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Abstract

The allocation problem stems from the diversification effect observed
in risk measurements of financial portfolios: the sum of the “risks” of
many portfolios is larger than the “risk” of the sum of the portfolios. The
allocation problem is to apportion this diversification advantage to the
portfolios in a fair manner, yielding, for each portfolio, a risk appraisal
that accounts for diversification.

Our approach is axiomatic, in the sense that we first argue for the nec-
essary properties of an allocation principle, and then consider principles
that fulfill the properties. Important results from the area of game theory
find a direct application. Our main result is that the Aumann-Shapley
value is both a coherent and practical approach to financial risk allocation.
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D. Straumann, and S. Bernegger have been most fruitful. Finally, he gratefully acknowledges
the financial support of both RiskLab (Switzerland) and the S.S.H.R.C. (Canada)
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1 Introduction

The theme of this paper is the sharing of costs between the constituents of a

firm. We call this sharing “allocation”, as it is assumed that a higher authority

exists within the firm, which has an interest in unilaterally dividing the firm’s

costs between the constituents. We will refer to the constituents as portfolios,

but business units could just as well be understood.

As an insurance against the uncertainty of the net worths (or equivalently,

the profits) of the portfolios, the firm could well, and would often be regulated

to, hold an amount of riskless investments. We will call this buffer, the risk

capital of the firm. From a financial perspective, holding an amount of money

dormant, i.e. in extremely low risk, low return money instruments, is seen as

a burden. It is therefore natural to look for a fair allocation of that burden

between the constituents, especially when the allocation provides a basis for

performance comparisons of the constituents between themselves (for example

in a rorac approach).

The problem of allocation is interesting and non-trivial, because the sum of

the risk capitals of each constituent, is usually larger than the risk capital of the

firm taken as a whole. That is, there is a decline in total costs to be expected by

pooling the activities of the firm, and this advantage needs to be shared fairly

between the constituents. We stress fairness, as all constituents are from the

same firm, and none should receive preferential treatment for the purpose of

this allocation exercise. In that sense, the risk capital of a constituent, minus

its allocated share of the diversification advantage, is effectively a firm-internal

risk measure.

The allocation exercise is basically performed for comparison purposes: know-

ing the profit generated and the risk taken by the components of the firm, allows

for a much wiser comparison than knowing only of profits. This idea of a richer

information set underlies the popular concepts of risk-adjusted performance

measures (rapm) and return on risk-adjusted capital (rorac).

Our approach of the allocation problem is axiomatic, in a sense that is very

similar to the approach taken by Artzner, Delbaen, Eber and Heath [3]. Just as
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they defined a set of necessary “good qualities” of a risk measure, we suggest a

set of properties to be fulfilled by a fair risk capital allocation principle. Their

set of axioms defines the coherence of risk measures, our set of axioms defines

the coherence of risk capital allocation principles. (Incidentally, the starting

point of our development, the risk capitals of the firm and its constituents, is a

coherent risk measure)

We make, throughout this article, liberal use of the concepts and results

of game theory. As we hope to convince the reader, game theory provides an

excellent framework on which to cast the allocation problem, and a eloquent

language to discuss it. There is an impressive amount of literature on the

allocation problem within the area of game theory, with applications ranging

from telephone billing to airport landing fees and to water treatment costs. The

main sources for this article are the seminal articles of Shapley [28] and [30] on

one hand; and the book of Aubin [5], the articles of Billera and Heath [9]), and

Mirman and Tauman [18], on the other hand.

At a more general level, the interested reader may consult a game theory

reference as the nice Osborne and Rubinstein [21], the edited book of Roth [24]

(including the survey of Tauman [32]), or the survey article of Young [33], which

contain legions of references on the subject.

The article is divided as follows. We recall the concept of coherent risk

measure in the next section. Section 3 presents the idea of the coherence in

allocation. Game theory concepts are introduced in section 4, where the risk

capital allocation problem is modelled as a game between portfolios. We turn

in section 5 to fuzzy games, and the coherence of allocation is extended to that

setting. This is where the Aumann-Shapley value emerges as a most attractive

allocation principle. We treat the question of the non-negativity of allocations

in section 6. The final section is devoted to a “toy example” of a coherent risk

measure based on the margin rules of the SEC, and to allocations that arise

while using that measure.

Remark: Beware that two concepts of coherence are discussed in this

paper: the coherence of risk measures was introduced in [3], but is used it here

as well; the coherence of allocations is introduced here.
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2 Risk measure and risk capital

In this paper, we follow Artzner, Delbaen, Eber and Heath [3] in relating the

risk of a firm to the uncertainty of its future worth. The danger, inherent to

the idea of risk, is that the firm’s worth reach such a low net worth at a point

in the future, that it must stop its activities. Risk is then defined as a random

variable X representing a firm’s net worth at a specified point of the future.

A risk measure ρ quantifies the level of risk. Specifically, it is a mapping

from a set of random variables (risks) to the real numbers: ρ(X) is the amount

of a numéraire (e.g. cash dollars) which, added to the firm’s assets, ensures that

its future worth be acceptable to the regulator, the chief risk officer or others.

(For a discussion of acceptable worths, see [3]) Clearly, the heftier the required

safety net is, the riskier the firm is perceived. We call ρ(X) the risk capital of

the firm. The risk capital allocation problem is to allocate the amount of

risk ρ(X) between the portfolios of the firm.

We will assume that all random variables are defined on a fixed probability

space (Ω,A,P). By L∞(Ω,A,P), we mean the space of bounded random vari-

ables; we assume that ρ is only defined on that space. The reader who wishes

to do so can generalize the results along the lines of [12].

In their papers, Artzner, Delbaen, Eber and Heath ([3], [2]) have suggested

a set of properties that risk measures should satisfy, thus defining the concept

of coherent measures of risk1:

Definition 1 A risk measure ρ : L∞ → R is coherent if it satisfies the fol-

lowing properties:

Subadditivity For all bounded random variables X and Y ,

ρ(X + Y ) ≤ ρ(X) + ρ(Y )

Monotonicity For all bounded random variables X,Y such that X ≤ Y 2,

ρ(X) ≥ ρ(Y )

Positive homogeneity For all λ ≥ 0 and bounded random variable X,

ρ(λX) = λρ(X)
1On the topic, see also Artzner’s [1], and Delbaen’s [12] and [13]
2The relation X ≤ Y between two random variables is taken to mean

X(ω) ≤ Y (ω) for almost all ω ∈ Ω, in a probability space (Ω,F , P ).
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Translation invariance For all α ∈ R and bounded random variable X,

ρ(X + αrf ) = ρ(X) − α
where rf is the price, at some point in the future, of a reference, riskless

investment whose price is 1 today.

The properties that define coherent risk measures are to be understood as

necessary conditions for a risk measure to be reasonable. Let us briefly justify

them. Subadditivity reflects the diversification of portfolios, or that “a merger

does not create extra risk” [3, p.209]. Monotonicity says that if a portfolio Y is

always worth more than X, then Y cannot be riskier than X. Homogeneity is

a limit case of subadditivity, representing what happens when there is precisely

no diversification effect. Translation invariance is a natural requirement, given

the meaning of the risk measure given above and its relation to the numéraire.

In this paper, we will not be concerned with specific risk measures, until our

example of section 7; we however assume all risk measures to be coherent.

3 Coherence of the allocation principle

An allocation principle is a solution to the risk capital allocation problem. We

suggest in this section a set of axioms, which we argue are necessary properties of

a “reasonable” allocation principle. We will call coherent an allocation principle

that satisfies the set of axioms. The following definitions are used:

• Xi, i ∈ {1, 2, . . . , n}, is a bounded random variable representing the net

worth at time T of the ith portfolio of a firm. We assume that the nth portfolio

is a riskless instrument with net worth at time T equal to Xn = αrf , where rf

the time T price of a riskless instrument with price 1 today.

• X, the bounded random variable representing the firm’s net worth at some

point in the future T , is defined as X �
∑n

i=1Xi.

• N is the set of all portfolios of the firm.

• A is the set of risk capital allocation problems: pairs (N, ρ) composed of

a set of n portfolios and a coherent risk measure ρ.

• K = ρ(X) is the risk capital of the firm.

We can now define:
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Definition 2 An allocation principle is a function Π : A → Rn that maps

each allocation problem (N, ρ) into a unique allocation:

Π : (N, ρ) �−→


Π1(N, ρ)
Π2(N, ρ)

...
Πn(N, ρ)

 =


K1

K2

...
Kn

 such that
∑
i∈N

Ki = ρ(X).

The condition ensures that the risk capital is fully allocated. The Ki–notation

is used when the arguments are clear from the context.

Definition 3 An allocation principle Π is coherent if for every allocation

problem (N, ρ), the allocation Π(N, ρ)satisfies the three properties:

1) No undercut

∀M ⊆ N,
∑
i∈M

Ki ≤ ρ

(∑
i∈M

Xi

)
2) Symmetry If by joining any subset M ⊆ N\{i, j}, portfolios i and j both

make the same contribution to the risk capital, then Ki = Kj.

3) Riskless allocation

Kn = ρ(αrf ) = −α

Recall that the nth portfolio is a riskless instrument.

Furthermore, we call non-negative coherent allocation a coherent allo-

cation which satisfies Ki ≥ 0, ∀i ∈ N .

It is our proposition that the three axioms of Definition 3 are necessary

conditions of the fairness, and thus credibility, of allocation principles. In that

sense, coherence is a yardstick by which allocation principles can be evaluated.

The properties can be justified as follows. The “no undercut” property

ensures that no portfolio can undercut the proposed allocation: an undercut

occurs when a portfolio’s allocation is higher than the amount of risk capital

it would face as an entity separate from the firm. Given subadditivity, the

rationale is simple. Upon a portfolio joining the firm (or any subset thereof),

the total risk capital increases by no more than the portfolio’s own risk capital:

in all fairness, that portfolio cannot justifiably be allocated more risk capital
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than it can possibly have brought to the firm. The property also ensures that

coalitions of portfolios cannot undercut, with the same rationale. The symmetry

property ensures that a portfolio’s allocation depends only on its contribution

to risk within the firm, and nothing else. According to the riskless allocation

axiom, a riskless portfolio should be allocated exactly its risk measure, which

incidentally will be negative. It also means that, all other things being equal, a

portfolio that increases its cash position, should see its allocated capital decrease

by the same amount.

4 Game theory and allocation to atomic players

Game theory is the study of situations where players adopt various strategies to

best attain their individual goals. For now, players will be atomic, meaning that

fractions of players are considered senseless. We will focus here on coalitional

games:

Definition 4 A coalitional game (N, c) consists of:

• a finite set N of n players, and

• a cost function c that associates a real number c(S) to each subset S of

N (called a coalition).

We denote by G the set of games with n players.

The goal of each player is to minimize the cost she incurs, and her strategies

consist of accepting or not to take part in coalitions (including the coalition of

all players).

In the literature, the cost function is usually assumed to be subadditive:

c(S ∪ T ) ≤ c(S) + c(T ) for all subsets S and T of N with empty intersection;

an assumption which we make as well.

One of the main questions tackled in coalitional games, is the allocation of

the cost c(N) between all players; this question is formalized by the concept of

value:
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Definition 5 A value is a function Φ : G → Rn that maps each game (N, c)

into a unique allocation:

Φ : (N, c) �−→


Φ1(N, c)
Φ2(N, c)

...
Φn(N, c)

 =


K1

K2

...
Kn

 where
∑
i∈N

Ki = c(N)

Again, the Ki–notation can be used when the arguments are clear from the

context, and when it is also clear whether we mean Πi(N, ρ) or Φi(N, c).

4.1 The core of a game

Given the subadditivity of c, the players of a game have an incentive to form

the largest coalition N , since this brings an improvement of the total cost, when

compared with the sum of their individual costs. They need only find a way to

allocate the cost c(N) of the full coalition N , between themselves; but in doing

so, players still try to minimize their own share of the burden. Player i will even

threaten to leave the coalition N if she is allocated a share Ki of the total cost

that is higher that her own individual cost c({i}). Similar threats may come

from coalitions S ⊆ N : if
∑

i∈S Ki exceeds c(S) then every player i in S could

carry an allocated cost lower than his current Ki, if S separated from N .

The set of allocations that do not allow such threat from any player nor

coalition is called the core:

Definition 6 The core of a coalitional game (N, c) is the set of allocations

K ∈ Rn for which
∑

i∈S Ki ≤ c(S) for all coalitions S ⊆ N .

A condition for the core to be non-empty is the Bondareva-Shapley theorem.

Let C be the set of all coalitions of N , let us denote by 1S ∈ Rn the characteristic

vector of the coalition S:

(1S)i =
{

1 if i ∈ S
0 otherwise

A balanced collection of weights is a collection of |C| numbers λS in [0, 1] such

that
∑

S∈C λS1S = 1N . A game is balanced if
∑

S∈C λS c(S) ≥ c(N) for all

balanced collections of weights. Then:
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Theorem 1 (Bondareva-Shapley, [11], [29]) A coalitional game has a non-

empty core if and only if it is balanced.

Proof: see e.g. [21].

4.2 The Shapley value

The Shapley value was introduced by L. Shapley [28] and has ever since received

a considerable amount of interest (see [24]).

We use the abbreviation ∆i(S) = c(S ∪ i) − c(S) for any set S ⊂ N, i �∈
S. Two players i and j are interchangeable in (N, c) if either one makes the

same contribution to any coalition S it may join, that contains neither i nor

j: ∆i(S) = ∆j(S) for each S ⊂ N and i, j �∈ S. A player i is a dummy if it

brings the contribution c(i) to any coalition S that does not contain it already:

∆i(S) = c(i). We need to define the three properties:

Symmetry If players i and j are interchangeable, then Φ(N, c)i = Φ(N, c)j

Dummy player For a dummy player, Φ(N, c)i = c(i)

Additivity over games For two games (N, c1) and (N, c2), Φ(N, c1 + c2) =

Φ(N, c1)+Φ(N, c2), where the game (N, c1+c2) is defined by (c1+c2)(S) =

c1(S) + c2(S) for all S ⊆ N .

The rationale of these properties will be discussed in the next section. The

axiomatic definition of the Shapley value is then:

Definition 7 ([28]) The Shapley value is the only value that satisfies the

properties of symmetry, dummy player, and additivity over games.

Let us now bring together the core and the Shapley value: when does the

Shapley value yield allocations that are in the core of the game ? The only

pertaining results to our knowledge are that of Shapley [30] and Aubin [5]. The

former involves the property of strong subadditivity:
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Definition 8 A coalitional game is strongly subadditive if it is based on a

strongly subadditive3 cost function:

c(S) + c(T ) ≥ c(S ∪ T ) + c(S ∩ T )

for all coalitions S ⊆ N and T ⊆ N .

Theorem 2 ([30]) If a game (N, c) is strongly subadditive, its core contains

the Shapley value.

The second condition that ensures that the Shapley value is in the core, is:

Theorem 3 ([5]) If for all coalitions S, |S| ≥ 2,

∑
T⊆S

(−1)|S|−|T | c(T ) ≤ 0

then the core contains the Shapley value.

The implications of these two results are discussed in the next section.

Let us end this section with the algebraic definition of the Shapley value,

which provides both an interpretation (see [28] or [24]), and an explicit compu-

tational approach.

Definition 9 The Shapley value KSh for the game (N, c) is defined as:

KSh
i =

∑
S∈Ci

(s− 1)!(n− s)!
n!

(
c (S) − c(S \ {i})

)
, i ∈ N

where s = |S|, and Ci represents all coalitions of N that contain i.

Note that this requires the evaluation of c for each of the 2n possible coalitions,

unless the problem has some specific structure. Depending on what c is, this

task may become impossibly long, even for moderate n.
3By definition, a strongly subadditive set function is subadditive. We follow Shapley [30] in

our terminology; note that he calls convex, a function satisfying the reverse relation of strong
subadditivity.
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4.3 Risk capital allocations and games

Clearly, we intend to model risk capital allocation problems as coalitional games.

We can associate the portfolios of a firm with the players of a game, and the

risk measure ρ with the cost function c :

c(S) � ρ

(∑
i∈S

Xi

)
for S ⊆ N (1)

Allocation principles naturally become values.

Note that given (1), ρ being coherent and thus subadditive in the sense

ρ(X + Y ) ≤ ρ(X) + ρ(Y ) of Definition 1, implies that c is subadditive in the

sense c(S ∪ T ) ≤ c(S) + c(T ) given above.

The core Allocations satisfying the “no undercut” property lie in the core of

the game, and if none does, the core is empty. There is only a interpretational

distinction between the two concepts: while a “real” player can threaten to leave

the full coalition N , a portfolio cannot walk away from a bank. However, if the

allocation is to be fair, undercutting should be avoided. Again, this holds also

for coalitions of individual players/portfolios.

The non-emptiness of the core is therefore crucial to the existence of coherent

allocation principles. From Theorem 1, we have:

Theorem 4 If a risk capital allocation problem is modelled as a coalitional

game whose cost function c is defined with a coherent risk measure ρ through

(1), then its core is non-empty.

Proof: Let 0 ≤ λS ≤ 1 for S ∈ C, and
∑

S∈C λS1S = 1N . Then

∑
S∈C

λS c(S) =
∑
S∈C

ρ

(∑
i∈S

λSXi

)

≥ ρ

(∑
S∈C

(∑
i∈S

λSXi

))

= ρ

∑
i∈N

 ∑
S∈C, S� i

λSXi


= c(N)

By Theorem 1, the core of the game is non-empty. �
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The Shapley value With the allocation problem modelled as a game,

the Shapley value yields a risk capital allocation principle. Much more, it is a

coherent allocation principle, but for the “no undercut” axiom. Symmetry is

satisfied by definition. The riskless allocation axiom of Definition 3 is implied

by the dummy player axiom: from our definitions of section 3, the reference,

riskless instrument (cash and equivalents) is a dummy player.

Note that additivity over games is a property that the Shapley value pos-

sesses but that is not required of coherent allocation principle. As discussed in

section 5.3.2, additivity conflicts with the coherence of the risk measures.

The Shapley value as coherent allocation principle From the above,

the Shapley value provides us with a coherent allocation principle if it maps

games to elements of the core. It is the case when the conditions of either

Theorems 2 or 3 are satisfied. The case of Theorem 2 is perhaps disappointing,

as the strong subadditivity of c implies an overly stringent condition on ρ:

Theorem 5 Let ρ be a positively homogeneous risk measure, such that ρ(0) = 0.

Let c be defined over the set of subsets of random variables in L∞, through

c(S) � ρ (
∑

i∈S Xi). Then if c is strongly subadditive, ρ is linear.

Proof: Consider any random variables X,Y, Z in L∞. The strong subadditivity

of c implies

ρ(X + Z) + ρ(Y + Z) ≥ ρ(X + Y + Z) + ρ(Z)

but also

ρ(X + Z) + ρ(Y + Z) = ρ(X + (Y + Z) − Y ) + ρ(Y + Z)

≤ ρ(X + (Y + Z)) + ρ((Y + Z) − Y )

= ρ(X + Y + Z) + ρ(Z)

so that

ρ(X + Z) + ρ(Y + Z) = ρ(X + Y + Z) + ρ(Z)

By taking Z = 0, we obtain the additivity of ρ. Then, combining

ρ(−X) = ρ(X −X) − ρ(X) = −ρ(X)
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with the positive homogeneity of ρ, we obtain that ρ is homogeneous, and thus

linear. �

That risks be plainly additive is difficult to accept, since it eliminates all

possibility of diversification effects.

Unfortunately, the condition of Theorem 3 is also a strong one, at least in

no way implied by the coherence of the risk measure ρ.

We thus fall short of a convincing proof of the existence of coherent alloca-

tions. However, we consider next an other type of coalitional games, where an

slightly different definition of coherence yields much stronger existence results.

5 Allocation to fractional players

In the previous section, portfolios were modelled as players of a game, each

of them indivisible. This indivisibility assumption is not a natural one, as we

could consider fractions of portfolios, as well as coalitions involving fractions of

portfolios. The purpose of this section is to examine a variant of the allocation

game which allows divisible players.

This time, we dispense with the initial separation of risk-capital allocation

problems and games, and introduce the two simultaneously. As before, players

and cost functions are used to model respectively portfolios and risk measures,

and values give us allocation principles.

5.1 Games with fractional players

The theory of coalitional games has been extended to continuous players who

need neither be in nor out of a coalition, but who have a “scalable” presence.

This point of view seems much less incongruous if the players in question rep-

resent portfolios: a coalition could consist of sixty percent of portfolio A, and

fifty percent of portfolio B. Of course, this means “x percent of each instrument

in the portfolio”.

Aumann and Shapley’s book “Values of Non-Atomic Games” [7] was the

seminal work on the game concepts discussed in this section. There, the interval
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[0, 1] represents the set of all players, and coalitions are measurable subintervals

(in fact, elements of a σ-algebra). Any subinterval contains one of smaller

measure, so that there are no atoms, i.e. smallest entities that could be called

players; hence the name “non-atomic games”.

Some of the non-atomic game theory was later recast in a more intuitive

setting: an n-dimensional vector λ ∈ Rn
+ represents the “level of presence” of

the each of n players in a coalition. The original papers on the topic are Aubin’s

[5] and [6], Billera and Raanan’s [10], Billera and Heath’s [9], and Mirman and

Tauman’s [18].

Aubin called such games fuzzy; we call them (coalitional) games with frac-

tional players:

Definition 10 A coalitional game with fractional players (N , Λ, r) con-

sists of

• a finite set N of players, with |N | = n;

• a positive vector Λ ∈ Rn
+, each component representing for one of the n

players his full involvement.

• a real-valued cost function r : Rn → R, r : λ �→ r(λ) such that r(0) = 0.

Players are portfolios; the vector Λ represents, for each portfolio, the “size”

of the portfolio, in a reference unit. (The Λ could also represent the business

volumes of the business units). The ratio λi

Λi
then denotes a presence or activity

level, for player/portfolio i, so that a vector λ ∈ Rn
+ can be used to represent

a “coalition of parts of players”. We still denote by Xi the random variable

of the net worth of portfolio i at a future time T ), and Xn keeps its riskless

instrument definition of section 3, with time T net worth equal to αrf , with α

some constant. Then the cost function r can be identified with a risk measure

ρ through

r(λ) � ρ

(∑
i∈N

λi

Λi
Xi

)

so that r(Λ) = ρ(N). By extension, we also call r(λ) a risk measure. The

expression Xi

Λi
is the per-unit future net worth of portfolio i.
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The definition of coherent risk measure (Definition 1) is adapted as:

Definition 11 A risk measure r is coherent if it satisfies the four properties:

Subadditivity4 For all λ∗ and λ∗∗ in Rn,

r(λ∗ + λ∗∗) ≤ r(λ∗) + r(λ∗∗)

Monotonicity For all λ∗ and λ∗∗ in Rn,

∑
i∈N

λ∗i
Λi
Xi ≤

∑
i∈N

λ∗∗i

Λi
Xi ⇒ r(λ∗) ≥ r(λ∗∗)

where the left-hand side inequality is again understood as in footnote 2.

Degree one homogeneity For all λ ∈ Rn, and for all γ ∈ R+,

r(γλ) = γ r(λ)

Translation invariance For all λ ∈ Rn,

r(λ) = r




λ1

λ2

...
λn−1

0



 − λn

Λn
α

One can check that r is coherent if and only if ρ is.

5.2 Coherent cost allocation to fractional players

The portfolio sizes given by Λ allow us to treat allocations on a per-unit basis.

We thus introduce a vector k ∈ Rn, each component of which represents the per

unit allocation of risk capital to each portfolio. The capital allocated to each

portfolio is obtained by a simple Hadamard (i.e. component-wise) product

Λ .∗ k = K (2)

Let us also define, in a manner equivalent to the concepts of section 4:
4Note that under degree one homogeneity, subadditivity is equivalent to convexity

r(αλ∗ + (1 − α)λ∗∗) ≤ αr(λ∗) + (1 − α)r(λ∗∗)
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Definition 12 A fuzzy value is a mapping assigning to each coalitional game

with fractional players (N , Λ, r) a unique per-unit allocation vector

φ : (N,Λ, r) �−→


φ1(N,Λ, r)
φ2(N,Λ, r)

...
φn(N,Λ, r)

 =


k1
k2
...
kn


with

Λtk = r(Λ) (3)

Again, we use the k-notation when the arguments are clear from the context.

Clearly, a fuzzy value provides us with an allocation principle, if we generalize

the latter to the context of divisible portfolios.

We can now define the coherence of fuzzy values:

Definition 13 Let r be a coherent risk measure. A fuzzy value

φ : (N,Λ, r) �−→ k ∈ Rn

is coherent if it satisfies the properties defined below, and if k is an element of

the fuzzy core:

• Aggregation invariance Suppose the risk measures r and r̄ satisfy

r(λ) = r̄(Γλ) for some m×n matrix Γ and all λ such that 0 ≤ λ ≤ Λ then

φ(N,Λ, r) = Γtφ(N,ΓΛ, r̄) (4)

• Continuity The mapping φ is continuous over the normed vector space

Mn of continuously differentiable functions r : Rn
+ −→ R that vanish at

the origin.

• Non-negativity under r non-decreasing5 If r is non-decreasing, in

the sense that r(λ) ≤ r(λ∗) whenever 0 ≤ λ ≤ λ∗ ≤ Λ, then

φ(N,Λ, r) ≥ 0 (5)

5Called monotonicity by some authors.
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• Dummy player allocation If i is a dummy player, in the sense that

r(λ) − r(λ∗) = (λi − λ∗i )
ρ(Xi)

Λi

whenever 0 ≤ λ ≤ Λ and λ∗ = λ except in the ith component, then

ki =
ρ(Xi)

Λi
(6)

• Fuzzy core The allocation φ(N,Λ, r) belongs to the fuzzy core of the

game (N,Λ, r) if for all λ such that 0 ≤ λ ≤ Λ,

λtφ(N,Λ, r) ≤ r(λ) (7)

as well as Λtφ(N,Λ, r) = r(Λ).

The properties required of a coherent fuzzy value can be justified essentially

in the same manner as was done in Definition 3. Aggregation invariance is akin

to the symmetry property: equivalent risks should receive equivalent alloca-

tions. Continuity is desirable to ensure that similar risk measures yield similar

allocations. Non-negativity under non-decreasing risk measures is a natural re-

quirement to enforce that “more risk” imply “more allocation”. The dummy

player property is the equivalent of the riskless allocation of Definition 3, and is

necessary to give “risk capital” the sense we gave it in section 2: an amount of

riskless instrument necessary to make a portfolio acceptable, riskwise. Finally,

note that the fuzzy core is a simple extension of the concept of core: allocations

obtained from the fuzzy core through (2) allow no undercut from any player,

coalition of players, nor coalition with fractional players. Such allocations are

fair, in the same sense that core element were considered fair in section 4.3.

Much less is known about this allocation problem than is known about the

similar problem described in section 4. On the other hand, one solution concept

has been well investigated: the Aumann-Shapley pricing principle.

5.3 The Aumann-Shapley Value

Aumann and Shapley extended the concept of Shapley value to non-atomic

games, in their original book [7]. The result was called the Aumann-Shapley
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value, and was later recast in the context of fractional players games, where it

is defined as:

φAS
i (N,Λ, r) = kAS

i =
∫ 1

0

∂r

∂λi
(γΛ) dγ (8)

for player i of N . The per-unit cost kAS
i is thus an average of the marginal

costs of the ith portfolio, as the level of activity or volume increases uniformly

for all portfolios from 0 to Λ. The value has a simpler expression, given our as-

sumed coherence of the risk measure r; indeed, consider the result from standard

calculus:

Lemma 1 If f is a k–homogeneous function, i.e. f(γx) = γkf(x), then ∂f(x)
∂xi

is (k − 1)-homogeneous.

As a result, since r is 1–homogeneous,

φAS
i (N,Λ, r) = kAS

i =
∂r(Λ)
∂λi

(9)

and the per-unit allocation vector is the gradient of the mapping r evaluated at

the full presence level Λ:

φ(N,Λ, r)AS = kAS = ∇r(Λ) (10)

We call this gradient “Aumann-Shapley per-unit allocation”, or simply “Au-

mann-Shapley prices”. The amount of risk capital allocated to each portfolio is

then given by the components of the vector

KAS = kAS .∗ Λ (11)

5.3.1 Axiomatic characterizations of the Aumann-Shapley value

As in the Shapley value case, a characterization consists of a set of properties,

which uniquely define the Aumann-Shapley value. Many characterizations exist

(see Tauman [32]); we concentrate here on that of Aubin [5] and [6], and Billera

and Heath [9]. Both characterizations are for values of games with fractional

players as defined above; only their assumptions on r differ from our assump-

tions: their cost functions are taken to vanish at zero and to be continuously

differentiable, but are not assumed coherent. Aubin also implicitly assumes r

to be homogeneous of degree one. Let us define:
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A fuzzy value φ is linear if for any two games (N , Λ, r1) and (N , Λ, r2) and

scalars γ1 and γ2, it is additive and 1-homogeneous in the risk measure:

φ(N,Λ, γ1r1 + γ2r2) = γ1 φ(N,Λ, r1) + γ2 φ(N,Λ, r2)

Then, the following properties of a fuzzy value are sufficient to uniquely define

the Aumann-Shapley value (8):

Aubin’s Billera & Heath’s
• linearity • linearity
• aggregation invariance • aggregation invariance
• continuity • non-negativity under r non decreasing

In fact, both Aubin, and Billera and Heath prove that the Aumann-Shapley

value satisfies all four properties in the table above.

So, is the Aumann-Shapley value a coherent fuzzy value when r is a coherent

risk measure ? Note first that the coherence of r implies its homogeneity, as

well as r(0) = 0. Being continuously differentiable is not automatic however;

let us assume for now that r does have continuous derivatives. The eventual

nondifferentiability will be discussed later.

Clearly, two properties are missing from the set above for φ to qualify as

coherent: the dummy player property and the fuzzy core property. The for-

mer causes no problem: given (9), the very meaning of a dummy player in

Definition 13 implies:

Lemma 2 When the allocation process is based on a coherent risk measure r,

the Aumann-Shapley prices (9) satisfy the dummy player property.

Concerning the fuzzy core property, one very interesting result of Aubin is

the following:

Theorem 6 ([5]) The fuzzy core (7) of a fuzzy game (N, r,Λ) with positively

homogeneous r is equal to the subdifferential ∂r(Λ) of r at Λ.

As Aubin noted, the theorem has two very important consequences:

Theorem 7 ([5]) If the cost function r is convex (as well as positively homo-

geneous), then the fuzzy core is non-empty, convex, and compact.
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If furthermore r is differentiable at Λ, then the core consists of a single

vector, the gradient ∇r(Λ).

The direct consequence of this is the Aumann-Shapley value is indeed a

coherent fuzzy value, given that it exists:

Corollary 1 If (N, r,Λ) is a game with fractional players, with r a coherent

cost function that is differentiable at Λ, then the Aumann-Shapley value (10) is

a coherent fuzzy value.

Proof: The corollary follows directly from (9), theorem 7, and the fact that

under positive homogeneity, r is subadditive if and only if it is convex.

This corollary is our most useful result from a practical point of view. It says

that if we use a coherent, but also differentiable risk measure, and if we deem

important the properties of allocation given in Definition 13, then the allocation

∇r(Λ) .∗ Λ is a right way to go.

As a final note, let us mention that the condition of non-increasing marginal

costs, given in [9] for the the membership of φAS(N,Λ, r) in the fuzzy core, in

fact implies that r be linear, whenever it is homogeneous.

5.3.2 On linear values and uniqueness

¿From the results given above, the Aumann-Shapley value is the only linear

coherent allocation principle, when the cost function is adequately differen-

tiable. However, linearity over risk measures is not required of a coherent al-

location principle: while 1-homogeneity is quite acceptable, the additivity part

φ(N,Λ, r1 + r2) = φ(N,Λ, r1) + φ(N,Λ, r2) causes the following problem. Be-

cause of the riskless condition, a coherent risk measure cannot be the sum of

two other coherent risk measures, as it leads to the contradiction (written in

the less cluttered but equivalent ρ notation)

ρ(X) − α = ρ(X + α rf ) = ρ1(X + α rf ) + ρ2(X + α rf )

= ρ1(X) + ρ2(X) − 2α

= ρ(X) − 2α
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Therefore, the very definition of additivity would imply that we consider non-

coherent risk measures. On the other hand, convex combinations of coherent

risk measures are coherent (see [13]), so we could make the following condition

part of the definition of coherent allocations:

Definition 14 A fuzzy value φ satisfies the convex combination property

if for any two games (N , Λ, r1) and (N , Λ, r2) and any scalar γ ∈ [0, 1],

φ
(
N,Λ, γ r1 + (1 − γ)r2

)
= γ φ(N,Λ, r1) + (1 − γ)φ(N,Λ, r2)

That condition implies linearity, when combined with the 1-homogeneity with

respect to r of φAS(N,Λ, r) (which holds given the aggregation invariance prop-

erty). This would make the Aumann-Shapley value the unique coherent allo-

cation principle. However, we see no compelling, intuitive reason to include

linearity (under a form or another) in the definition of coherent fuzzy alloca-

tion, allowing for the existence of nonlinear coherent fuzzy allocation principles,

a topic left for further investigation.

The same remarks on uniqueness and linearity apply to the Shapley value

and allocation in the non-divisible players context. Note that the debate on the

pertinence of linearity is far from new: Luce and Raiffa [15], wrote in 1957 that

“(additivity) strikes us as a flaw in the concept of (Shapley) value”.

5.3.3 On the differentiability requirement

Concerning the differentiability of the risk measures/cost functions, recent re-

sults are encouraging. Tasche [31] and Scaillet [26] give conditions under which

a coherent risk measure, the expected shortfall, is differentiable. The conditions

are relatively mild, especially in comparison with the temerarious assumptions

common in the area of risk management. Explicit first derivatives are provided,

which have the following interpretation: they are expectations of the risk fac-

tors, conditioned on the portfolio value being below a certain quantile of its

distribution. This is very interesting: it shows that when Aumann-Shapley

value is used with a shortfall risk measure, the resulting (coherent) allocation is

again of a shortfall type:

Ki = E

[
−Xi |

∑
i

Xi ≤ qα

]
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where qα is a quantile of the distribution of
∑

iXi.

Even when r is not differentiable, something can often be saved. Indeed,

suppose that r is not differentiable at Λ, but is the supremum of a set of pa-

rameterized functions that are themselves convex, positively homogeneous and

differentiable at Λ:

r(λ) = sup
p∈P

w(λ, p) (12)

where P is a compact set of parameters of the functions w, and w(λ, p) is upper

semicontinuous in p. Then Aubin [5] proved:

The fuzzy core is the closed convex hull of all the values φAS(N,Λ, w(Λ, p))

of the functions w that are “active” at Λ, i.e. that are equal to r(Λ).

Thus, should (12) arise, —which is not unlikely, think of Lagrangian relax-

ation when r is defined by an optimization problem—, the above result provides

a set of coherent values to choose from.

5.3.4 Alternative paths to the Aumann-Shapley value

It is very interesting that the recent report of Tasche [31] comes fundamentally to

the same result obtained in this section, namely that given some differentiability

conditions on the risk measure ρ, the correct way of allocating risk capital is

through the Aumann-Shapley prices (9). Tasche’s justification of this contention

is however completely different; he defines as “suitable”, capital allocations such

that if the risk-adjusted return of a portfolio is “above average”, then, at least

locally, increasing the share of this portfolio improves the overall return of the

firm. Note that the work of Schmock and Straumann [27] points again to the

same conclusion. In the approach of [31] and [27], the Aumann-Shapley prices

are in fact the unique satisfactory allocation principle.

Others important results on the topic include that of Artzner and Ostroy [4],

who, working in a non-atomic measure setting, provide alternative characteri-

zations of differentiability and subdifferentiability, with the goal of establishing

the existence of allocations through, basically, Euler’s theorem. See also the

forthcoming Delbaen [13].
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On Euler’s theorem6, note also that the feasibility (3) of the allocation vector

follows directly from it, and that out of consideration for this, some authors

have called the allocation principle (9) the Euler principle. See for example the

attachment to the report of Patrik, Bernegger, and Rüegg [23], which provides

some properties of this principle.

We shall end this section by drawing the attention of the reader to the

importance of the coherence of the risk measure ρ (and the r derived from it)

for the allocation.

The subadditivity of the risk measure: is a necessary condition for the ex-

istence of an allocation with no undercut, in both the atomic and fractional

players contexts.

The homogeneity of the risk measure: ensures the simple form (9) of the

Aumann-Shapley prices.

Both subadditivity and homogeneity: are used to prove that the core in

non-empty (Theorem 4), in the atomic game setting. In the fuzzy game

setting, the two properties are used to show that the Aumann-Shapley

value is in the fuzzy core (under differentiability). They are also used in

the non-negativity proof of the appendix.

The riskless property: is central to the definition of the riskless allocation

(dummy player) property.

6 The non-negativity of the allocation

Given our definition of risk measure, a portfolio may well have a negative risk

measure, with the interpretation that the portfolio is then safer than deemed

necessary.

Similarly, there is no justification per se to enforce that the risk capital

allocated to a portfolio be non-negative; that is, the allocation of a negative

amount does not pose a conceptual problem. Unfortunately, in the application
6Which states that if F is a real, n–variables, homogeneous function of degree k, then

x1
∂F (x)
∂x1

+ x2
∂F (x)
∂x2

+ · · · + xn
∂F (x)
∂xn

= kF (x)
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we would like to make of the allocated capital, non-negativity is a problem. If

the amount is to be used in a RAPM-type quotient return
allocated capital , negativity

has a rather nasty drawback, as a portfolio with an allocated capital slightly

below zero ends up with a negative risk-adjusted measure of large magnitude,

whose interpretation is less than obvious. A negative allocation is therefore not

so much a concern with the allocation itself, than with the use we would like to

make of it.

A crossed-fingers, and perhaps most pragmatic approach, is to assume that

the coherent allocation is inherently non-negative. In fact, one could reasonably

expect non-negative allocations to be the norm in real-life situations. For ex-

ample, provided no portfolio of the firm ever decreases the risk measure when

added to any subset of portfolios of the firm:

c(S ∪ {i}) ≥ c(S) ∀ S ⊆ N, ∀ i ∈ N \ S

then the Shapley value is necessarily non-negative. The equivalent condition

for the Aumann-Shapley prices is the property of non-negativity under non-

decreasing r (equation (5)): if the antecedent always holds, the per-unit alloca-

tions are non-negative.

Another approach would be to enforce non-negativity by requiring more of

the risk measure. For example, the core and the non-negativity of the Ki’s

form a set of linear inequalities (and one linear equality), so that the existence

of a non-negative core solution is equivalent to the existence of a solution to a

linear system. Specifically, a hyperplane separation argument proves that such

a solution will exist if the following condition on ρ holds:

∀ λ ∈ Rn
+, ρ

(∑
i∈N

Xi

)
min
i∈N

{λi} ≤ ρ

(∑
i∈N

λiXi

)
(13)

The proof is given in addendum. The condition could be interpreted as fol-

lows. First assume that ρ
(∑

i∈N Xi

)
> 0, which is reasonable, if we are indeed

to allocate some risk capital. Then (13) says that there is no positive linear

combination of (each and every) portfolios, that runs no risk. In other words, a

perfectly hedged portfolio cannot be attained by simply re-weighting the portfo-

lios, if all portfolios are to have a positive weight. However, unless one is willing
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to impose such a condition on the risk measure, the fact is that the issue of the

non-negativity remains unsatisfactorily resolved for the moment.

7 Allocation with an SEC-like risk measure

In this section, we provide some examples of applications of the Shapley and

Aumann-Shapley concepts to a problem of margin (i.e. risk capital) allocation.

The risk measure we use is derived from the Securities and Exchange Com-

mission (SEC) rules for margin requirements (Regulation T), as described in the

National Association of Securities Dealers (NASD) document [19]. These rules

are used by stock exchanges to establish the margins required of their members,

as guarantee against the risk that the members’ portfolios involve (the Chicago

Board of Options Exchange is one such exchange). The rules themselves are not

constructive, in that they do not specify how the margin should be computed;

this computation is left to each member of the exchange, who must find the

smallest margin complying with the rules. Rudd and Schroeder [25] proved in

1982 that a linear optimization problem (L.P.) modelled the rules adequately,

and was sufficient to establish the minimum margin of a portfolio, that is, to

evaluate its risk measure. It is worth mentioning that given this L.P.-based risk

measure, the corresponding coalitional game has been called linear production

game by Owen [22], see also [10].

For the purpose of the article, we restrict the risk measure to simplistic

portfolios of calls on the same underlying stock, and with the same expiration

date. This restriction of the SEC rules is taken from Artzner, Delbaen, Eber

and Heath [3] who use it as an example of a non-coherent risk measure. In the

case of a portfolio of calls, the margin is calculated through a representation of

the calls by a set of spread options, each of which carrying a fixed margin. To

obtain a coherent measure of risk, we prove later that it is sufficient to represent

the calls by a set of spreads and butterfly options. Note that such a change to

the margins rules was proposed by the NASD and very recently accepted by the

SEC, see [20].
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7.1 Coherent, SEC-like margin calculation

We consider a portfolio consisting of CP calls at strike price P , where P be-

longs to a set of strike prices P = {Pmin, Pmin + 10, . . . , Pmax − 10, Pmax}. This

assumption about the format of the strike prices set P, including the intervals

of 10, makes the notation more palatable, without loss of generality. For conve-

nience, we denote the set P \{Pmin, Pmax} by P−. We also make the simplifying

assumption that there are as many long calls as short calls in the portfolio, i.e.∑
P∈P CP = 0. Both assumptions remain valid throughout section 7.

We will denote by CP the vector of the CP parameters, P ∈ P. While CP

fully describes the portfolio, it certainly does not describe the future value of the

portfolio, which depends on the price of the underlying stock at a future date.

Although risk measures were defined as a mappings on random variables, we

nevertheless write ρ(CP ) since the ρ considered here can be defined by using

only CP . On the other hand, there is a simple linear relationship between CP

and the future worths (under an appropriate discretization of the stock price

space), so that an expression such as ρ
(
C∗

P + C∗∗
P

)
is also justified. Only in the

case of the property “monotonicity” need we treat with more care the distinction

between number of calls and future worth.

We can now define our SEC-like margin requirement. To evaluate the margin

(or risk measure) ρ of the portfolio CP , we first replicate its calls with spreads

and butterflies, defined as follows:

Variable Instrument Calls equivalent

SH,K Spread, long in H, short in K One long call at price H, one
short call at strike K

Blong
H Long butterfly, centered at H One long call atH−10, two short

calls atH, one long call atH+10
Bshort

H Short butterfly, centered at H One short call atH−10, two long
calls at H, one short call at H +
10

The variables shall represent the number of each specific instrument. All H and

K are understood to be in P, or P− for the butterflies; H �= K for the spreads.

As in the SEC rules, fixed margins are attributed to the instruments used for

the replicating portfolio, i.e. spreads and butterflies in our case. Spreads carry a
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margin of (H−K)+ = max(0, H−K); short butterflies are given a margin of 10,

while long butterflies require no margin. In simple language, each instrument

requires a margin equal to the worst potential loss, or negative payoff, it could

yield.

By definition, the margin of a portfolio of spreads and butterflies is the sum

of the margins of its components.

On the basis of [25], the margin ρ(CP ) of the portfolio can be evaluated

with the linear optimization problem (SEC-LP):

minimize f tY
(SEC − LP)

subject to AY = CP

Y ≥ 0

where: Y stands for Y =

 S
Blong

Bshort

 where S is a column vector of all spreads

variables considered (appropriately ordered: bull spreads, then bear spreads),

and Blong and Bshort are appropriately ordered column vectors of butterflies

variables; f tY is shorthand notation for

f tY =
∑

H,K∈P
(H −K)+ SH,K +

∑
H∈P−

10Bshort
H ;

and A is

A =



1 1 · · · 0 −1 −1 · · · 0 1 0 · · · 0 −1 0 · · · 0
−1 0 · · · 0 1 0 · · · 0 −2 1 · · · 0 2 −1 · · · 0

0 −1 · · · 0 0 1 · · · 0 1 −2 · · · 0 −1 2 · · · 0
0 0 · · · 0 0 0 · · · 0 0 1 · · · 0 0 −1 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 0 0 0 · · · 1 0 0 · · · −1
0 0 · · · 1 0 0 · · · −1 0 0 · · · −2 0 0 · · · 2
0 0 · · · −1 0 0 · · · 1 0 0 · · · 1 0 0 · · · −1



The objective function represent the margin; the equality constraints en-

sure that the portfolio is exactly replicated. The risk measure thus defined is

coherent; the proof is given next.
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7.2 Proof of the coherence of the measure

We prove here that the risk measure ρ obtained through (SEC-LP) is coherent,

in the sense of Definition 1. We prove each of the four property in turn, below.

1) Subadditivity: For any two portfolios C∗
P and C∗∗

P ,

ρ
(
C∗

P + C∗∗
P

)
≤ ρ(C∗

P ) + ρ(C∗∗
P )

Proof: If solving (SEC-LP) with C∗
P as right-hand side of the equality

constraints yields a solution S∗, and solving with C∗∗
P yields a solution S∗∗,

then S∗ + S∗∗ is a feasible solution for the (SEC-LP) with C∗
P + C∗∗

P as right-

hand side. Subadditivity follows directly, given the linearity of the objective

function.

2) Degree one homogeneity: For any γ ≥ 0 and any portfolio CP ,

ρ(γCP ) = γρ(CP )

Proof: This is again a direct consequence of the linear optimization nature

of ρ, as γS is a solution of the (SEC-LP) with γCP as right-hand side of the

constraints, when S is a solution of the (SEC-LP) with CP as right-hand side.

Of course, the very definition of homogeneity implies that we allow fractions of

calls to be sold and bought.

3) Translation invariance:7 Adding to any portfolio of calls CP an amount

of riskless instrument worth α today, decreases the margin of CP by α.

Proof: There is little to prove here; we rather need to define the behaviour of

ρ in the presence of a riskless instrument, and naturally choose the translation

invariance property to do so. This property simply anchors the meaning of

“margin”.

4) Monotonicity: For any two portfolios C∗
P and C∗∗

P such that the future

worth of C∗
P is always less than or equal to that of C∗∗

P ,

ρ(C∗
P ) ≥ ρ(C∗∗

P )
7Note that in the interest of a tidier notation, we departed from our previous usage and

did not use the last component of CP to denote the riskless instrument
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Before proving monotonicity, let us first introduce the values VP , for P ∈
{Pmin +10, . . . , Pmax, Pmax +10}, which represent the future payoffs, or worths,

of the portfolio for the future prices P of the underlying. (Obviously, the latter

set of prices may be too coarse a representation of possible future prices, and

is used to keep the notation compact; starting with a finer P would relieve this

problem) Again, we write VP to denote the vector of all VP ’s. The components

of VP are completely determined by the number of calls in the portfolio:

VP =
P−10∑

p=Pmin

Cp(P − p) ∀P ∈ {Pmin + 10, . . . , Pmax, Pmax + 10}

which is alternatively written VP � MCP , with the square, invertible matrix

M :

M =


10 0 0 · · ·
20 10 0 · · ·
30 20 10 · · ·
...

...
...

. . .


The antecedent of the monotonicity property is, of course, the componentwise

V ∗
P ≤ V ∗∗

P .

We will also use the following lemma:

Lemma 3 Under subadditivity, two equivalent formulations of monotonicity

are, for any three portfolios CP , C∗
P and C∗∗

P :

V ∗
P ≤ V ∗∗

P =⇒ ρ (M−1V ∗
P ) ≥ ρ (M−1V ∗∗

P )

and

0 ≤ VP =⇒ ρ (M−1VP ) ≤ 0

Proof: The upper condition is sufficient, as it implies

ρ(0) ≥ ρ(M−1VP ),

and ρ(0) = 0 from the very structure of (SEC-LP). The upper condition is

necessary, as

ρ (M−1V ∗∗
P ) = ρ

(
M−1(V ∗

P + (V ∗∗
P − V ∗

P )
)

≤ ρ (M−1V ∗
P ) + ρ

(
M−1(V ∗∗

P − V ∗
P )

)
≤ ρ (M−1V ∗

P ). �
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Proof of monotonicity: As a consequence of the above lemma, it is sufficient

to prove that if a portfolio of calls always has non-negative future payoff, then

its associated margin is non-positive.

A look at (SEC-LP) shows that the margin assigned to the portfolio will

be non-positive (in fact, zero), if and only if a non-negative, feasible solution

of (SEC-LP) exists in which all spreads variables SH,K with H > K and all

short butterflies variables Bshort have value zero. This means that there exists

a solution to the linear system:

ÃY = CP (14)

Y ≥ 0 (15)

where Ã is made of the first and third parts of the A that was defined for
(SEC-LP):

A =



1 1 · · · 0 1 0 · · · 0
−1 0 · · · 0 −2 1 · · · 0

0 −1 · · · 0 1 −2 · · · 0
0 0 · · · 0 0 1 · · · 0

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 1
0 0 · · · 1 0 0 · · · −2
0 0 · · · −1 0 0 · · · 1


,

and Y is the appropriate vector of spreads and butterflies variables. We obtain

a new, equivalent system of equations MÃY = MCP = VP by pre-multiplying

by the invertible matrix M introduced above. Recall now that we have made

the assumption that the portfolio contains as many short calls as long calls,

i.e.
∑

P∈P CP = 0. Thus, we need only prove that there exists a non-negative

solution to the system

MÃY = VP whenever VP ≥ 0 and etM−1VP = 0

(et is a row vector of 1’s). A simple observation of MÃ shows that its columns

span the same subspace as the set of columns

1
0
0
...
0
0
0


,



0
1
0
...
0
0
0


, · · · ,



0
0
0
...
1
0
0


,



0
0
0
...
0
1
1


30



Observing furthermore that

etM−1 =



0
0
...
0

−1
1



t

so that any VP satisfying etM−1VP = 0 has identical last two components,

the right-hand side of MÃY = VP can always be expressed as a non-negative

linear combination of the columns of MÃ. �

7.3 Computation of the allocations

Given this risk measure as a linear optimization problem, the Shapley value

is easy to compute when the “total portfolio” is divided in a small number of

subportfolios. First, the margin of every possible coalition of subportfolios is

calculated. Then, the margin allocated to each subportfolio is computed, using

the formula of the Shapley value given in Definition 9.

The computation of the Aumann-Shapley value is even simpler. Note that by

working in the fractional players framework, we implicitly assume that fractions

of portfolios are sensible instruments. We choose the vector of full presence of

all players Λ to be the vector of ones e. Recall that the Aumann-Shapley per

unit margin allocated to the ith subportfolio is

kAS
i =

∂r(e)
∂λi

(16)

where r(λ) is the margin required of the sum of all the subportfolios i, each

scaled by a scalar λi, so that r(e) = ρ(CP ). In vector notation, kAS = ∇r(e).

Let us first define the linear operator L which maps the level of presence

of the subportfolios to numbers of calls in the global portfolio. If there are |P|
different calls (equivalently here, |P| strike prices), and n subportfolios, then

L is an |P| × n matrix, such that Le = CP . Examples are the three-by-five

matrices at the top of the tables given in section 7.4.

Now, the optimal dual solution δ∗ of the linear program (SEC-LP), obtained

automatically when computing the margin of the total portfolio, provides the
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rates of change of the margin, when the presence of each specific call varies.

However, using the complementarity condition satisfied at the optimal solution

pair (Y ∗, δ∗), we can write

f tY ∗ = −(δ∗)tCP (17)

= (−(δ∗)tL)e (18)

so that the components of Ltδ∗ give the marginal rates of change of the objective

value of (SEC-LP), as a function of subportfolio presence, evaluated at the point

of full presence of all subportfolios.

Put in one sentence, the most interesting result of this section is that the

Aumann-Shapley allocation is only a matrix product away from the lone evalu-

ation of the margin for the total portfolio.

Finally, concerning the uniqueness of the allocation and the differentiability

of the risk measure, we can only say that they depend directly on the uniqueness

of the optimal solution of the dual problem of (SEC-LP). Although there is not

special reason for multiple optimal dual solutions to occur here, it can well

happen, in which case we have obtained one of many acceptable allocations, per

section 5.3.3.

7.4 Numerical examples of coherent allocation

We can obtain a somewhat more practical feeling of Shapley and Aumann-

Shapley allocations by looking at examples.

For all allocation examples below, the reference “total” portfolio is the same;

its values of CP , P ∈ {10, 20, 30, 40, 50} are:

C10 C20 C30 C40 C50

Total −1 −2 8 −7 2

meaning one short call at strike 10, two short calls at strike 20, eight long calls

at strike 30, etc. It carries a margin of 40: ρ(CP ) = 40.

In each of the tables below, we give the division of the total portfolio in

three subportfolios such that CP1 + CP2 + CP3 = CP , followed by the Shapley

allocation and the Aumann-Shapley allocation. The tables are followed by some
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observations. Consider first the division:

C10 C20 C30 C40 C50 Shapley Aumann − Shapley
CP1 −1 0 6 −6 1 15 20
CP2 0 −2 2 0 0 20 20
CP3 0 0 0 −1 1 5 0
Total −1 −2 8 −7 2 40 40

In this example, coalitions of subportfolios incur margins as follows:

ρ(CP1 + CP2) = 40 ρ(CP1 + CP3) = 20 ρ(CP2 + CP3) = 30

ρ(CP1) = 20 ρ(CP2) = 20 ρ(CP3) = 10

Consider a second example:

C10 C20 C30 C40 C50 Shapley Aumann − Shapley
CP1 −1 0 2 −2 1 20 20
CP2 0 −1 6 −5 0 0 10
CP3 0 −1 0 0 1 20 10
Total −1 −2 8 −7 2 40 40

Here, coalitions of subportfolios portfolios incur the margins:

ρ(CP1 + CP2) = 30 ρ(CP1 + CP3) = 50 ρ(CP2 + CP3) = 20

ρ(CP1) = 20 ρ(CP2) = 10 ρ(CP3) = 30

Finally, the third example is:

C10 C20 C30 C40 C50 Shapley Aumann − Shapley
CP1 −1 −1 4 −2 0 26.66 30
CP2 0 −1 4 −3 0 6.66 10
CP3 0 0 0 −2 2 6.66 0
Total −1 −2 8 −7 2 40 40

where the coalitions of subportfolios incur:

ρ(CP1 + CP2) = 40 ρ(CP1 + CP3) = 30 ρ(CP2 + CP3) = 10
ρ(CP1) = 30 ρ(CP2) = 10 ρ(CP3) = 20

On these examples, we note that:

• The Shapley and Aumann-Shapley allocations do not agree. An

equal allocation in this setting would have been fortuitous.

• Null allocations do occur. Null (or negative) allocations cannot be

ruled out, and do happen here, both for the Shapley and Aumann-Shapley

principles. For use in a risk-adjusted return calculation (return divided

by allocated capital), these would indeed be problematic.

33



• The Aumann-Shapley allocation is a marginal rate of risk capital.

It can be checked that, for example in the first case, the risk capital of the

whole portfolio does not change when the presence of the third subportfolio

varies slightly around unity.

• The Shapley allocation may not be in the core. Again, this was to

be expected. The Shapley allocation of the third example is not part of

the core, as can be checked manually.

As a final note, let us mention that we could have verified whether the Shapley

allocation is part or not of the fuzzy core (whenever it is part of the core). One

way of doing this is through a bilevel linear program, which, unfortunately, is

known to be computationally demanding for large instances; see Marcotte [16]

or Marcotte, Savard [17]. Further details on this issue are reserved for later.

8 Conclusion

In this article, we have discussed the allocation of risk capital from an axiomatic

perspective, defining in the process what we call coherent allocation principles.

Our original goal is to establish a framework within which financial risk

allocation principles could be compared as meaningfully as possible. Our stand

is that this can be achieved by binding the concept of coherent risk measures to

the existing game theory results on allocation.

We suggest two sets of axioms, each defining the coherence of risk capital

allocation in a specific setting: either the constituents of the firm are considered

indivisible entities (in the coalitional game setting), or, to the contrary, they are

considered to be divisible (in the context of games with fractional players). In

the former case, we find that the Shapley value is a coherent allocation principle,

though only under rather restrictive conditions on the risk measure used.

In the fractional players setting, the Aumann-Shapley value is a coherent

allocation principle, under a much laxer differentiability condition on the risk

measure; under linearity, it is also the unique coherent principle. In fact, given

that the allocation process starts with a coherent risk measure, this coherent
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allocation simply corresponds to the gradient of the risk measure with respect

to the presence level of the constituents of the firm. As a consequence, the

Aumann-Shapley approach, beyond its theoretical soundness, further has a com-

putational fe, in that it is as easy to evaluate, as the risk itself is.
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Appendix

A Proof of the non-negativity condition

The following result from section 6 is proved here.

Theorem 8 A sufficient condition for a non-negative, “no undercut” allocation

to exist is:

∀ λ ∈ Rn
+, ρ

(∑
i∈N

Xi

)
min
i∈N

{λi} ≤ ρ

(∑
i∈N

λiXi

)

Proof: Let us recall that we denoted by 1S ∈ Rn the characteristic vector of

the coalition S:

(1S)i =
{

1 if i ∈ S
0 otherwise

A non-negative, “no undercut” allocation K exists when

∃K ∈ Rnsuch that

Kt1S ≤ ρ

(∑
i∈S

Xi

)
∀S � N

Kt1N = ρ

(∑
i∈N

Xi

)
K ≥ 0

(19)

Using Farkas’s lemma, this is equivalent to

1NyN +
∑
S�N

1SyS ≥ 0, ∀ yN ∈ R, ∀ yS ∈ R+, S � N

=⇒ ρ

(∑
i∈N

Xi

)
yN +

∑
S�N

ρ

(∑
i∈S

Xi

)
yS+ ≥ 0 (20)

which in turn is equivalent to

yN ≥ −
∑
S�i

yS , ∀ yS ≥ 0, S � N, and ∀ i ∈ N,

=⇒
∑
S�N

ρ(
∑
i∈S

Xi)yS ≥ −ρ
(∑

i∈N

Xi

)
yN (21)

38



Now, using the homogeneity and the subadditivity of ρ,

∑
S�N

ρ

(∑
i∈S

Xi

)
yS =

∑
S�N

ρ

(
yS

∑
i∈S

Xi

)

≥ ρ

 ∑
S�N

(
yS

∑
i∈S

Xi

)
= ρ

(∑
i∈N

(
Xi

∑
S�i

yS

))

Therefore, a sufficient condition for (19) (or (20) or (21)) to hold, is

yN ≥ −
∑
S�i

yS , ∀ yS ≥ 0, S � N, ∀ i ∈ N,

=⇒ ρ

(∑
i∈N

(
Xi

∑
S�i

yS

))
≥ ρ

(∑
i∈N

Xi

)
(−yN )

Finally, using the definition λi �
∑

S�i yS , we can write the sufficient condition

for (19)

∀λi ≥ 0, i ∈ N, ρ

(∑
i∈N

λiXi

)
≥ ρ

(∑
i∈N

Xi

)(
min
i∈N

λi

)

Note that in the last step, we also used ρ
(∑

i∈N Xi

)
≥ 0, a necessary con-

dition for the existence of a non-negative, “no undercut” allocation; checking

yN = 1, yS = 0 ∀S � N in (20) shows this point. �
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