recording at the same time
on all sensor nodes does not guarantee getting audio data
starting from the same time even if all sensor nodes’ CPUs
are perfectly synchronized. We can avoid this problem by
using the “audio server” [33]. The audio server is a daemon
that continuously runs the audio codec for sampling. In
addition, it timestamps and buffers the most recent 10 s of
audio data, and makes the data available to user applications
through a library function. The cluster head picks a recent
local timestamp, converts it to each sensor node’s local
timestamp, and then sends each sensor node a data request
with the specified sample numbers and the specified starting

time in terms of the sensor node’s local time. The sensor
node simply requests from the audio server the specified
number of audio data samples starting from the specified
local time, then sends them back to the cluster head. In this
way, the cluster head collects from all sensor nodes the same
number of audio data samples starting from the same time.

Data requests and replies between cluster head and sensor
nodes are realized by a client-server model. A server contin-
uously runs on each sensor node. When the cluster head re-
quests data, it creates one client thread targeting each sensor
node. Requests specify the starting time and duration of the
requested data. When the server receives a data request, it
requests data from the audio server according to the specifi-
cation, and then sends them back to the cluster head. All data
request threads run concurrently; thus, data request and reply
between the cluster head and each sensor node proceeds con-
currently and independently.

B. Experimental Results

Using the wireless iPAQ testbed described previously,
we conducted several experiments to demonstrate its ef-
fectiveness in localization/beamforming applications. At
this stage, the testbed is not completely automated and
does not perform real-time signal processing for localiza-
tion/beamforming due to the following challenges. First, the
testbed requires accurate sensor location recordings to yield
accurate results, and these measurements need to be inputted
to the software prior operation. Second, efficient processing
algorithm software needs to be installed in the iPAQ nodes
to generate real-time results. In the following experiments,
the time-synchronized acoustic data is collected by the
testbed and processed offline using Matlab for the purpose
of algorithm verification. The experiments are conducted
outdoors to avoid severe reverberation encountered in a
room environment.

We considered two scenarios: direct localization for
sources in the near field and DOA estimation for sources
in the far field. When several subarrays are available to
obtain independent DOA estimation of the same source,
bearing crossings from the subarrays is used to obtain the
location estimate. In the near-field case, we also assume
the received signal is highly coherent across the array. Two
types of algorithms tailored for both the near- and far-field
cases are considered, namely, the approximated ML (AML)
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Fig. 2. AML source localization of a vehicle source.

Fig. 3. AML source localization of a music source.

[14] and TDOA-CLS (constrained LS) [19]. The AML is
in the form of (2) with finite frame length (limited due to
possible movement of the source) and the TDOA-CLS uses
the LS solution of with a constraint to improve the
accuracy of estimation. In the case of multiple sources, only
the AML method can perform estimation and the alternating
projection procedure is applied. The results of the experi-
ments are shown in Table 1 as well as the following figures.

In the first experimental setting, the source (a computer
speaker) is placed in the middle of a wirelessly connected
square array (each side of length) of iPAQs. In this
near-field case (relative to the array), the four nodes act
as one array with intersensor spacingof 20 ft (6.1 m).
The sound of a moving light-wheeled vehicle is played
through the speaker and collected by the microphone array
embedded in the iPAQs. Fig. 2 shows the direct localization
results of the speaker using the AML method. Then, a
similar experiment is conducted using the same configu-
ration except that is set to be 40 ft (12.2 m). This time
the loudspeaker plays prerecorded organ music, whose
spectrum has a 2-kHz bandwidth with a central frequency at
1.75 kHz. The AML source localization result is shown at

Fig. 4. Experimental setting 2: triangular subarray configuration.

Fig. 5. Cross-bearing results of a vehicle source at different
locations.

Fig. 3. From the rms errors of the previous two experiments,
both algorithms show comparably promising results.

The second experimental setting is depicted in Fig. 4,
where three triangular subarrays each with three iPAQs form
the sensor network. In this far-field case (relative to each
subarray), the DOA of the source is independently estimated
in each subarray, and the bearing crossing is used to obtain
the location estimate. The speaker is placed at four distinct
source locations , simulating source movement,
and the same vehicle sound is played each time. Fig. 5
depicts one snapshot (for clear illustration) of the AML and
TDOA-CLS results at the four locations. We note that better
results are clearly obtained when the source is inside the
convex hull of the overall array. Moreover, the rms errors of
Figs. 2 and 3 are much less than the rms error result here.
The rms errors of direct source localization are much less
because of the favorable geometry, shorter ranges, and fully
coherent process in contrast to coherent DOA estimation
and noncoherent cross-bearing process.

A few more far-field cases are considered. The third exper-
imental setting is depicted in Fig. 6, where three linear sub-
arrays each with three iPAQs form one sensor network. The
speaker, this time playing the organ music sound, is placed at
six distinct locations. Fig. 7 shows the one-snapshot results of
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Fig. 6. Experimental setting 3: linear subarray configuration.

Fig. 7. Cross-bearing localization of a music source at different
locations.

Fig. 8. Experimental setting 4: square subarray configuration.

the two algorithms at the six locations. The rms error calcu-
lation shows performance similar to the second experiment,
which demonstrates that both AML and TDOA-CLS algo-
rithm can locate different sources. The fourth experimental
setting is depicted in Fig. 8, where four square subarrays each
with four iPAQs form a single network. Two speakers, one

Fig. 9. AML cross-bearing localization of a vehicle source.

Fig. 10. AML cross-bearing localization of two sources using
alternating projection.

playing the vehicle sound and the other one playing the music
sound simultaneously, are placed inside the convex hull of
the overall array—first, when only speaker one is playing, as
shown in Fig. 9; then, when both sources are playing simul-
taneously, as shown in Fig. 10. Comparing Figs. 9 and 10,
we see good multisource localization, but not as good as the
performance with only a single source.

Note when the number of subarray element increases, the
localization accuracy of the results reported above improves,
which agrees with the Cramer–Rao bound analysis reported
in [34].

V. CONCLUSION

In this paper, a wireless sensor network testbed is suc-
cessfully implemented using COTS products. Promising lo-
calization results are shown in the offline processing of the
collected data. The experiments show the effectiveness and
proper joint operation of the localization/beamforming and
time synchronization algorithms to yield good results. Fu-
ture work includes real-time processing on the iPAQ nodes.
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