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ABSTRACT

Strong interactions between magnetic materials and electrodynamic cavities mix together spin and photon properties, producing unique
hybridized behavior. The study of such coupled spin-photon systems, known as cavity magnonics, is motivated by the flexibility and con-
trollability of these hybridized states for spintronic and quantum information technologies. In this Tutorial, we examine and compare both
coherent and dissipative interactions in cavity magnonics. We begin with a familiar case study, the coupled harmonic oscillator, which pro-
vides insight into the unique characteristics of coherent and dissipative coupling. We then examine several canonical cavity-magnonic
systems, highlighting the requirements for different coupling mechanisms, and conclude with recent applications of spin-photon hybridiza-
tion, for example, the development of quantum transducers, memory architectures, isolators, and enhanced sensing.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0046202

I. INTRODUCTION

Hybrid systems coupling magnetic excitations to other degrees
of freedom are widely used in modern magnetism research. For
example, hybridization enables mutually exclusive states of matter
in ferromagnetic-superconducting devices1 and enhances the func-
tionality of magnetic semiconductors.2,3 In the field of cavity mag-
nonics, coupling between magnons (quantized spin waves) and
electrodynamic fields results in hybridized states with a dual spin-
photon nature. As in other hybrid platforms, such emergent prop-
erties enable a new functionality that is unavailable in either of the
uncoupled sub-systems. Applications of cavity magnonics include
memory architectures,4 non-local spin control,5,6 magnon and
photon sensing using exceptional points,7–9 quantum sensing,10,11

quantum transduction,12–14 optical-to-microwave frequency con-
version,13,15 and broadband high isolation non-reciprocity.16,17

Furthermore, cavity magnonics research has provided physical
insights into coupled systems, for example, the role of dissipative
coupling18–20 and exceptional points.7,21–24

Cavity magnonics began with Soykal and Flatté’s 2010
prediction of a large, quantum-coherent, magnon–photon interac-
tion in a ferromagnetic nanomagnet25 and the subsequent experi-
mental observation of hybridization at low temperatures by Huebl
et al. in 2013.26,27 Following these discoveries, the theoretical and

experimental foundations of coherent magnon–photon coupling
were established between � 2013–2017. Some key early develop-
ments include the investigation of strong coupling in the quantum
limit,28 the coupling of magnons and a superconducting qubit,29

observation of room temperature hybridization,29 the electrical
detection of hybridization,30 investigations of optomagnonics,31

and the demonstration of optical-to-microwave conversion.13

While an in-depth review of cavity-magnonic development is
beyond the scope of this Tutorial, greater detail is available in the
reviews of Refs. 32–38.

Following the early advances of coherent cavity magnonics,
the field grew rapidly between 2017 and 2020. Among the impor-
tant results of this period were the observation of dissipative cou-
pling,18 the realization of strong coupling in nanoscale
ferromagnetic metals,39,40 the exploration of exceptional points and
the role of PT symmetry,21,22,24,41,42 experimental studies of strong
coupling in antiferromagnets,43–45 and the advancement of
quantum magnonics, enabling, for example, the quantum sensing
of magnons.10,11 Collectively, these discoveries have opened many
new doors for cavity magnonics, which should provide years of
fruitful discovery. A more extensive outlook will be presented in
Sec. V. For additional perspectives on the future of cavity mag-
nonics, see, for example, Refs. 34, 36, and 38.
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Cavity magnonics is inherently diverse, taking inspiration
from spintronics, hybrid quantum systems, optomechanics, and
optomagnonics. This multifaceted nature is a great strength but can
also make the subject daunting to non-experts. Fortunately, there is
an insightful, universal system that clarifies many surprising behav-
iors of spin-photon hybridization: the harmonic oscillator. In the
hopes of making cavity magnonics accessible to a broad audience
of non-experts, we begin this Tutorial with an examination of
coherent and dissipative coupling in the harmonic oscillator. Using
the insights gained from these case studies, we then examine key
features of spin-photon hybridization, taking a detailed look at
canonical cavity-magnonic devices and applications. For further
related reading, we recommend the following review resources by
topic: Focus on Coherent Cavity Magnonics: Refs. 32, 33, and 37;
Focus on Quantum Magnonics: Ref. 34; Focus on Dissipative
Cavity Magnonics: Ref. 46; Future Directions and Applications: 35,
36, and 38; Optomagnonics: Refs. 47 and 48; Optomechanics:
Refs. 49 and 50; Quantum Optics/Cavity QED: Refs. 51 and 52;
Cavity Magnonics in the Context of Hybrid Quantum Systems:
Ref. 53; and Cavity Magnonics in the Context of Magnonics: Ref. 38.

A. What is cavity magnonics?

Cavity magnonics studies the emergent physics of magneti-
cally ordered materials coupled to light, with two broad objectives:
(1) Gain physical insight into the physics of hybridized systems
and (2) exploit unique emergent behavior for technological devel-
opment, focusing on spintronics, magnonics, and hybrid quantum
systems. Really, only two components are required for a cavity-
magnonic experiment: (1) A magnetically ordered material and
(2) an electrodynamic cavity. Therefore, a basic cavity-magnonic
system is actually quite simple, typically consisting of the ferrimag-
netic insulator yttrium-iron-garnet (YIG), mounted inside a micro-
wave cavity, and probed via microwave transmission/reflection
measurements. The widespread use of YIG is due to its characteris-
tically small damping rate and the commercial availability of large
(Vs . 1mm2, number of spins, Ns . 1017), high quality (Gilbert
damping, αG � 1� 10�4), low cost (� 100 USD) samples.
However, the cavity-magnonic platform has diversified rapidly. For
example, strong coupling has now been achieved using the ferromag-
netic metal permalloy, important for nanoscale spintronic develop-
ment,39,40 and several antiferromagnets.43–45,54 From the cavity
perspective, all that is required is a well defined resonance;55 a variety
of unique 3D cavity designs28,29,56–60 and 2D resonators26,32,61–63 have
been used. Often, cavity modes with quality factor Q * 1000 are
desired to help achieve high cooperativity. However, this is an applica-
tion specific requirement, not a necessity of cavity magnonics. In fact,
the large extrinsic damping of open systems is interesting in its own
right as we will see in Secs. II C and III C.

Figure 1 summarizes the resonator and sample configurations
often used in cavity magnonics. We note that throughout this
Tutorial, we will use the words cavity and resonator interchange-
ably and refer to quasi-closed and open resonators. In a quasi-
closed resonator such as a 3D cavity or a gap-coupled resonator,
the intrinsic dissipation (e.g., conductive losses and magnon
damping) is much larger than extrinsic dissipation (e.g., radiative
losses). In an open resonator, such as a side-coupled resonator,

extrinsic dissipation is comparable to, and often larger than, the
intrinsic dissipation. There are two unique forms of spin-photon
coupling, coherent coupling, characterized by level repulsion, and
dissipative coupling, characterized by level attraction. In general,
hybridized states will be formed by a mixture of coherent and dissi-
pative spin-photon coupling. However, in quasi-closed resonators,
coherent coupling generally dominates, while the tunability of open
resonators allows one to suppress coherent coupling in order to
study and use purely dissipative behavior. Figure 1 schematically
summarizes the most common platforms used to achieve coherent
and dissipative coupling. Here, the peaks and dips indicate the
transmission spectra typically observed in quasi-closed and open
resonators, respectively.

Finally, although microwave transmission/reflection mea-
surements are commonly used to probe the cavity-magnonic
system, other experimental techniques have also proven useful,
such as the electrical detection of hybridized spin current30,58

and inelastic scattering measurements via Brillouin light-
scattering.64 Experimental methods are discussed in more detail
in Secs. III and IV.

B. Coherent vs dissipative coupling

Coherent coupling in cavity magnonics is characterized by
level repulsion in the dispersion and an attraction in the linewidth.
The term coherent references the fixed spin-photon phase relation-
ship in the hybridized modes that results from the dipole interac-
tion between the spin ensemble and the cavity magnetic field. This
was the first form of coupling discovered in cavity magnonics and
plays an important role in applications involving transduction,
allowing efficient energy exchange between spin and photon. In the
time domain, this spin-photon energy exchange is evidenced by
Rabi oscillations, which are often encountered in the context of
hybrid quantum systems.29,52 Importantly, however, since this
general behavior applies to both classical and quantum systems, we
can use the classical example of coupled pendulums to understand
certain key features.

Dissipative coupling on the other hand is characterized by
level attraction in the dispersion and a repulsion in the linewidth.
This indirect coupling is mediated through a reservoir, leading to a
complex effective spin-photon coupling that provides an additional
source of dissipation, hence the terminology. Dissipative coupling
has important applications to non-reciprocal transport and
enhanced sensing techniques. More generally, dissipative systems
are an important, and widespread, example of non-Hermitian
physics,65 commonly discussed in the context of open quantum
systems. However, again, many common characteristics of
non-Hermiticity appear in both classical and quantum systems
alike, allowing us to gain insight into dissipative behavior from the
familiar example of coupled pendulums.

Generally, in cavity magnonics, both coherent and dissipative
coupling will occur simultaneously. Yet, as summarized above, dis-
sipative and coherent coupling are distinctly different and produce
different physical phenomena. For this reason, we will introduce
the key properties of each form of coupling separately, through a
variety of model systems, in Secs. II and III. In short, we will see
that coherent coupling is an intrinsic interaction that is
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independent of dissipation; i.e., coherent coupling survives even in
ideal systems without dissipation. In contrast, base-mediated dissi-
pative coupling stems from the correlated dissipation of the indi-
vidual oscillators. Therefore, the dissipation is precisely the origin
of the base-mediated coupling. With both interactions present, a
strength of the cavity-magnonic platform is its tunability. As we
will see in Sec. III, cavity-magnonic systems can be engineered so
that either coherent or dissipative coupling dominates. Each form
of coupling has unique properties and, therefore, leads to unique
applications. For example, coherent coupling is typically used for
transduction applications,13,66 while dissipative coupling may be
used for enhanced sensing techniques.24,41 Furthermore, the inter-
play of coherent and dissipative coupling is also important, for
example, in enabling non-reciprocal microwave transmission.16

C. Strong coupling

Coupling strength and damping both play an important role
in cavity magnonics. In the strongly coupled regime, the coupling

rate J greatly exceeds the magnetic and cavity loss rates, α and β,
respectively. This is best characterized by the cooperativity,
C ¼ J2=(αβ) . 1.67 C can be used to characterize both coherent
and dissipative interactions, although the physical meaning is dif-
ferent. In the case of coherent coupling, C . 1 heuristically means
that information can be transferred between the magnon and
photon faster than it is lost from either system. However, for dissi-
pative interactions, it indicates that the reservoir coupling exceeds
the intrinsic loss rates. The high controllability of J and β allows
strong coupling to be achieved in many ways, for example, via high
Q cavities,26,29,62,69 large spin numbers,68,69 or a large mode filling
factor.39,40

The most striking signature of strong coupling is a modified
spin-photon dispersion relation. At low cooperativity, the eigenfre-
quencies of the spin-photon system are the magnetic resonance fre-
quency ωm and the cavity frequency ωc. Experimentally, ωm can be
controlled by an external bias magnetic field H (think ferromag-
netic resonance), while ωc is typically fixed by the cavity geometry.
However, ωc is independent of H and ωm is independent of ωc.

FIG. 1. Cavity magnonics studies hybridized spin-photon states formed by the coupling of magnetic excitations to light. Hybridization can be realized using either quasi-
closed or open microwave resonators coupled to either bulk or nanostructured magnetic devices. In a quasi-closed resonator, such as a 3D cavity or a gap-coupled resona-
tor, the intrinsic dissipation (e.g., conductive losses and magnon damping), is much larger than extrinsic dissipation (e.g., radiative losses). In an open resonator, such as
a side-coupled resonator, extrinsic dissipation is comparable to, and often larger than, the intrinsic dissipation. Two unique forms of hybridization, level repulsion, due to
coherent coupling, and level attraction, due to dissipative coupling, lead to the rich physics and applications of cavity magnonics. This figure summarizes the most
common platforms used to achieve coherent and dissipative hybridization. Although both forms of coupling generally coexist in the same system, coherent coupling typi-
cally dominates in quasi-closed resonators, and the tunability of open resonators is often used to suppress coherent coupling, thus highlighting dissipative behavior. In this
figure, the peaks and dips indicate the transmission spectra generally observed in each platform. From Hu, in Solid State Physics, edited by R. L. Stamps and B. Camley,
Vol. 71, Chap. 4, pp. 117–121. Copyright 2020 Elsevier. Reproduced with permission from Elsevier.

Journal of
Applied Physics

TUTORIAL scitation.org/journal/jap

J. Appl. Phys. 129, 201101 (2021); doi: 10.1063/5.0046202 129, 201101-3

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/jap


Therefore, there is a degeneracy at, and only at, ωc ¼ ωm, where the
eigenfrequencies match, but the eigenmodes are still independent.
At large cooperativities, � C . 1, this is no longer true. Instead, in
the case of a coherent interaction, level repulsion is observed, char-
acterized by an avoided crossing in the dispersion and a crossing in
the damping. On the other hand, dissipative coupling results in
level attraction, with a merging of the two dispersion branches and
a gap in the damping. A more detailed discussion of the coupling
signatures can be found in Sec. III.

II. INSIGHTS FROM THE HARMONIC OSCILLATOR

In this section, we examine the canonical system of coupled
harmonic oscillators, highlighting the characteristics of coherent
and dissipative coupling with an eye on behavior observed in
cavity magnonics. Coupled harmonic oscillators serve as an
instructive toy model in which we can easily examine the influ-
ence of nonlinear forces, damping and coupling, and which can
be fully solved using simple mathematical techniques. To explore
the range of coupling behavior observed in cavity magnonics, we
consider three case studies: (1) Spring-coupled pendulums, dem-
onstrating coherent coupling; (2) dashpot-coupled pendulums,
demonstrating direct dissipative coupling; and (3) base-mediated
coupled pendulums, highlighting the role of a reservoir in the
dissipative interaction.

A. Spring-coupled pendulums: A case study in
coherent coupling

Interacting harmonic oscillators have long been used to model
strong coupling and the physics of polaritons.69–71 For the cavity-
magnonic system, this approach is closely connected to RLC circuit
models,61,72,73 often used in microwave engineering,74 and to the
Tavis–Cummings model,75,76 as we will explore in Sec. III A. To
establish an oscillator model of strong coupling, consider two equal
mass (m), spring-coupled, simple pendulums as illustrated in
Fig. 2. The pendulums are connected to fixed pivot points by mass-
less rods of length l1 and l2, respectively, and therefore, each pendu-
lum has a unique uncoupled oscillation frequency, ω1,2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
g=l1,2

p

(g, the acceleration of gravity). A massless spring (spring constant k)
connects the pendulums a distance l from the pivot points, resulting
in coherent coupling between the two pendulums, as discussed more
in Appendix B.

The equations of motion for the spring-coupled pendulums
are most easily solved in a reference frame that rotates at the
average frequency ωref ¼ (ω1 þ ω2)=2. As detailed in Appendixes A
and B, the complex eigenfrequencies of the hybridized modes are
found to be

eω+ � ωref ¼
1

2
[(J1 � iλ1)þ (J2 � iλ2)]

+
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[Δ� (J1 � iλ1)þ (J2 � iλ2)]

2 þ 4J1J2

q
, (1)

where λ1,2 are the intrinsic damping rates of the pendulums and
J1,2 ¼ kl2=(2mω1,2l

2
1,2) is the coherent coupling strength. The influ-

ence of coupling is most noticeable near zero frequency detuning,
Δ ¼ ω1 � ω2 � 0, in which case J ¼ J1 � J2, and therefore, it is
convenient to write

eω+ � 1

2
eω1 þ eω2 þ 2J+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(eω1 � eω2)

2 þ 4J2
q� �

: (2)

Here, eω1,2 ¼ ω1,2 � iλ1,2 denotes the complex oscillation frequencies
of the uncoupled oscillators, including both the frequency ω1,2 and
the linewidth λ1,2. Often, it is convenient to write Eq. (2) in the form
eω+¼ ω+� iΔω+, where Re eω+ð Þ ¼ ω+ and �Im eω+ð Þ ¼ Δω+ are
real valued functions that describe the hybridized oscillation
frequency and linewidth, respectively.77

Figures 3(a) and 3(b), respectively, show the hybridized fre-
quency and linewidth as a function of the detuning Δ, plotted
according to Eq. (2) in the strong coupling regime where
C ¼ J2= λ1λ2ð Þ . 1. The horizontal and diagonal dashed lines in
panel (a) indicate the uncoupled oscillation frequencies ω1 and
ω2, respectively, while the horizontal dashed lines in panel (b) are
the uncoupled dissipation rates, λ1,2 with λ2 . λ1. A blue-shifting
of the oscillation frequencies is evident in panel (a) by the
asymptotic behavior at large Δ. However, more strikingly, the
pendulums are strongly hybridized in both the frequency and
linewidth, with the new eigenfrequencies deviating significantly
from their uncoupled values.

In the frequency dispersion, hybridization produces level repul-
sion, characterized by an avoided crossing between the upper (ωþ)
and lower (ω�) branches. The deviation from the unhybridized
behavior is the greatest at Δ ¼ 0 where the Rabi-like gap29,52 between
the upper and lower branches is directly proportional to the coupling
strength, ωþ� ω� ¼ 2J . The coherent nature of these modes is
also most easily identified at Δ ¼ 0, where the lower branch,
ω� Δ ¼ 0ð Þ ¼ ω1, corresponds to an in-phase oscillation of the
two pendulums,78 while the upper branch, ωþ Δ ¼ 0ð Þ ¼ ω1 þ 2J ,
corresponds to a 180� out-of-phase motion.79 Physically, the cou-
pling between the two pendulums has broken the degeneracy at
Δ ¼ 0, raising the energy of the out-of-phase, upper branch. The
scale of the degeneracy breaking is set by the coupling strength,
which enables coherent energy exchange between the two pendulums.

FIG. 2. Spring-coupled simple pendulums. This system is characterized by
coherent coupling of the oscillations, which results in level repulsion of the
hybridized modes.
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This is most apparent in the time domain, as discussed later in
this section.

Hybridization also impacts the linewidth, as can be seen from
Fig. 3(b). For coherent coupling, the linewidth evolution is attrac-
tive, with a crossing at Δ ¼ 0, where Δωþ ¼ Δω� ¼ λ1 þ λ2ð Þ=2.
Furthermore, even though the damping of each mode is a func-
tion of detuning, the total damping is constrained such that
Δωþ þ Δω� ¼ λ1 þ λ2 for all Δ. This reflects the fact that the
spring-coupled pendulums form a closed system, and while cou-
pling allows energy exchange between the two pendulums, it
does not introduce an additional damping channel. This con-
straint sets asymptotic limits on Δω+ as jΔj ! 1, ensuring that
Δω+ is bounded above and below by λ1,2.

The dynamics of the coupled eigenmodes is governed by
two time scales: a fast, sinusoidal oscillation at ωref and a slow
drift in the overall amplitude A1,2 and phase θ1,2, which can be

written as

w1,2(t) ¼ A1,2(t)cos[ωref t þ θ1,2(t)]: (3)

The slowly varying amplitude and phase can be determined by
time averaging over the fast oscillations (see Appendix A). Near
Δ � 0 and for J � ω1,2,

dA1,2

dt
¼ �λ1,2A1,2 þ A2,1Jsin(θ2,1 � θ1,2), (4a)

d(θ1 � θ2)

dt
¼ �Δþ (A2

1 � A2
2)Jcos(θ1 � θ2)

2A1A2
: (4b)

According to Eq. (4), the amplitude of the uncoupled pendulums
will decay exponentially with a time constant determined by the
damping, while the phase difference increases linearly at a cons-
tant rate of Δ. However, the evolution of the coupled pendulums
is very different. At Δ ¼ 0 in the steady state, meaning when
d(θ1 � θ2)=dt ¼ 0, but not necessary when dθ1=dt ¼ dθ2=dt ¼ 0,
either A2

1 ¼ A2
2 or cos(θ1 � θ2) ¼ 0. The first condition corre-

sponds to in-phase (A1 ¼ A2) or 180� out-of-phase (A1 ¼ �A2)
motion of the two pendulums, i.e., the canonical eigenstates,
while the second condition corresponds to 90� out-of-phase
oscillations. This fundamental 90� phase shift provides a sensitive
measure of coherent coupling in cavity magnonics.18,30

With initial conditions w1(t ¼ 0) ¼ w0 and w2(t ¼ 0) ¼ 0, the
time evolution of the strongly coupled pendulums at Δ ¼ 0 is
determined from Eqs. (3) and (4) to be

w1 ≃ w0e
�(λ1þλ2)t=2 cos(ω1t)þ cos ω1 þ 2Jð Þt½ �f g=2

¼ w0e
�(λ1þλ2)t=2cos(Jt) cos ω1 þ Jð Þt½ �, (5a)

w2 ≃ w0e
�(λ1þλ2)t=2 cos(ω1t)� cos ω1 þ 2Jð Þt½ �f g=2

¼ w0e
�(λ1þλ2)t=2sin(Jt) sin ω1 þ Jð Þt½ �: (5b)

It should be noted that the phase evolution of the individual pen-
dulums is determined from Eq. (A5b) to be dθ1=dt ¼ dθ2=dt ¼ J .

Equations (5a) and (5b) are plotted in Figs. 3(c) and 3(d),
respectively, revealing a beating pattern with fast oscillations at fre-
quency ω1 þ J modulated by the Rabi-like frequency J. This modu-
lation frequency determines the rate of energy transfer between the
two subsystems, as can be observed by the 90� phase difference of
w1 and w2. In general, this phase difference will be observed if the
initial conditions are not symmetric or antisymmetric, i.e., if the
system is not initially an eigenmode. Physically, this is due to
energy conservation during coupling, which will not allow the
system to reach its ground state (in-phase motion) if it does not
start in this state. Furthermore, both pendulums decay at the same
rate, λ1 þ λ2ð Þ=2, which is the average value of the linewidth evolu-
tion, as seen in Fig. 3(b). This confirms that the coupling does not
open new decay channels.

FIG. 3. (a) Hybridized frequency ω+ and (b) linewidth Δω+ of coherently
coupled pendulums, calculated according to Eq. (2) in the strong coupling
regime, J2= λ1λ2ð Þ . 1. Panel (a) illustrates level repulsion and panel (b) illus-
trates linewidth attraction, which are both characteristic of coherently coupled
systems. Blue (red) curves correspond to the eωþ (eω�) branch. The horizontal
and diagonal dashed lines in (a) show the frequency of the uncoupled pendu-
lums, while the horizontal dashed lines in (b) indicate the damping limits set by
the intrinsic damping of the pendulums. (c) w1 and (d) w2 calculated according
to Eqs. (5a) and (5b), respectively, showing the time evolution signature of
coherent coupling. Throughout this figure, J=ω1 ¼ 0:03 and
λ2=ω1 ¼ 5λ1=ω1 ¼ 0:005. For the time domain calculation, ω1 ¼ ω2.
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B. Dashpot-coupled pendulums: A case study
in dissipative coupling

In Fig. 4, two pendulums of equal mass m are coupled by a
massless dashpot, i.e., a damper in a viscous fluid that resists
motion. For this system, there is no potential energy associated
with coupling. Instead, the dashpot introduces a velocity propor-
tional friction force. As discussed in Appendix C, this setup leads
to dissipative coupling between the two pendulums with coupling
strength Γ1,2 ¼ ν=l21,2 � ω1,2, where ν is the kinematic viscosity of
fluid in the dashpot.

Near zero detuning Γ ¼ Γ1 � Γ2 and taking the same approach
as in Sec. II A leads to the complex eigenfrequencies of the
dashpot-coupled system,

eω+ ¼ 1

2
eω1 þ eω2 � 2iΓ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(eω1 � eω2)

2 � 4Γ2

q� �
: (6)

Again, eω1,2 ¼ ω1,2 � iλ1,2, and we can write the complex hybrid-
ized eigenfrequencies in the form eω+¼ ω+� iΔω+.

The dispersion and linewidth of the dashpot-coupled pen-
dulums are plotted in Figs. 5(a) and 5(b), respectively. The
behavior is strikingly different from the coherent spring-coupled
system. First, the eigenfrequencies in Fig. 5(a) now coalesce,
merging at Δ ¼ 0 in a phenomena known as level attraction.
Therefore, the dissipative coupling can no longer be characterized
by the Rabi-like gap. Instead, the onset of level attraction is char-
acterized by two exceptional-like points, corresponding to a
bifurcation in the dispersion where the two eigenmodes become
degenerate.80 The gap between these exceptional points is pro-
portional to the dissipative coupling rate, as shown in Fig. 5(a).
Exceptional points are tied to the topological structure of the
complex eigenfrequencies and underly a number of interesting
physical effects, such as non-reciprocal transport,81–83 which will
be discussed in Sec IV.

Dissipative coupling is also characterized by damping repul-
sion, which creates a forbidden linewidth gap between Γþ λ1 and
Γþ λ2, as shown in Fig. 5(b). As damping is a non-conservative,
irreversible process, dissipative coupling can only accelerate decay;

hence, the dissipative coupling enters as an additional damping
term in Eq. (6). Although the dissipative coupling effectively sup-
presses the damping rate of the hybridized mode with lower
damping (λ1 here), the lowest total damping rate of the hybridized
modes is fundamentally limited by the intrinsic damping rate,
min (λ1, λ2). This minimum damping state corresponds to in-phase
motion of the two pendulums when the dashpot range of motion is
minimized and therefore the frictional force is zero.84 On the other
hand, the maximum damping state corresponds to the maximal
dashpot motion when the two pendulums oscillate 180�

out-of-phase. Although the physical phenomena associated with
dissipative and coherent coupling are very different, from a mathe-
matical point of view, these two interactions are equivalent under
frequency and damping exchange in the complex frequency plane;
i.e., for coherent coupling, the hybridized frequencies are repelled,
while the linewidths are attracted and the opposite is true for dissi-
pative coupling.

FIG. 4. Dashpot-coupled simple pendulums. In this system, the oscillators are
dissipatively coupled, resulting in level attraction.

FIG. 5. (a) Hybridized frequency ω+ and (b) linewidth Δω+ of dissipatively
coupled pendulums, calculated according to Eq. (6), demonstrating level attrac-
tion and linewidth repulsion, respectively. Blue (red) curves correspond to the
eωþ (eω�) branch. The horizontal and diagonal dashed lines in (a) show the
frequency of the uncoupled pendulums, while the horizontal dashed lines in
(b) indicate the damping enhancement Γþ λ1 and Γþ λ2 due to dissipative
coupling. (c) w1 and (d) w2 calculated according to Eqs. (8a) and (8b),
respectively, showing the time evolution signature of dissipative coupling.
Throughout this figure, Γ=ω1 ¼ 0:03 and λ2=ω1 ¼ 5λ1=ω1 ¼ 0:005. For the
time domain calculation, ω1 ¼ ω2.
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Similar to coherent coupling, the time evolution of w1,2 is pre-
dominantly oscillatory. Therefore, the method of averages85–87 can
again be applied to determine that the amplitude and phase are
governed by the equations

dA1,2

dt
¼ �(λ1,2 þ Γ1,2)A1,2 þ A2,1Γ1,2cos(θ2,1 � θ1,2), (7a)

d(θ1 � θ2)

dt
¼ �Δ� A1Γ2

A2
þ A2Γ1

A1

� �
sin(θ1 � θ2): (7b)

The additional decay terms, Γ1,2A1,2, will enhance the decay rate as
seen in Fig. 5(b).88 In contrast, the spring-coupled resonance fre-
quency was blueshifted, an example of the frequency-damping
symmetry between dissipative and coherent coupling.

According to Eq. (7b), the phase difference between the pen-
dulums in the steady state, at zero detuning, is 0� or 180�.
Although both states coexist in the coupled system, the 180�

out-of-phase motion decays rapidly, leading to in-phase synchroni-
zation of the two pendulums at late times. The sharp contrast to
the 90� phase shift in the coherent system, combined with the
phase sensitivity of microwave transmission measurements, pro-
vides a way to distinguish the coupling mechanism in cavity-
magnonic systems.

Solving Eq. (7) in the strong coupling limit, Γ2=λ1λ2 � 1,
with Γ ¼ Γ1 ¼ Γ2 and the initial conditions w1(t ¼ 0) ¼ w0,
w2(t ¼ 0) ¼ 0,

w1 ≃ w0e
�(λ1þλ2)t=2(1þ e�2Γt)cos(ω1t)=2, (8a)

w2 ≃ w0e
�(λ1þλ2)t=2(1� e�2Γt)cos(ω1t)=2: (8b)

As in the case of coherent coupling, the average damping (λ1 þ λ2)=2
sets the overall decay rate of the oscillations. However, unlike
coherent coupling, Γ also acts as a source of damping. Since
Γ � λ1,2, the decay rate set by the coupling greatly exceeds the
intrinsic losses, and a rapid decrease in w1 is accompanied by a
rapid increase in w2, as shown in Figs. 5(c) and 5(d). The quick
decay of the dissipative coupling term leads to rapid synchroniza-
tion, w1 ¼ w2 ¼ w0e

�(λ1þλ2)t=2cos(ω1t)=2, where the two pendu-
lums have identical amplitude and phase. Physically, this is an
example of two-tone decay, where an initial rapid decay to the
lowest energy state is followed by a slower, collective decay due to
intrinsic damping. In contrast, coherent coupling is characterized
by a two-tone oscillation, which produces beating with an overall
decay envelope dictated by the collective damping. This contrast
exemplifies the frequency-damping symmetry between dissipative
and coherent systems, ensuring that synchronization will occur
independently of initial conditions provided the oscillatory motion
is not damped too quickly, i.e., as long as the collective decay rate
does not exceed the rate of dissipative coupling. In general, if the
initial angles are w0

1,2, the amplitude of the synchronized modes

will be w0
1 þ w0

2

� �
=2, and therefore, synchronization will occur

unless w0
2 ¼ �w0

1, in which case both pendulums are rapidly
damped before synchronization can occur.

Note that the synchronization discussed here does not involve
self-sustained oscillators,89 as the cavity-magnonic system is exter-
nally driven. While self-sustained oscillators are often necessary in
a synchronized system, there are other factors that can influence
synchronization. For example, in the case of dissipative cavity mag-
nonics, isochronous oscillators can be synchronized through dissi-
pative coupling.89

C. Base-mediated coupling: The role of the reservoir in
dissipative interactions

Dissipative interactions must be mediated by a reservoir, for
example, the viscous fluid of the dashpot-coupled pendulums or an
open photon bath in cavity magnonics. Ultimately, this means that
dissipative interactions are indirect, and while the general features
of dissipative coupling—level attraction, linewidth repulsion, and
synchronization—are already revealed in the dashpot-coupled
system, the role of the reservoir is obscured by the phenomenologi-
cal nature of the viscosity. However, when pendulums interact via
the vibrations of a common base, the reservoir plays a starring role.
Aptly known as base-mediated coupling, these phenomena are
responsible for the widespread observation of synchronization in
physical systems.

Base-mediated coupling was first described by Christiaan
Huygens when he noted that two pendulum clocks, mounted on a
common base, will swing at the same frequency with a 180� phase
shift.89,90 Huygens’ pendulum clocks, shown in Fig. 6, form a
closed system, which includes two pendulums mounted to a wall.

FIG. 6. Two pendulum clocks may be indirectly coupled via wall vibrations. This
system, known as Huygen’s pendulums, is an example of base-mediated cou-
pling, which highlights the role of the reservoir in dissipative interactions.
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The pendulums have no direct interaction. However, the wall acts
as a mutual reservoir, allowing energy leaked by one pendulum to
indirectly drive the second, resulting in an indirect, dissipative cou-
pling. Another example of these phenomena is the synchronization
of metronomes placed on a freely moving base. In this case, the
center-of-mass velocity of the system must be zero, leading to syn-
chronization via an indirect interaction between the metronomes.91

Huygen’s pendulums can be analyzed by modeling the wall as
a giant two-dimensional crystal with a wavevector dependent oscil-
lation frequency. The resulting eigenfrequencies are analogous to
the dashpot-coupled pendulums,

eω+ ¼ 1

2
[(ω1 þ ω2)� i(γ1 þ γ2)]

+
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[(ω1 � ω2)� i(γ1 � γ2)]

2 � 4γ1γ2

q
,

(9)

where ω1,2 are again the uncoupled pendulum oscillation frequen-
cies and γ1,2 are the extrinsic damping parameters, which represent
energy leakage from the pendulums to the wall. Since the extrinsic
damping is typically much greater than the intrinsic damping of
each pendulum, γ1,2 � λ1,2, the intrinsic damping has been
neglected to simplify the results. However, it should be noted that
this is not a requirement of dissipative coupling in the base-
mediated system. Comparing to Eq. (6) of the dashpot-coupled
pendulums, it is clear that the wall mediates an indirect dissipative
coupling strength of Γ ¼ ffiffiffiffiffiffiffiffiffi

γ1γ2
p

and that the extrinsic damping
provides the dominant decay channel for each mode. The technical
details of this model and a derivation of Eq. (9) can be found in
Appendix D.

The dispersion and linewidth are plotted in Fig. 7 for two sets
of extrinsic damping parameters. In the left panel, where γ1 ¼ γ2,
the behavior is similar to the dashpot-coupled system, namely, level
attraction in the oscillation frequency and level repulsion in the
linewidth. In this case, there are two true exceptional points, at
Δ ¼+2Γ, corresponding to the bifurcation points of the disper-
sion in Figs. 7(a) and 7(b). At these points, both the real and imag-
inary part of the complex eigenfrequencies coalesce. Therefore,
exceptional points may be engineered via base-mediated coupling,
e.g., for highly sensitive detection techniques.7,21,22,24

When the extrinsic damping rates are highly mismatched, the
signatures of level attraction are less clear. This effect is illustrated
in the right panel of Fig. 7, where γ1 ¼ 4γ2 and occurs even
though Γ is unchanged. In this case, the frequency dispersion
shows a cross-like behavior, and the bifurcation points are almost
invisible. This cross-like behavior can also be observed in the
spring-coupled system when J2 , λ1λ2, which means that it is diffi-
cult to distinguish the two effects based solely on the frequency dis-
persion. However, the linewidth evolution of the base-mediated
system still clearly shows repulsive behavior, and therefore, the
nature of the coupling mechanism can be confirmed regardless of
damping mismatch.

Neglecting the driving term and for the initial conditions
w1(t ¼ 0) ¼ w0 and w2(t ¼ 0) ¼ 0, the time evolution of the

base-mediated pendulums at ω1 ¼ ω2 is

w1 ¼ w0
γ2

γ1 þ γ2

� �
1þ γ1

γ2
e�(γ1þγ2)t

� �
cos(ω1t), (10a)

w2 ¼ �w0

ffiffiffiffiffiffiffiffiffi
γ1γ2

p

γ1 þ γ2

� �
1� e�(γ1þγ2)t
� �

cos(ω1t): (10b)

The exponential decay term rapidly disappears resulting in the 180�

out-of-phase synchronization originally observed by Huygens. This
synchronization is observed regardless of dissipation matching, as

FIG. 7. Frequency and time behavior of the base-mediated coupled pendulums.
Panels (a)–(d) were calculated using a dissipative coupling constant of
Γ=ω1 ¼ 0:01, with γ2=γ1 ¼ 1, while panels (e)–(g) maintain Γ=ω1 ¼ 0:01 but
with γ1=γ2 ¼ 4. (a) and (e) Oscillation frequency ω+ and (b) and (f ) linewidth
Δω+ calculated according to Eq. (9). The horizontal and diagonal dashed lines
in (a) and (e), respectively, show the frequency of the uncoupled pendulums,
while the horizontal dashed lines in (b) and (e) are the extrinsic damping rates
of the pendulums caused by coupling to the base. The oscillation and linewidth
behavior both indicate dissipative coupling. (d) and (h) Time evolution of w1(t)
and (c) and (g) w2(t) calculated according to Eq. (10). At large t, the two pendu-
lums settle into an out-of-phase synchronized steady state, and since this model
does not include intrinsic damping, the pendulums oscillate, but their amplitudes
do not decay after synchronization.
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shown in Figs. 7(c), 7(d), 7(g), and 7(h). However, when the dissi-
pation rates are highly mismatched, the decay into the steady state
is much faster and both amplitudes are reduced compared to the
case of equal dissipation. In the synchronized state, the pendulums
oscillate, but their amplitudes no longer decay, indicating that the
total losses due to direct coupling between the pendulums and the
base are zero; any energy lost from the first pendulum can be
completely and coherently transferred to the second pendulum.
Furthermore, the steady-state amplitudes of w1 and w2 are now

unequal, with an amplitude ratio w1=w2 /
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2=γ1

p
, determined

solely by the extrinsic damping to the common base.

D. Summary of coherent and dissipative harmonic
oscillators

Table I contains a summary of the key characteristics for the
three case studies considered in this section: (1) Coherent, spring-
coupled pendulums; (2) dissipative, dashpot-coupled pendulums;
and (3) dissipative, base-mediated coupled pendulums.

III. COHERENT AND DISSIPATIVE CAVITY MAGNONICS

In this section, the theoretical and experimental details of
coherent and dissipative cavity magnonics are outlined. In the
case of dissipative coupling, we first discuss an effective direct
interaction, analogous to the dashpot-coupled pendulums. We
then highlight the role of the reservoir by examining a traveling-
wave-mediated interaction, analogous to the base-mediated
pendulums. In each case, key signatures and questions of device
integration are addressed.

A. Coherent cavity magnonics

The canonical cavity-magnonic device is a ferrimagnetic
spin ensemble coupled to a single cavity resonance, for example,
an yttrium-iron-garnet (YIG) sphere coupled to a microwave
cavity mode, as shown in Fig. 8(a). The strongest spin-photon
interaction will take place with the ferromagnetic resonance
(FMR) mode, which includes the most spins, and therefore, at
the lowest order, the effective Hamiltonian must contain a
kinetic term for the photons and the FMR mode, plus all possible

FIG. 8. (a) A coherent cavity-magnonic experiment using an yttrium-iron-garnet
sphere inside a 3D microwave cavity. The magnetic resonance is controlled by
an external bias field, and the microwave spectra are measured using a
vector-network-analyzer. (b) The microwave transmission spectra of coherent
cavity magnonics, plotted as a function of the cavity and magnon frequency
detuning, Δω ¼ ω� ωc and Δm ¼ ω� ωm. Diagonal and horizontal dashed
lines indicate the uncoupled magnon and cavity dispersion, respectively. Key
coherent features include an anticrossing and linewidth evolution. (c) Re(a)=a0
and Re(b)=a0 as a function of time, calculated according to Eq. (17). The rapid
GHz frequency oscillations and MHz frequency beating pattern, determined by
the scale of the generalized Rabi frequency,29 mirror the behavior of the spring-
coupled pendulums. The black decay curve is the sum, ja=a0j2 þ jb=a0j2, illus-
trating the total energy decay. (d) The time domain transmission spectra,
jS21j2 ¼ ja=a0j2, plotted as the solid red curve, time average over the rapid
oscillations. Here, the blue curve indicates the 180� phase-shifted magnetiza-
tion, jb=a0j2, calculated according to Eq. (17).

TABLE I. Key features of the oscillator models considered in Sec. II.

Pendulum system

Spring-coupled Dashpot-coupled Base-mediated

Coupling type Coherent Dissipative Dissipative
Steady-state phase shift π

2 π π

Dispersion characteristic Level repulsion with Rabi-like gap
of 2J

Level attraction with EP-like
separation of 4Γ

Level attraction with EP-like
separation of 4Γ

Linewidth characteristic Crossing; bounded by λ1,2 Gap of size |λ1− λ2| Gap of size |γ1− γ2|
Time domain characteristic
near Δ = 0

Two-tone oscillations producing
beat-like pattern

Two-tone decay producing
synchronization

Two-tone decay producing
synchronization
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quadratic interactions,

HCC ¼ �hωca
yaþ �hωmb

ybþ �hJ(aþ ay)(bþ by): (11)

Here, ay (a) and by (b) are the respective creation (annihilation)
operators of the cavity and FMR modes, which have resonance
frequencies ωc and ωm, respectively. J is the coupling strength
between the FMR and cavity resonance. The interaction term will
have time dependencies of the form, e�i(ωc+ωm)t , but since typical
experiments are performed near ωm � ωc, the rapidly oscillating
e�i(ωcþωm)t terms will have a small time averaged effect and can be
neglected in the rotating wave approximation.92 Therefore,

HCC ¼ �hωca
yaþ �hωmb

ybþ �hJ(aby þ ayb): (12)

Equation (12) is essentially the Tavis–Cummings model75,76 (the
Ns spin generalization of the single spin Jaynes–Cummings
model93) and can be extended to systems with multiple cavity res-
onances94 and higher order magnon modes.29,58,95–97 While we have
provided an effective field theory approach to the Hamiltonian of
coherent cavity magnonics, microscopically, Eq. (12) is derived by
quantizing the M 	 B Zeeman interaction between the magnetiza-
tion, M, of the magnetic sample and the cavity magnetic field, B.
This approach is clearly described elsewhere in the literature, e.g.,
Refs. 25, 56, 59, 66, and 100 and can be extended to exchange
coupled systems.95

As the origin of J is the Zeeman coupling between the cavity
magnetic field and the magnetic sample, the coupling strength
depends on the magnon and cavity mode volumes, Vs and Vc,

respectively, as J /
ffiffiffiffiffiffiffiffiffiffiffiffi
Vs=Vc

p
.26,59,69 Vs is proportional to the

number of spins in the sample, Ns, and therefore, J /
ffiffiffiffiffi
Ns

p
, con-

sistent with expectations from the Tavis–Cummings model.75,76

Therefore, the coherent coupling strength is increased in large
magnetic samples,69,101 providing a simple approach to achieve
strong coupling—increasing sample size. Moreover, the

ffiffiffiffiffi
Ns

p

enhancement of the coupling strength is a key motivation behind
the exploration of cavity magnonics for quantum information
applications.25,34,98 However, while useful for cavity magnonics
exploration, large sample sizes are inappropriate for device integra-
tion. Fortunately, the coupling also depends on the nature of the
cavity mode; for example, regardless of sample size, the coupling
will be zero if the sample magnetization and cavity magnetic field
polarization are perpendicular.99 Therefore, it is useful to write

J /
ffiffiffiffiffiffiffiffiffiffiffiffi
Vs=Vc

p
¼ ffiffiffiffiffi

Ns

p
K , where K is the filling factor, which describes

how effectively the cavity magnetic field couples to the magnon
mode.69,100,101 Large coupling strengths can, therefore, also be
achieved by increasing K , for example, by carefully selecting the
cavity mode geometry99 or by localizing the magnetic field within
the sample volume via special 3D cavity designs56 or on-chip, litho-
graphically defined cavities.39,40 The latter method is particularly
promising for on-chip integration of cavity magnonics.

From Eq. (12), the equations of motion are

_a ¼ � i

�h
a, H½ � ¼ �iωcaþ�iJb, (13a)

_b ¼ � i

�h
b, H½ � ¼ �iωmb� iJa, (13b)

which describe the intrinsic behavior of a closed system, i.e.,
without external coupling or intrinsic damping. While these con-
straints are not realistic experimentally, the eigenvalues of Eq. (13)
do accurately describe the coherent hybridized dispersion at strong
coupling, which is insensitive to the damping.

Intrinsic damping can be included by replacing ωc ! eωc

¼ ωc � iβ and ωm ! eωm ¼ ωm � iα so that

_a ¼ �ieωca� iJb, (14a)

_b ¼ �ieωmb� iJa: (14b)

Here, β and α are the cavity and magnon damping rates, respec-
tively.102 Taking a, b/ e�iωt and solving for ω, the complex eigen-
frequencies, eω+, are determined to be

eω+ ¼ 1

2
eωc þ eωm+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(eωc � eωm)

2 þ 4J2
q� �

: (15)

Coherent cavity magnonics, therefore, mirrors the spring-coupled
pendulums discussed in Sec. II A with level repulsion in the disper-
sion and a linewidth crossing in the damping, as shown in the
microwave transmission spectra of Fig. 8(b).

In a fixed cavity experiment, illustrated in Fig. 8(a), ωc is set
by the cavity design, while ωm is controlled by an external bias
field. When tuned to ωc ¼ ωm, the dispersion reduces to
ω+ ¼ Re(eω+) ¼ ωc+ jJj, where the small effect of damping has
been neglected.103 The spin-photon interaction, therefore, produces
a low energy state with increased stability, which is markedly differ-
ent than the spring-coupled pendulums but is common in degener-
ate quantum systems, e.g., the formation of bonding orbitals in
atomic systems. While ωþ and ω� have been defined as the high
and low energy modes, respectively, the nature of the eigenvectors
depends on the sign of the interaction. Typically, α, β � ωc,m, in
which case the eigenvectors of Eq. (13), jþi/ 1=

ffiffiffi
2

p
, 1=

ffiffiffi
2

p� �
and

j�i/ 1=
ffiffiffi
2

p
, � 1=

ffiffiffi
2

p� �
, correspond to in-phase and 180�

out-of-phase motion, respectively. For J . 0, as is the case for
dipole coupling, the ground state corresponds to out-of-phase
motion, j�i. However, if J , 0, the in-phase jþi is the ground
state.

To calculate the microwave transmission spectra one would
measure experimentally, for example, using a vector-network-
analyzer (VNA), we must allow for external feed line coupling into
and out of the cavity. As described in Appendix E, this can be
accomplished through the input–output formalism, commonly
associated with quantum optics; see, e.g., Refs. 32, 47, 52, and 104.
The resulting S-parameters for a two-port cavity are

S21 ¼
dout

cin
¼ i

ffiffiffiffiffiffiffiffiffiffi
κcκd

p
(ω� eωm)

(ω� eωc)(ω� eωm)� J2
, (16a)

S11 ¼
cout

cin
¼ �1þ iκc(ω� eωm)

(ω� eωc)(ω� eωm)� J2
, (16b)
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S22 ¼
dout

din
¼ �1þ iκd(ω� eωm)

(ω� eωc)(ω� eωm)� J2
, (16c)

and based on the symmetry of the system, S21 ¼ S12. In Eq. (16),
κc,d are, respectively, the extrinsic damping rates at ports 1 and 2
due to the feed line coupling, and eωc ¼ ωc � iβL ¼ ωc

�i β þ κc þ κdð Þ=2½ � is the complex cavity resonance frequency
with the loaded cavity damping βL. Therefore, experimentally, the
linewidth of the cavity resonance depends on both the intrinsic
damping, due to losses in the cavity walls, and the extrinsic
damping, due to the feed line coupling. Thus, there is a tradeoff
between amplitude and signal broadening; i.e., the S-parameter
amplitudes are proportional to κc,d , but κc,d also contributes to the
loaded damping that broadens the resonance. For this reason,
extrinsic dissipation is often seen as an inescapable nuisance in
coherent cavity magnonics, although it plays a much more impor-
tant role in dissipatively coupled systems as discussed in Sec. III B.

A canonical cavity-magnonic experiment and microwave
transmission spectra are shown in Figs. 8(a) and 8(b), respectively.
A magnetic sample is placed inside a microwave cavity, and an
external magnetic bias field is used to control ωm. The transmission
spectra are then detected using a VNA. The data shown in panel (b)
were collected using a 1-mm diameter YIG sphere and a 1.25 mm
diameter, copper, cylindrical microwave cavity with a height of
29mm. Key features of coherent coupling, including level repulsion
and linewidth crossing, can be clearly identified, in analogy with the
spring-coupled pendulums.

The experimental apparatus shown in Fig. 8(a) can also be
used to probe the time domain behavior via Fourier transform.
Since the external photon bath of the VNA is used to excite the
cavity mode, ajt¼0 ¼ a0 and bjt¼0 ¼ 0, where a20 is proportional to
the input microwave power. With these initial conditions and the
equations of motion, Eq. (14), the photon and magnon states can
be expressed as a linear combination of the normal modes (which
oscillate as e�ieω+t),

a

b

� �
¼ a0

C11 C12

C21 C22

� �
e�ieωþt

e�ieω�t

" #

¼ a0
1� C Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � C2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � C2

p
� �

e�ieωþt

e�ieω�t

" #
, (17)

where

C ¼ 1

2
1� eωc � eωmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(eωc � eωm)
2 þ 4J2

p
" #

: (18)

C is approximately real since α, β � J � ωc,m, and therefore,

jS21j2 ¼
			 a
a0

			
2
¼ C2

11e
�2t=τþ þ C2

12e
�2t=τ�

þ 2C11C12e
�t=τþe�t=τ1cos(Rt): (19)

Here, R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ωm � ωc)

2 þ 4J2
p

is the generalized Rabi frequency,
and τ+ ¼ 2π=Δω+ are the decay rates of the two normal modes.

Physically, the Rabi-like interference results from the fact that the
VNA measurement perturbatively probes the cavity field, which is
no longer an eigenstate of the hybridized system.

Re(a=a0) and Re(b=a0) are plotted as a function of time in
Fig. 8(c), using typical experimental parameters.105 The decay time-
scale of ns corresponds to a GHz frequency cavity mode. The
behavior here again mirrors the spring-coupled pendulums: a and
b oscillate rapidly with a 180� phase shift, and a MHz frequency
beating is observed at the generalized Rabi frequency. These
Rabi-like oscillations are the key features seen in the microwave
transmission spectra, plotted as the solid red curve in Fig. 8(d).
Here, the rapid oscillations are time averaged away since the VNA
probes jS21j2. In panel (d), the dashed red curve indicates the 180�

phase-shifted magnetization, jb=a0j2, calculated according to
Eq. (17), and the black decay curve is the sum, ja=a0j2 þ jb=a0j2.
At ωc ¼ ωm, C11 ¼ C12 ¼ 1=2 and τþ ¼ τ�. Therefore, a complete
extinction in the jS21j2-t spectrum is observed, resulting in an equal
energy distribution between the spin and photon subsystems.106

B. Dissipative cavity magnonics

In general, both coherent and dissipative interactions coexist
in cavity magnonics. However, it is possible to design systems
such that one type of coupling, either coherent or dissipative,
dominates. The motivation to enhance or suppress certain inter-
actions depends on the objective of a given device or experiment.
For example, early cavity magnonics experiments emphasized
quantum information and transduction applications, in which case
a strong coherent coupling is typically advantageous. Therefore,
these experiments were implicitly designed to enhance coherent
coupling, for example, by placing the magnetic sample at an RF
magnetic field antinode. Such placement enhances the Zeeman
interaction and, although unknown at the time, may actively sup-
press dissipative coupling.

Since direct magnon–photon coupling, i.e., coupling via the
Zeeman interaction, is coherent, dissipative coupling must be real-
ized by introducing an indirect interaction. This can be achieved in
a variety of ways, generally classified as one-tone or two-tone
experiments.46 In one-tone experiments, only the photon mode is
driven and the indirect interaction is realized by coupling both
photon and magnon to a common auxiliary mode. The nature of
the auxiliary mode depends on the experimental system; for
example, it could be a traveling-wave reservoir63 or an auxiliary
cavity mode.107 Regardless, indirect interactions in a one-tone plat-
form can be understood through cooperative radiative damping, as
described by the theory of reservoir engineering,108 which leads
to a coupling strength that depends on the extrinsic dissipation of
the photon and magnon. Classically, this aligns with the picture
of base-mediated coupling.109 In two-tone experiments, both
the photon and magnon are driven independently,19,110–112 and the
indirect interaction physically reflects the additional drive of the
cavity mode via the independently driven magnons. Both one and
two-tone systems have an effective complex coupling strength,
resulting in a mix of coherent and dissipative behavior. Importantly,
the amplitude and phase of this complex coupling strength can be
tuned, enabling systematic control between coherent and dissipative
coupling. The exact mechanism of tuning the complex coupling
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strength depends on the experimental platform used to realize the
indirect interaction. For example, coherent coupling may be
explicitly suppressed at an RF magnetic field node,32 the traveling-
wave phase delay may be changed by repositioning the magnetic
sample,63 or the relative amplitude and phase of the two driving
signals may be controlled.111

Beyond new applications, the discovery of dissipative coupling
expanded our understanding of dissipation in the cavity-magnonic
system. Although in the coherent system dissipation does play a
role in the amplitude decay of Rabi oscillations and the linewidth
evolution can be used as a signature of coupling, dissipation does
not significantly impact the strongly coupled coherent dispersion,
which is the key point of interest for applications of a cavity-
magnonic transducer. Moreover, large dissipation reduces the coop-
erativity, which is an important figure of merit for coherent
systems. For these reasons, dissipation is often considered a nui-
sance in coherent cavity magnonics. This explains why experiments
focusing on coherent coupling typically employ quasi-closed cavi-
ties where both intrinsic dissipation, due to cavity losses and
magnon decay, and extrinsic dissipation, due to environmental
coupling, are small. On the other hand, dissipative coupling in
cavity magnonics was first discovered by adopting open cavities,18

where the extrinsic damping of the cavity mode, κc � 0:01� 1ð Þωc,
is much greater than the intrinsic damping. In this section and in
Sec. III C, we will focus on this “dissipation induced” coupling, as
opposed to the indirect two-tone induced interaction, but we must
point out that both systems display level attraction, and importantly,
the general features discussed here can be found in any system that
displays level attraction.

The dissipative magnon–photon interaction is mediated by a
mutual coupling of the magnon and cavity photon to a traveling-
wave reservoir. This results in an effective dissipative coupling
strength Γ ¼ ffiffiffiffiffiffiffiffiffiffi

κcκm
p

, where κm is the extrinsic dissipation of the
magnon. Although the magnetic dipole interaction between the
spin system and the environment is weak and therefore, κm is
small, a large Γ can be achieved by increasing the extrinsic
damping of the cavity mode. This is why dissipative coupling and
level attraction are commonly achieved using open cavities with
large extrinsic dissipation and traveling waves. However, we again
stress that both coherent and dissipative coupling exist simultane-
ously, and level attraction is not unique to open cavities. For
example, dissipative coupling may be realized via the broad antire-
sonance of a quasi-closed cavity,113 and level attraction has been
demonstrated in two-tone experiments,19,110–112 which are not dis-
sipatively coupled in the sense discussed here.

Phenomenologically, to account for both coherent and dissi-
pative interactions, the real spin-photon coupling J in Eq. (12)
must be replaced by a complex parameter, leading to the following
cavity-magnonic Hamiltonian:

H ¼ �heωca
yaþ �heωmb

ybþ �h(J � iΓ)(aybþ bya): (20)

Here, J and Γ are real parameters that characterize the strength of
coherent and dissipative interactions, respectively, and the complex
frequencies eωc ¼ ωc � iβL ¼ ωc � i β þ κcð Þ and eωm ¼ ωm � iαL

¼ ωm � i α þ κmð Þ include both the intrinsic and extrinsic dissipation

of the cavity and magnon, respectively. Regardless of the detailed
implementation, systems that display level attraction will have a
Hamiltonian analogous to Eq. (20), which, therefore, serves as an
important general case study. The interaction in Eq. (20) can be
understood in several ways. On one hand, it is natural to include a
complex coupling constant in the effective Hamiltonian approach
that originally led to Eq. (12). Alternatively, the complex interac-
tion may be motivated phenomenologically through an electrody-
namic approach, with Faraday’s law and Ampère’s law accounting
for the coherent interaction and Lenz’s law generating a back-
action that results in a dissipative coupling.18 These phenomeno-
logical motivations are most closely related to the dashpot-coupled
pendulums. A more detailed approach, which explicitly accounts
for the dissipation and aligns with the base-mediated pendulums,
will be discussed in Sec. III C.

From the Hamiltonian of Eq. (20), the cavity mode and
magnon equations of motion are determined to be

_a ¼ �ieωca� i J � iΓð Þb, (21a)

_b ¼ �ieωmb� i J � iΓð Þa: (21b)

Therefore, the complex eigenfrequencies are

eω+ ¼ 1

2
eωc þ eωm+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(eωc � eωm)

2 þ 4(J � iΓ)2
q� �

, (22)

and using input–output theory,16

S21 ¼ 1� iκc(ω� eωm)

(ω� eωc)(ω� eωm)� (J � iΓ)2
: (23)

Here, in analogy to previous definitions, eωc ¼ ωc � iβL ¼ ωc

�i β þ κcð Þ and eωm ¼ ωm � iαL ¼ ωm � i α þ κmð Þ. These are
similar to the results of Sec. III A, with the difference in S21 due to
the measurement configuration in typical open cavities, which
consist of waveguides galvanically coupled to a resonant structure,
and therefore, a transmission resonance appears as a dip in S21.

16

An example of a dissipative cavity-magnonic system is shown
in Fig. 9(a). This 1D Fabry–Perot-like cavity has two circular-
rectangular transitions with a relative angle of 45�, supporting both
a resonant and traveling-wave mode, and therefore, both coherent
and dissipative coupling will be present. However, by controlling
the mode profile, it is possible to suppress either form of coupling.
A mapping of the cavity magnetic field strength is shown on the
left side of panels (b) and (c). When a YIG sphere is placed at the
magnetic field antinode of position A, a direct coherent coupling
dominates and level repulsion is observed in the VNA transmission
spectrum as shown in Fig. 9(b). However, at the magnetic field
node, position B in Fig. 9(c), the coherent interaction is suppressed,
indirect coupling via the traveling wave dominates, and level attrac-
tion is observed.
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For purely dissipative coupling, the hybridized dispersion can
be written as

eω+ ¼ 1

2
eωc þ eωm+ eR

 �

, (24)

where eR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eΔ2 � 4Γ2

p
and eΔ ¼ eωc � eωm. Compared to coherent

coupling, the major change is that J2 ! �Γ
2, and therefore, as the

detuning becomes small, the effective Rabi frequency eR becomes
complex even for small intrinsic damping. This has a drastic
effect on the hybridization behavior, resulting in the transition to
level attraction. The global structure of the complex eigenfrequen-

cies is best characterized by the branch points of eR, known as the
exceptional points (EPs). An EP represents a total degeneracy in
eω+; i.e., both the dispersion and linewidth are degenerate, which
also leads to a coalescence of eigenmodes. True EPs require α ¼ β

so that eωm ¼ eωc at zero detuning, and while this strict condition
may not always be met in cavity magnonics, EP-like behavior will
be encountered as long as Γ= 0, though the magnitude of the
effect will depend on J=Γ. Furthermore, although EPs are more
common in systems dominated by dissipative coupling, a branch

point can also be reached in coherent cavity magnonic systems at
weak coupling.21

The basis transformation of Eq. (17) can be used to examine
the time evolution of purely dissipative coupling. With the initial
conditions a(t) ¼ a0 and b(t) ¼ 0,

a

a0
¼ 1

2
1þ

eΔ
eR

 !
e�ieωþt þ 1

2
1�

eΔ
eR

 !
e�ieω�t , (25a)

b

a0
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
eΔ
eR

 !2
vuut e�ieωþt � e�ieω�t

� 
: (25b)

When ωm � ωc, the real part of eR is small; therefore,
ω+ � ωc þ ωmð Þ=2. Therefore, both the cavity and the magnon
mode oscillate with a frequency of (ωc þ ωm)=2 and the phase dif-
ference between a(t) and b(t) at late times is
π þ arcsin ( ωm�ωcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(αL�βL)
2þ4Γ2

p ). This means that at zero detuning, the

magnon and photon oscillate 180� out-of-phase, similar to the
base-mediated pendulums.

The time-evolution of the dissipative system is plotted in
Fig. 10 using Eq. (25) for α ¼ β and κm ¼ κc. In this case, two EPs
appear at Δ ¼ ωm � ωc ¼+2Γ meaning eR is imaginary for jΔj , 2Γ
and real for jΔj . 2Γ. The time evolution decays without oscilla-
tion when jΔj , 2Γ as shown in Fig. 10(a) for jΔj ¼ 1:5Γ. In this

FIG. 9. (a) An open 1D Fabry–Perot-like cavity enables both coherent and dis-
sipative cavity magnonics. (b) When a YIG sample is placed at a magnetic field
antinode, the coherent interaction dominates and level repulsion is observed in
the transmission spectrum, plotted here as a function of Δω ¼ ω� ωc and
Δm ¼ ωm � ωc . (c) When the YIG is placed at a magnetic field node, the dissi-
pative interaction dominates and level attraction is seen in the transmission
spectra. Reproduced with permission from Yao et al., Phys. Rev. B 92, 184407
(2015). Copyright 2015 American Physical Society157 and Harder et al., Phys.
Rev. Lett. 121, 137203 (2018).18

FIG. 10. Time evolution of a dissipative cavity-magnonic system. Red and blue
curves are the envelopes of Re(a) and Re(b) calculated according to Eq. (25),
respectively. The high frequency (ωc þ ωm)=2 oscillations are not plotted.
(a) Between two EPs (Δ ¼ 1:5Γ), eR is imaginary and the system decays
without beating. (b) However, outside the EPs (Δ ¼ 2:5Γ), eR is real and Rabi
oscillations are observed. In this calculation, α ¼ β, κm ¼ 4α, κc ¼ κm ¼ Γ,
and ωc ¼ 2Γ.

Journal of
Applied Physics

TUTORIAL scitation.org/journal/jap

J. Appl. Phys. 129, 201101 (2021); doi: 10.1063/5.0046202 129, 201101-13

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/jap


region, the two eigenmodes are synchronized. However, when
jΔj . 2Γ, the real eR produces an additional eR=2 oscillation. The
resulting beating pattern can be seen in Fig. 10(b) when jΔj ¼ 2:5Γ.

C. Dissipative cavity magnonics with traveling photons

Dissipative interactions in cavity magnonics are mediated by
the mutual coupling of cavity and magnon modes to a common
reservoir. Therefore, going beyond the phenomenological picture of
Sec. III B requires the explicit introduction of the reservoir
modes.63,108 This approach uses the input–output formalism, anal-
ogous to the analysis of coherent coupling. However, now, both the
magnon and cavity mode must be coupled to a single external res-
ervoir, whereas in the coherent system, the cavity mode alone
was coupled to two independent external photon baths. To clarify
the physical picture, consider the experimental setup shown in
Fig. 11(a). Here, a transmission line connected between port 1 and 2
forms a traveling-wave reservoir, which couples to the cavity mode
of a cross cavity and to the magnon modes in a YIG sphere. To
achieve purely reservoir mediated coupling, the direct coherent inter-
action between the cavity and magnon is suppressed by shielding the
cross cavity with a metal box.

As derived in Appendix F, the transmission spectrum for
traveling-wave-mediated cavity magnonics is

S21 ¼ 1� i
κm ω� eωcð Þe2i fþθð Þ þ κc ω� eωmð Þ � 2iκcκme

i 2fþθð Þ

ω� eωcð Þ ω� eωmð Þ þ κcκme2if

� �
:

(26)

In this expression, f is the traveling-wave phase delay between the
cavity and magnon, which are spatially separated by a distance L.
In general, f ¼ kL, where k is the traveling-wave vector. However,
when focusing on the behavior near ωc � ωm, f is approximately k
independent. The traveling wave will also experience a phase shift
when passing through a resonance. This is characterized by the res-
onance phase θ.

The experiment shown in Fig. 11 is, in effect, a two-tone
experiment,19,63,110 since both the cavity and magnon modes are
independently driven and the direct interaction is suppressed.
However, there is also a controllable, indirect, dissipative interac-
tion due to the cooperative radiation damping of the cavity and
magnon to the traveling waves. These effects all play a role in the
observed transmission spectra. In Eq. (26), the κc ω� eωmð Þ contri-
bution is due to the direct driving of the cavity mode, which will be
present in all cavity-magnonic systems due to the driving of the
cavity photons. The additional κm ω� eωcð Þ contribution results
from the direct driving of the magnon mode. Together, these two
terms result in two-tone behavior, with a phase delay controlled by
the sample placement via f.19,63,110 However, in addition to this
two-tone behavior, there is an indirect coupling that produces the
κcκme

i 2fþθð Þ term since both the cavity and magnon modes experi-
ence radiative damping to the traveling-wave reservoir. By control-
ling both the amplitude and phase of this indirect coupling, the
nature of the hybridization can be tuned between level repulsion
and level attraction, as we can see by examining the transmission

resonance from Eq. (26), which is characterized by a dip at

eω+ ¼ 1

2
eωc þ eωm+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(eωc � eωm)

2 � 4κcκme2if
q� �

: (27)

In the experimental setup shown in Fig. 11(a), the YIG sphere posi-
tion can be precisely controlled by a 3D-stage. Moving the YIG
along the axis of the transmission line tunes the traveling phase f

and, therefore, controls the nature and strength of the reservoir
mediated coupling. To ensure there is no direct cavity–magnon
interaction at all YIG positions, the cross-cavity is shielded by a
metal box. The Δω � Δm spectra measured by a VNA at three

FIG. 11. (a) Schematic diagram of the experimental setup. The cross cavity is
shielded by a metal box so that it can only interact with the magnon mode via
the transmission line. (b) Microwave transmission jS21j at a YIG-cross-cavity
separation of L ¼ 53 mm, (c) L ¼ 47 mm, and (d) L ¼ 41 mm, demonstrating
cavity–magnon coupling due to the traveling-wave mediation. The spectra show
a mix of dissipative and coherent characteristics with essentially no coupling at
L ¼ 47 mm where κm � 0. These characteristics are confirmed by the two res-
onant dips in the line cuts at ωm ¼ ωc shown in (e) and (g) and the single
broad resonance in (f ). The sharp resonance in (e) and (f ) is due to a competi-
tion between the coherent and dissipative interactions, which results in a zero
damping condition where the linewidth of the hybridized mode approaches 0.
Reproduced with permission from Rao et al., Phys. Rev. B 101, 064404 (2020).
Copyright 2020 American Physical Society.
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different YIG positions is shown in Figs. 11(b)–11(d). The left–
right asymmetry (across the diagonal FMR dispersion) is the result
of two-tone interference between the directly driven cavity and
magnon. However, such effects do not produce the transition from
level repulsion to level attraction, which is due to the indirect
traveling-wave-mediated coupling. In general, the transmission
shows a mixture of coherent and dissipative characteristics, with a
broad cavity resonance due to the extrinsic damping. When
κm � 0, as shown in panel (c), both real and imaginary compo-
nents of the coupling vanish and only the cavity mode is observed
(the antiresonance at ω ¼ ωm is clearly visible, but this is not indic-
ative of cavity–magnon coupling63,114). Figures 11(e)–11(g) show
the microwave transmission as a function of Δω at ωm ¼ ωc for the
same YIG-cavity separations as panels (b)–(d). In general, two reso-
nant dips indicate the indirect cavity–magnon coupling, with the
single broad peak of panel (f) a result of κm � 0. The extremely
sharp resonance observed in Figs. 11(e) and 11(g), which has a con-
trast ratio of up to 30 dB, is a result of competition between the real
and imaginary components of the coupling, which leads to a zero
damping condition where the hybridized linewidth approaches 0.16

The time evolution of a(t) and b(t) will be identical to the dis-
sipative system of Sec. III B, specifically Eq. (25) for initial condi-
tions a(t) ¼ a0 and b(t) ¼ 0 with Γ ! ffiffiffiffiffiffiffiffiffiffi

κcκm
p

eif. Since f controls
the coherent/dissipative nature of the interaction, it is instructive to
examine the f dependence by taking Δ ¼ 0, α ¼ β, and κm ¼ κc,
in which case

a(t) ¼ a0

2
e�(βþκc)te�iωct(eGt þ e�Gt), (28a)

b(t) ¼ a0

2
e�(βþκc)te�iωct(eGt � e�Gt), (28b)

where G ¼ κc( cosfþ i sinf) is the complex coupling constant.
The traveling phase has a twofold effect. First, the late time expo-
nential decay rate is β þ κc(1� j cosfj), and second, the time evo-
lution has a slowly oscillating envelope at frequency κc sinf.
Therefore, f ¼ (nþ 1=2)π corresponds to a purely coherent inter-
action and the decay rate reaches its maximum of β þ κc, while the
envelope oscillation frequency is maximized at κc. On the other
hand, f ¼ 2nπ corresponds to a purely dissipative interaction with
a minimum decay rate of β and a minimum envelope oscillation
frequency of 0 Hz. These features are shown in the time evolution
plots of Fig. 12. In this figure, the blue and red curves are the enve-
lopes of Re(a)=a0 and Re(b)=a0, respectively, calculated using
Eq. (28) with the rapid oscillations at ωc excluded and the time evo-
lution of the magnon offset by 1 for clarity. The minimum decay,
slow oscillation is shown in Fig. 12(a) for f ¼ 0, while Fig. 12(c)
shows the maximum decay, fast oscillation at f ¼ π=2. In
Fig. 12(b), f ¼ π=4, and therefore, the coupling has equal coherent
and dissipative contributions. This f controllability is advanta-
geous for reservoir-based engineering of cavity magnonics.

D. Summary of coherent and dissipative cavity
magnonics

Both coherent and dissipative interactions play an important
role in cavity magnonics, resulting in distinct hybridization behavior.

Coherent interactions are characterized by level repulsion in the
dispersion and linewidth attraction, while dissipative coupling
results in level attraction in the dispersion and linewidth repul-
sion. Coherent coupling is the result of the magnetic dipole inter-
action between the cavity magnetic field and the spin ensemble,
and therefore, the coherent coupling strength may be controlled
by increasing the spin density in the cavity or enhancing the
filling factor by careful cavity design. Furthermore, strong coher-
ent coupling can be achieved by minimizing intrinsic losses, for
example, by using high quality cavities. Therefore, coherent inter-
actions are typically associated with closed cavities, where external
coupling is solely a means to perturbatively probe the linear
response of the cavity–magnon system. On the other hand, dissi-
pative coupling is an indirect interaction mediated by the mutual
coupling of the cavity and the magnon mode to a common reser-
voir. This requires both large extrinsic coupling rates and a
traveling-wave reservoir. Since the magnetic dipole interaction to
the reservoir is typically weak, large dissipative coupling is nor-
mally achieved in open cavities. However, open cavities support
both coherent and dissipative coupling, and the cavity–magnon
interaction will generally be a mix of the two unless measures are

FIG. 12. Time evolution of a traveling-wave-mediated system for (a) f ¼ 0,
(b) f ¼ π=4, and (c) f ¼ π=2. Blue and red curves are the envelopes of
Re(a)=a0 and Re(b)=a0, respectively, calculated using Eq. (28) with the rapid
oscillations at ωc excluded and the time evolution of the magnon offset by 1 for
clarity. In this calculation, α ¼ β, κm ¼ 4α, κc ¼ κm ¼ Γ, and ωc ¼ 2Γ.
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taken to suppress one interaction, for example, by placing the
sample at a magnetic field antinode (node) in order to suppress
the dissipative (coherent) interaction. The ability to selectively
engineer and control the nature and strength of cavity-magnonic
interactions is key to future device development.

IV. APPLICATIONS OF COHERENT AND DISSIPATIVE
CAVITY MAGNONICS

In this section, we summarize select applications driving the
development of cavity-magnonic technologies.

A. Transducers

Magnon–photon coupling may be used as a bridge between
otherwise weakly interacting systems, enabling, for example, qubit–
magnon coupling,12,34,66 optical-to-microwave frequency conver-
sion,13,115 and magnon–phonon interactions.116,117 As a transducer,
the cavity-magnonic platform is highly versatile and controllable.
Both coherent and dissipative coupling may be realized via
integration-friendly architectures, such as planar cavities and litho-
graphically defined resonators. Furthermore, strong coupling may
be achieved even with nano-scale magnetic elements,39,40 active ele-
ments are not required, and the coupling strength (hence the effi-
cacy of transduction) may be controlled,19,69,99,118 with
functionality even at low cooperativities.69,119

As the basis of quantum magnonics,34,98 cavity-magnonic
transduction enables an indirect interaction between magnons and
superconducting qubits, schematically illustrated in Fig. 13(a).
With their large electric dipole moments, superconducting qubits
strongly couple to the electric field of a microwave cavity mode. At
the same time, the magnetic dipole moment of a magnetically
ordered material will couple to the microwave magnetic field.
Therefore, when a superconducting qubit and a magnetically
ordered material are strategically placed in the same microwave
cavity, an indirect qubit–magnon coupling will form.12,120 The
characteristic anticrossing of Fig. 13(b) experimentally illustrates
the strong, coherent qubit–magnon interaction. In this experiment,
a transmon-type superconducting qubit was coupled to the FMR
mode of a YIG sphere via a 3D microwave cavity. The qubit was
placed at a magnetic field node and shielded from stray magnetic
fields, while the FMR resonance was controlled by a coil current. A
qubit–magnon coupling of gmq � 8MHz was achieved, corre-
sponding to a large cooperativity of C � 30, aided by the narrow
qubit–magnon linewidths of � 1MHz.120

Qubit–magnon transduction allows macroscopic, magnetically
ordered systems to be utilized within the framework of cavity
quantum electrodynamics, enabling hybrid quantum circuits with
complimentary qubit–magnon properties. For example, while the
harmonic nature of magnetostatic modes impedes the creation of
non-classical states, the anharmonicity of the superconducting
qubit enables encoding of quantum information.12,120 Qubit–
magnon coupling can also be exploited as a magnetostatic probe,
with sensitivity below the single magnon level.29,121

As illustrated in Fig. 13(c), the magnon in a cavity-magnonic
system may also be used as an intermediary between microwave
and optical photons.13,115 In certain ferrimagnetic materials, such
as YIG, large spin–orbit coupling leads to a magneto-optical

interaction, which indirectly couples magnons to optical electric
fields. On the other hand, the magnetic dipole interaction, which is
negligible at optical frequencies, is large in the microwave regime,
leading to an interaction between magnons and microwave fre-
quency fields. Therefore, the strong interactions of cavity mag-
nonics can mediate an indirect interaction between microwave and
optical frequency photons.

The optical-microwave transducer was demonstrated in a
pioneering experiment by Hisatomi et al.13 The strong optical
field of a 1550 nm continuous-wave laser was used to illuminate
a YIG sphere inside a 3D microwave cavity. YIG magnons, coher-
ently driven via their hybridization with itinerate microwave
photons, modulated the polarization of the drive field via the
Faraday effect. This generated two optical sidebands, centered
around the laser frequency, which were detected by a heterodyne
measurement using a high-speed photodiode. As shown in
Fig. 13(d), a dip in the microwave reflectivity (upper panel) cor-
responded exactly to a dip in the optical signal (lower panel),
indicating the conversion from microwave to optical frequencies.
More generally, microwave-optical transduction may be realized
via whispering-gallery-modes31,57,115,122 and used to realize ultra-
fast magnetization control.123

FIG. 13. (a) Cavity-magnonic transduction enables an indirect qubit–magnon
interaction, opening the door to quantum magnonics. (b) Despite the indirect
nature of the interaction, cavity transmission measurements have confirmed
strong qubit–magnon coupling, which can be exploited for hybrid quantum infor-
mation devices and quantum sensing of magnons. (c) Optical-to-microwave con-
version can also be realized via cavity-magnonic transduction. (d) Here, a
reduction in the microwave reflectivity, jS11j, is accompanied by the generation of
optical photons, as detected by a heterodyne measurement using a high-speed
photodiode, indicating efficient optical-microwave conversion. Panels (a)–(c) are
reproduced with permission from Lachance-Quirion et al., Appl. Phys. Express
12, 070101 (2019). Copyright 2019 Institute of Physics. Panel (d) is reproduced
with permission from Hisatomi et al., Phys. Rev. B 93, 174427 (2016). Copyright
2016 American Physical Society.
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B. Memories

Memory development has been a driving force in magnetism
and spintronic research for decades. From giant-magnetoresistance
based HDDs124 to spin-transfer-torque based RAM,125 magnetic-
based memory generally relies on magnetization manipulation and
detection to implement read and write functionality. Therefore, the
controllability afforded by spin-photon hybridization is a natural fit
for memory applications.

The first cavity-magnonic memory architecture exploited
strong coherent coupling between multiple YIG spheres to realize
long-lived magnon dark modes.4 The basic device idea is sketched
in Fig. 14(a). Here, two identical YIG spheres are coupled to a
microwave magnetic field, h, in a 3D microwave cavity, and the
magnon resonance frequencies are biased by an external, static
magnetic field H. A field gradient ΔH, applied via small coils below
each YIG sphere, allows individual control of the magnon reso-
nance frequencies. As illustrated in panel (b), the coherent coupling
of this cavity-magnonic device produces both bright and dark
magnon states. In the bright state, the hybridized magnon modes
precess in-phase and couple to the cavity field, while in the dark
state, the magnon modes precess out-of-phase and decouple from
the cavity field. This phase behavior can be directly probed by ana-
lyzing the antiresonance structure of the microwave spectra.114

The reflection spectra as a function of the field gradient ΔH
are shown in Fig. 14(c). When the magnon resonance frequencies
are detuned, i.e., ΔH = 0, there are three hybridized modes, indi-
cating that each YIG sphere is coherently coupled to the cavity.
However, when the magnon modes are brought on resonance by
removing the field gradient, i.e., setting ΔH ¼ 0, the absorption of
the central mode disappears. The remaining two modes are the
result of hybridization between the bright state and the microwave
cavity, while the dark state decouples from the cavity mode. This
means that the bright state can be used to transfer information to/
from photons, while the dark state is ideal for storing information
due to its long lifetime.

In a practical device, temporal dark modes, not eigenmodes,
are used. These temporal modes periodically convert into bright
modes, thereby removing the need for fast magnetic field manipu-
lation while still enhancing the lifetime of the hybridized state.
Data illustrating information storage in such a device are shown in
Fig. 14(d). First, a 15 ns microwave pulse was injected into the
cavity. With the external bias field turned off, the magnon and
cavity mode are strongly detuned and hybridization does not
occur, resulting in an exponential decay of microwave power
(dashed curve). However, when hybridization is enabled, the micro-
wave pulse couples to the magnon bright mode before quickly con-
verting into a magnon dark mode. This greatly extends the lifetime
of the microwave pulse, as indicated by the strong revival peak at
100 ns. This work highlights the potential of cavity magnonics and
spin-photon hybridization for memory devices.

C. Cavity-mediated spin–spin interactions

Spin–spin interactions play an important role in magnetic
devices. For example, spin currents may be manipulated via the
exchange interaction in magnetic bilayers,126–128 and hybridized
magnetostatic modes have been exploited for magnonics.129 With
this in mind, a key application of cavity-magnonic transduction is
to generate cavity-mediated spin–spin interactions with enhanced
functionality, for example, long distance coherent control.5,130–132

Figure 15(a) illustrates the idea of cavity-mediated spin–spin
interactions. Here, a common cavity field acts as an intermediary
between spins in two separate magnetic devices. Due to its non-
local nature, this coupling can overcome the inherently short range
of exchange, dipole or spin–orbit interactions. For example, in the
experiment by Lambert et al.,130 two YIG spheres were separated
by 1.4 cm and coupled to a coaxial transmission line, with an
avoided crossing, indicating that the separated magnetostatic
modes were strongly coupled, even at large cavity detuning.

By combining the non-local nature of cavity-mediated interac-
tions with the controllability of spin-photon coupling, it is possible
to remotely control spin currents using the experimental setup
shown in Fig. 15(b).5 In this device, two YIG/Pt bilayers are placed
at opposite ends of a 3D microwave cavity, with an arbitrarily large
separation [in the data of panels (c) and (d), the separation was
approximately 3 cm]. The spin-photon coupling of one bilayer is
controlled by rotating the sample, which changes the orientation
between the local microwave magnetic field (at that sample) and the
static magnetic field.99 The spin current in each device is locally
monitored via electrical detection30 and as shown in Fig. 15(c) will

FIG. 14. (a) A simple device used to create magnon dark modes. Here, two
identical YIG spheres are coupled to the magnetic field of a 3D microwave
cavity. The magnon resonance frequencies can be detuned by applying a field
gradient, ΔH, via small coils below each sphere. (b) In a bright mode, the
magnons hybridize in-phase and couple to the cavity mode, while in a dark
mode, the out-of-phase magnon hybridization decouples from the cavity. (c) When
the magnon resonances are detuned, three hybridized modes are observed in the
reflectivity spectra, indicating coherent coupling between each magnon and the
cavity mode. However, when ΔH ¼ 0, the magnon dark mode decouples and
only two hybridized states can be observed. (d) Demonstration of a magnon
gradient memory. Without magnon–photon hybridization, the 15 ns microwave
input pulse will quickly decay (dashed curve). However, when hybridization is
allowed, the long-lived dark mode results in a strong revival peak at 100 ns.
Reproduced with permission from Zhang et al., Nat. Commun. 6, 8914 (2015).
Copyright 2015 Nature Research.
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oscillate sinusoidally with the microwave magnetic field orientation
in the rotated bilayer. While this local control is useful in its own
right, the spin current in the distant bilayer, which is not directly
manipulated, is also found to oscillate sinusoidally, as shown in
panel (d). Such a non-local interaction can be exploited in spintronic
applications for the long range control of spin currents, which are
typically limited by the micrometer spin diffusion length.5

Though the experimental demonstrations mentioned above
exploited coherently coupled ferrimagnets, cavity-mediated spin–
spin interactions are general phenomena across cavity-magnonic
platforms. A number of recent theoretical proposals highlight the
potential of such cavity-mediated interactions. For example, it has
been suggested that multiple drive fields could be used to selectively
control between coherent and dissipative spin–spin coupling,112

and a large coupling is expected even between antiferromagnets
and ferromagnets.133 Hybridization may also enhance magnon–
magnon entanglement, providing a mechanism to manipulate
quantum steering of magnons and to probe the magnetic damping
of individual sublattices134 and could be exploited to realize macro-
scopic superconducting spintronics.132 Moreover, combined with
the potential to generate non-classical photon states and non-linear
magnetic interactions, one may envisage using non-local spin–spin
interactions for spintronic applications analogous to work that has
been done to non-locally couple qubits135 or quantum dots.136

D. Nonreciprocal transport and isolators

Nonreciprocal electromagnetic propagation plays an important
role in information processing, enabling sensitive signal detection

and processing by reducing reflection induced noise.137 To realize
nonreciprocal behavior, a system must break time-reversal symmetry,
which is traditionally achieved at microwave frequencies using fer-
rites.138 However, broad application of nonreciprocity requires
control of the isolation bandwidth combined with large isolation
ratios, which is technically challenging. In this regard, the flexibility
and tunablity of the cavity-magnonic platform have proven beneficial,
leading to large bandwidth isolators, � 0:5 GHz,17 exceeding 60 dB
isolation.139 Moreover, nonreciprocity has been achieved in both
coherent17,139,140 and dissipative16,141 cavity magnonics.

In coherent systems, time-reversal symmetry may be broken
via chiral magnon–photon coupling. As illustrated in Fig. 16(a),
hybridization will only occur between magnons and photons of
the same chirality. Therefore, if the photon chirality is reversed
and the magnon chirality is fixed, the magnon–photon interaction
will disappear. As a result, by designing a cavity that supports
orthogonal microwave chiralities, i.e., clockwise and counterclock-
wise circularly polarized photons, nonreciprocal behavior can be
realized and controlled.

A coherent cavity-magnonic system that displays nonrecipro-
cal behavior is shown in Fig. 16(b). In this device, a high dielectric

FIG. 15. (a) Cavity-mediated spin–spin interactions form when multiple mag-
netic devices hybridize with a single cavity. The versatility of such interactions—
they can be realized by both coherent and dissipative coupling and are agnostic
to device details—combined with their controllability leads to myriad applica-
tions. (b) Setup demonstrating non-local spin current control. Two spatially sepa-
rated magnetic bilayers are coupled to a single cavity field. The local field
orientation is controlled, and the spin current is measured in each device, dem-
onstrating both (c) local and (d) non-local control. Panels (c) and (d) are repro-
duced with permission from Bai et al., Phys. Rev. Lett. 118, 217201 (2017).
Copyright 2017 American Physical Society.

FIG. 16. Chiral coupling leads to nonreciprocal behavior in coherent systems.
(a) Hybridization only occurs between magnons and photons of the same chiral-
ity (top). When the photon chirality is reversed, at fixed magnon chirality, the
coupling is effectively turned off (bottom). (b) Chiral cavity modes can be realized
in a substrate integrated waveguide. A high-dielectric-constant substrate is sand-
wiched between two copper layers, and a YIG sphere is placed on top. Metallized
vias (black dots) connect the upper and lower copper layers. The vias and ports
are designed to create and control the chiral cavity modes. (c) Nonreciprocal
behavior in the hybridized microwave spectra. (d) Theoretically achievable
bandwidth at a 20 dB isolation ratio in a three-port superconducting resonator.
Panels (a)–(c) are reproduced with permission from Zhang et al., Phys. Rev.
Appl. 13, 1 (2020). Copyright 2020 American Physical Society. Panel (d) is
reproduced with permission from Zhu et al., Phys. Rev. A 101, 43842 (2020).
Copyright 2020 American Physical Society.
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constant substrate is placed between two copper layers. The top
and bottom copper layers are connected by metallized vias, and a
YIG sphere is placed in the center. By controlling both the via and
port design, chiral cavity modes can be realized.17 The nonrecipro-
cal behavior of this device is illustrated in Fig. 16(c), with large dif-
ferences between S12 and S21. The nonreciprocity is the largest near
zero detuning due to the strong hybridization, and by controlling
the coupling strength, a nonreciprocity bandwidth of nearly
0.5 GHz can be achieved.17

Coherent nonreciprocity has been proposed in other cavity-
magnonic devices as well. For example, it has been predicted
that an array of YIG spheres in a toroidal cavity would generate
a unidirectional, highly coherent photon beam,140 and a three-
port superconducting resonator has been proposed to achieve
isolation ratios in excess of 60 dB with insertion losses below
0.05 dB.139 In all cases, the key advantage compared to other
nonreciprocal platforms is the controllability available in cavity
magnonics. For example, Zhu et al.139 predict that the isolation
ratio and bandwidth can be systematically tuned by controlling
the coupling strength and the external dissipation rate, as illustrated
in Fig. 16(d).

Interference between coherent and dissipative coupling may
also be exploited to break time-reversal symmetry.16,141 Generally,
open cavities, such as the cross cavity illustrated in Fig. 17, support
both standing and traveling waves and, therefore, exhibit both
coherent and dissipative interactions. By controlling the ratio of
coherent to dissipative coupling, for example, by controlling the

YIG position, a “zero-damping condition (ZDC)” can be achieved,
where the intrinsic damping of the hybridized mode goes to 0, as
shown in Fig. 17(b). At the ZDC, the on-resonance transmission
spectra are highly nonreciprocal, with jS21 ω�ð Þj ¼ jS12 ωþð Þj ¼ 0
and jS12 ω�ð Þj ¼ jS21 ωþð Þj . 0. This is shown for the upper branch
(i.e., ωþ) in Fig. 17. This behavior has been exploited to demon-
strate highly flexible and effective isolation, which may also be con-
trolled by tuning the external damping rates as shown in Fig. 17(d).

E. Enhanced sensing

Sensing techniques are generally based on the response of a
system to external perturbations. Therefore, a non-linear response,
for example, near a singularity, can be exploited to enhance sensi-
tivity. In cavity magnonics, two types of singularities have been
observed: a bound state in the continuum (BIC)8 and an excep-
tional point (EP).21,22

Since cavity-magnonic systems are inherently dissipative, they
are non-Hermitian and, as we can see from Eq. (22), the eigenspec-
trum contains a branch point. In fact, this is the mathematical defi-
nition of an EP: the branch point in the eigenspectrum of a
non-Hermitian system. Although non-Hermiticity generally leads
to complex eigenvalues, a real eigenspectrum still exists when the
system is PT -symmetric.142 This realization provides an important
physical interpretation of the EP: it is a signature of the phase tran-
sition between a PT -symmetry preserved and PT -symmetry
broken phase. In coherent cavity magnonics, this phase transition
can be reached by balancing gains and losses; e.g., for coherent cou-
pling (Γ ¼ 0), the eigenspectrum is real provided αL ¼ βL.

41 On
the other hand, dissipatively coupled systems are actually anti-PT
symmetric; however, EPs still exist.7,8

The application of EPs to enhance sensing can be best under-
stood by examining the complex eigenspectrum, as shown in
Fig. 18. These data were collected using a YIG sphere coupled to a

FIG. 17. Interference between dissipative and coherent coupling leads to nonre-
ciprocal behavior in open systems. (a) In an open system, such as this cross-
cavity, hybridization is due to both coherent and dissipative coupling. By control-
ling the YIG position, for example, with a displacement cantilever, the ratio of
coherent to dissipative coupling strength can be controlled. (b) At a certain
magnon–cavity detuning, known as the zero damping condition, the hybridized
linewidth approaches zero. (c) At the ZDC, the transmission spectra are highly
non-reciprocal with jS12j ωþð Þ ! 0 and jS21j . 0. (d) This nonreciprocal
behavior leads to large and controllable isolation ratios with low insertion loss.
Reproduced with permission from Wang et al., Phys. Rev. Lett. 123, 127202
(2019). Copyright 2019 American Physical Society.

FIG. 18. (a) The real and (b) imaginary components of the hybridized eigens-
pectrum as a function of frequency, field, and YIG position. In this experiment, a
YIG sphere was coupled to a high dielectric constant printed circuit board micro-
wave cavity. In these panels, the YIG position was moved along a single axis,
which controlled the coupling strength, and hence the dispersion. In panel (a),
two EPs are marked by red circles. At these points, the system is very sensitive
to magnetic field perturbations. Reproduced with permission from Zhang et al.,
Phys. Rev. Lett. 123, 237202 (2019). Copyright 2019 American Physical
Society.
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high dielectric constant printed circuit board microwave cavity, and
the magnon–photon coupling strength was controlled by systemati-
cally moving the YIG sample.24 Panels (a) and (b) show the real
and imaginary parts of the dispersion, respectively. Near the two
EPs, indicated by red circles in panel (a), the eigenspectrum is
extremely sensitive to changes in the external magnetic field. It has
been suggested that this behavior could be exploited for room tem-
perature magnetometry as sensitive as superconducting quantum
interference devices.9,143 Other control parameters have also been
used to manipulate cavity-magnonic EPs,8,21,22 and higher order
exceptional points, occurring when many eigenstates coalesce,
further enhance the sensitivity.24,144 Furthermore, the creation of
exceptional surfaces in cavity magnonics24 could be further
exploited for enhanced sensitivity with increased flexibility, as has
been done in photonic systems.145,146

In addition to EPs, cavity-magnonic systems may also contain
BICs, and in fact, both may exist in the same device. A BIC can be
created when a confined mode is embedded inside the radiation
continuum and cannot radiate away. In cavity magnonics, this has
been realized by dissipatively coupling two anti-resonances.8 Near
the BIC, the hybridized group velocity becomes zero, which could
be used for slow light applications.

The quantum magnonic platform, i.e., magnon–qubit cou-
pling mediated by cavity photons,12,34,66 is also promising for
sensing applications. Allowing a qubit to couple with the same
cavity field as the magnon creates a dispersive qubit–magnon inter-
action, introducing the necessary nonlinearity to study quantum
effects in magnonics. This has been used to perform single magnon
detection by entangling a qubit and magnetostatic mode10 and by
probing the qubit coherence, a technique in which the sensitivity is
actually inversely proportional to the magnon-linewidth.11 These
examples underscore not only the rich application potential of
quantum magnonics to quantum information processing, but also
the potential to explore a unique set of physical questions at the
single magnon level, including magneto-optical effects13 and axion-
like dark matter searches.147–150

V. OUTLOOK: OPEN CAVITY MAGNONICS

This Tutorial article outlines the basics of spin-photon hybrid-
ization—where the light-matter interaction between magnetic
materials and electrodynamic cavities leads to unique, emergent
behavior. While the history of coherent spin-photon coupling can
be traced back to the 1953 work of Artman and Tannenwald,151 in
the 2010s, new themes, perspectives, implementations, and applica-
tions have grown this seed into the diverse, modern field of cavity
magnonics.

Motivated by quantum information and transduction applica-
tions, early cavity-magnonic research focused on closed microwave
cavities and coherent coupling. To achieve strong coupling, a
spatial mode overlap between the cavity microwave field and the
magnon mode was essential; hence, magnetic materials were delib-
erately placed inside cavities and at the anti-node of the microwave
magnetic field. The development of the coherent cavity-magnonic
platform opened many paths to discovery and development, such
as microwave-to-optical frequency conversion13,15 and novel
memory architectures.4 In these early works, dissipation was

typically considered a drawback that led to amplitude decay of Rabi
oscillations and linewidth evolution but did not influence the
coherent dispersion. However, the introduction of open cavities,
where the extrinsic dissipation is much larger than the intrinsic
damping, has highlighted the fact that dissipation does significantly
more, and such open cavity systems are expected to play a major
role in the future development of cavity magnonics.

One reason for the interest in open cavity-magnonic systems
is that they display dissipative coupling, which, due to
traveling-wave-mediated interactions,20 leads to level attraction.32

This hybridization is distinctly different from the level repulsion of
coherent interactions. Study of dissipative cavity magnonics has
also revealed the important role of singularities, such as exceptional
points and an unconventional bound state in the continuum.8 Near
such singularities, small perturbations dramatically alter the system
response, providing a route to sensitive detection techniques.
Furthermore, given the similarities between open cavity magnonics
and other open cavity based hybrid quantum systems, one could
devise ultra-sensitive, broadband measurement techniques by
exploiting inevitable environmental dissipation. In addition, by uti-
lizing the interference between coherent and dissipative interac-
tions,16 cavity magnonics exhibits a nonreciprocal response, which
can be used to design novel microwave isolators and circulators,
and recent work63 has shown that well-separated cavity and
magnon modes can be coupled via cooperative damping even
without any spatial mode overlap. Taken together, it seems that the
roadmap for open cavity magnonics is currently being drawn, and
there is much new and exciting territory to be explored. For addi-
tional perspectives on the future of cavity magnonics, see, for
example, Refs. 34, 36, and 38.
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APPENDIX A: METHOD OF AVERAGING

In this appendix, we outline how the method of averaging can
be used to analyze the time-evolution of coupled oscillations.

In terms of the generalized coordinates w1,2, the equations of
motion for two coupled oscillators have the form

€w1 þ 2λ1 _w1 þ ω2
1w1 � f1(w1, _w1)

¼ 2J1ω1(w2 � w1)þ 2Γ1( _w2 � _w1), (A1a)

€w2 þ 2λ2 _w2 þ ω2
2w2 � f2(w2, _w2)

¼ 2J2ω2(w1 � w2)þ 2Γ2( _x1 � _w2): (A1b)

The left hand side of Eq. (A1) includes a linear restoring
force, with frequency ω1,2, and a linear frictional force, with
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damping coefficient λ1,2. The f1,2 terms account for any nonlinear
restoring or frictional forces due to non-isochronous and self-
oscillation effects. Terms on the right hand side of Eq. (A1)
describe coupling between the two oscillators. The first terms,
proportional to the difference between the coordinates, describe a
coherent interaction with coupling constant J1,2, while the second
terms, proportional to the difference in the velocities, describe a
dissipative interaction with coupling constant Γ1,2. Both coupling
terms will vanish if the states of the two oscillators coincide; i.e.,
if w1 ¼ w2, _w1 ¼ _w2. The coupled system described by Eq. (A1)
does not have a general analytical solution for all parameters.
However, in many physically meaningful situations, λ1,2 � J1,2
and Γ1,2 � ω1,2 in which case approximate analytical expressions
may be found.152

Equation (A1) can be simplified by moving to a rotating refer-
ence frame with ωref ¼ (ω1 þ ω2)=2 and a slowly varying envelope
function a1,2(t) such that w1,2 ¼ [a1,2(t)e�iωref t þ a*1,2(t)e

iωref t]=2. For
a linear system, where f1 ¼ f2 ¼ 0, we obtain

_a1
_a2

� �
≃ �i

�Δ=2þ G1 � iλ1 �G1

�G2 Δ=2þ G2 � iλ2

� �
a1
a2

� �
: (A2)

Here, Δ ¼ ω2 � ω1 and G1,2 ¼ J1,2 � iΓ1,2, respectively, denote the
frequency detuning and the total complex coupling strength.

In the rotating reference frame, the complex eigenfrequencies
of the hybridized modes, eω+, deduced from Eq. (A2) are

eω+ � ωref ¼
1

2
[(G1 � iλ1)þ (G2 � iλ2)]

+
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[Δ� (G1 � iλ1)þ (G2 � iλ2)]

2 þ 4G1G2

q
:

(A3)

There are two time scales associated with this system: a fast oscilla-
tion at frequency ωref and a much slower drifting of the amplitude
and phase. This allows the time evolution of the dynamical system
to be written as w1,2 ¼ A1,2(t)cos[ωref t þ θ1,2(t)], where A1,2 and
θ1,2 are slowly varying functions of time. Therefore, in the rotating
reference frame, Eq. (A1) can be written as

€w1,2 þ ω2
refw1,2 þ h1,2 ¼ 0, (A4)

where h1,2 ¼ 2λ1,2 _w1,2 þ (ω2
1,2 � ω2

ref )w1,2 � 2J1,2ω1,2(w2,1 � w1,2)
�2Γ1,2( _w2,1 � _w1,2) are small perturbations. For such systems, the
method of averaging85,86 can be applied, in which we average the
variables w1,2 over the oscillation period to eliminate fast oscilla-
tions and observe the qualitative behavior of A1,2 and θ1,2,

dA1,2

dt
¼ hh1,2sin(τ)i, (A5a)

dθ1,2

dt
¼ hh1,2cos(τ)i, (A5b)

where h*i denotes a time average over the period T ¼ 2π=ωref and
τ ¼ ωref t þ θ1,2 for h1,2, respectively. Since A1,2 and θ1,2 are

approximately constant over T , time averaging h1,2 leads to

dA1

dt
¼ �(λ1 þ Γ1)A1 �

A2J1ω1sin(θ1 � θ2)

ωref

þ A2Γ1cos(θ1 � θ2), (A6a)

dA2

dt
¼ �(λ2 þ Γ2)A2 þ

A1J2ω2sin(θ1 � θ2)

ωref

þ A1Γ2cos(θ1 � θ2), (A6b)

d(θ1 � θ2)

dt
¼ �Δþ J1ω1 � J2ω2

ωref

þ (A2
1ω2J2 � A2

2ω1J1)cos(θ1 � θ2)

A1A2ωref

� A1Γ2

A2
þ A2Γ1

A1

� �
sin(θ1 � θ2): (A6c)

APPENDIX B: EQUATIONS OF MOTION FOR
SPRING-COUPLED PENDULUMS

Referring to Fig. 2, in the linear regime, the oscillations are
small, and therefore, the kinetic energy T can be written using a
small angle approximation as

T ¼ 1

2
ml21 _w

2
1 þ

1

2
ml22 _w

2
2: (B1)

The total potential energy of the coupled pendulums has both grav-
itational and spring contributions, which takes the form

U ¼ mgl1(1� cosw1)þmgl2(1� cosw2)

þ k

2
(l sinw1 � l sinw2)

2, (B2)

where the potential energy is referenced to zero at w1 ¼ w2 ¼ 0. In
the linear regime, sinw1,2 � w1,2, while cosw1,2 � 1� w2

1,2=2, and
therefore, the Lagrangian is

L ¼ T � U

¼ 1

2
ml21 _w

2
1 þ

1

2
ml22 _w

2
2 �

1

2
mgl1w

2
1 �

1

2
mgl2w

2
2

� 1

2
kl2(w1 � w2)

2: (B3)

Dissipation can be included as a velocity proportional non-
conservative force via the Rayleigh dissipation function,152

F ¼ λ1ml21 _w
2
1 þ λ2ml22 _w

2
2, (B4)

where λ1 and λ2 characterize the intrinsic damping rate of the pen-
dulums. Therefore, the equations of motion for w1,2 are determined
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according to the generalized Euler–Lagrange equations,

d

dt

@L

@ _w1,2
� @L

@w1,2
þ @F

@ _w1,2
¼ 0, (B5)

to be

€w1,2 þ 2λ1,2 _w1,2 þ ω2
1,2w1 � 2J1,2ω1(w2,1 � w1,2) ¼ 0, (B6)

where ω1,2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
g=l1,2

p
are the uncoupled oscillation frequencies and

J1,2 ¼ kl2=(2mω1,2l
2
1,2) are the coupling strengths. The first three

terms in Eq. (B6) describe the independent oscillations of the two
pendulums, while the fourth term directly couples the motion of
the two pendulums. Clearly, the spring-coupled pendulums are an
example of pure coherent coupling described by Eq. (A1).

APPENDIX C: EQUATIONS OF MOTION FOR
DASHPOT-COUPLED PENDULUMS

Referring to Fig. 4, in the linear regime, the Lagrangian for the
dashpot-coupled pendulums is

L ¼ T � U

¼ 1

2
ml21 _w

2
1 þ

1

2
ml22 _w

2
2 �

1

2
mgl1w

2
1 �

1

2
mgl2w

2
2: (C1)

For this system, there is no potential energy associated with cou-
pling. Alternatively, the dashpot introduces a velocity proportional
force in Rayleigh’s dissipation function,

F ¼ λ1ml21 _w
2
1 þ λ2ml22 _w

2
2 þ νm( _w1 � _w2)

2: (C2)

Here, the kinematic viscosity ν acts as a proportionality constant,
characterizing the coupling between the two pendulums via the dis-
sipative force. The generalized Euler–Lagrange equations can then
be obtained analogously to Appendix B,

€w1,2 þ 2λ1,2 _w1,2 þ ω2
1,2w1,2 � 2Γ1,2( _w2,1 � _w1,2) ¼ 0, (C3)

where Γ1,2 ¼ ν=l21,2 � ω1,2 describes the coupling strength. Since
the dashpot induced coupling appears in the angular velocity term,
this system is said to be dissipatively coupled according to the dis-
cussion in Appendix A.

APPENDIX D: EQUATIONS OF MOTION FOR
BASE-MEDIATED COUPLING

Huygens’ pendulum clocks are shown in Fig. 6, forming a
closed system, which includes two pendulums mounted to a wall.
The wall can be treated as a giant two-dimensional crystal with one
brick in the primitive cell. The displacement of one brick will cause
the whole wall to vibrate, and therefore, the wall can be modeled as
an oscillating system with a wavevector (k) dependent frequency
dispersion, ωk. Therefore, the kinetic energy of the system is

T ¼ 1

2
ml21

_w2
1 þ

1

2
ml22

_w2
2 þ

1

2

X

k

mk _x
2
k, (D1)

and the potential energy is

U ¼ 1

2
mgl1w

2
1 þ

1

2
mgl2w

2
2 þ

X

k

1

2
ckx

2
k

þ
X

k

1

2
c1k(l1w1 � xk)

2 þ
X

k

1

2
c2k(l2w2 � xk)

2: (D2)

Here, mk is the effective mass of the wall, xk is the displacement,
and ck, c1k, and c2k are the force constants that couple the displace-
ment to the pendulum motion. Neglecting intrinsic damping for
simplicity (which is justified since the extrinsic damping to the
base is typically much larger than the intrinsic damping of each
pendulum), the equations of motion read

ml21€w1 þmgl1w1 þ
X

k

c1kl1(l1w1 � xk) ¼ 0, (D3a)

ml22€w2 þmgl2w2 þ
X

k

c2kl2(l2w2 � xk) ¼ 0, (D3b)

mk€xk þ ckxk þ c1k(l1w1 � xk)þ c2k(l2w2 � xk) ¼ 0: (D3c)

Equation (D3) can be rewritten as

€w1 þ ω2
1w1 �

X

k

g 01kxk ¼ 0, (D4a)

€w2 þ ω2
2w2 �

X

k

g 02kxk ¼ 0, (D4b)

€xk þ ω2
kxk þ g1kw1 þ g2kw2 ¼ 0, (D4c)

where ω1,2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
g=l1,2

p
are the oscillation frequencies of the pen-

dulums, ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ck=mk

p
are the vibration frequencies of the wall,

and the small frequency shift induced by the pendulum-wall
coupling, ω2

ik ¼ cik=m, has been neglected. gik ¼ cikli=mk and
g 0ik ¼ mkgik=(ml2i ) characterize the interaction between the indi-
vidual pendulums and the wall. Therefore, while there is no
direct coupling between the two pendulums, they are indirectly
coupled via their common base, i.e., the wall.

Solving Eq. (D4c), the wall motion follows:

xk ¼ Bkcos(ωkt þ ξk)

� cos(ωkt)

ωk

ðt

t0

[g1kw1(t
0)þ g2kw2(t

0)]sin(ωkt
0)dt0

þ sin(ωkt)

ωk

ðt

t0

[g1kw1(t
0)þ g2kw2(t

0)]cos(ωkt
0)dt0: (D5)

Here, the first term describes the intrinsic wall oscillations, while
the second and third terms are perturbations due to the pendulum
motion. In the zero coupling limit, the pendulums oscillate sinusoi-
dal with resonance frequency ω1,2 and, therefore, at zeroth order in
g 0ik, w1,2 ¼ A1,2cos(ω1,2t þ θ1,2). This zeroth order solution can be
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substituted into Eq. (D5) to evaluate the wavevector sums in
Eqs. (D4a) and (D4b). To first order, A1,2 and θ1,2 will be con-
stants, and due to the rapid oscillations at frequency ω1,2, the inte-
grals can be performed by time averaging over one period,
0 , t , 2π=ω1,2. Furthermore, the sum over wavevectors will be
dominated by the resonance at ωk ¼ ω1,2, and in the first Markov
approximation, the coupling constants are independent of k.
Therefore,

X

k

g 01kxk ¼ g 01
X

k

Bkcos(ωkt þ ξk)

þ g01g1
2ω2

1

A1sin(ω1t þ θ1)þ
g 01g2
2ω2

2

A2sin(ω2t þ θ2),

(D6a)

X

k

g02kxk ¼ g 02
X

k

Bkcos(ωkt þ ξk)

þ g 02g1
2ω2

1

A1sin(ω1t þ θ1)þ
g 02g2
2ω2

2

A2sin(ω2t þ θ2):

(D6b)

Defining γ1,2 ¼ g 01,2g1,2=4ω
3
1,2, these sums can be written as

X

k

g01kxk ¼ g 01
X

k

Bk cos ωkt þ ξkð Þ � 2γ1 _w1

� 2
ffiffiffiffiffiffiffiffiffi
γ1γ2

p l2

l1

� �
_w2, (D7a)

X

k

g02kxk ¼ g 02
X

k

Bk cos ωkt þ ξkð Þ � 2γ2 _w2

� 2
ffiffiffiffiffiffiffiffiffi
γ1γ2

p l1

l2

� �
_w1: (D7b)

Therefore, the equations of motion for the base-mediated pendu-
lums are

€w1,2 þ ω2
1,2w1,2 � g 01,2

X

k

Bk cos ωkt þ ξkð Þ

þ 2γ1,2 _w1,2 þ 2
ffiffiffiffiffiffiffiffiffi
γ1γ2

p l2,1

l1,2

� �
_w2,1 ¼ 0: (D8)

The first line in Eq. (D8) describes an undamped pendulum driven
by the intrinsic wall oscillations, while the effects of the reservoir
mediated interaction appear in the second line; the first term is an
extrinsic damping via energy leakage to the wall and the second
term is an indirect coupling between the two pendulums, which
occurs when energy leaked by the first pendulum coherently drives
the second pendulum via the wall.

To determine the complex eigenfrequencies, Eq. (D8) can be
compared to the dashpot-coupled equations of motion in Eq. (C3).
To first order in the coupling, l1 � l2, and therefore, Γ ! � ffiffiffiffiffiffiffiffiffi

γ1γ2
p

.
The intrinsic damping is zero since it has been neglected here, and
Γ1,2 ¼ γ1,2 for the extrinsic damping. Furthermore, since the

complex eigenfrequencies are intrinsic to the system, they are inde-
pendent of the driving term, leading to Eq. (9).

APPENDIX E: INPUT–OUTPUT THEORY FOR A
GAP-COUPLED TWO-PORT CAVITY

To probe the linear response of cavity magnonics, e.g.,
through microwave transmission measurements using a
vector-network-analyzer (VNA), external coupling must be intro-
duced. This can be handled theoretically via the input–output for-
malism by including an external photon bath, which couples to the
cavity mode as outlined below. For a general introduction to the
input–output formalism, see Refs. 52 and 104; for a detailed appli-
cation to cavity magnonics, see Refs. 32 and 47.

In this appendix, we focus on the discussion of a two-port
cavity directly excited through the gap between the cavity and the
feed lines. In this case, the cavity transmission measurement also
includes an input and output port and, therefore, two external
photon baths and is described by the Hamiltonian

H ¼ �heωca
yaþ �heωmb

ybþ �hJ aby þ ayb
� 

þ �h

ð
ωkc

y
k ckdkþ �h

ð
ωkd

y
k dkdk

þ �h

ð
λc ac

y
k þ ayck

� 
dkþ �h

ð
λd ad

y
k þ aydk

� 
dk: (E1)

In this equation: (1) The first line is just the spin-photon
Hamiltonian of Eq. (12); (2) the second line contains the kinetic
terms for the bath photons at ports 1 and 2, with creation opera-
tors c

y
k and d

y
k , respectively; and (3) the third line contains the

interaction terms between the cavity photons and the external
baths, which have coupling rates λc and λd at ports 1 and 2,
respectively. Here, the rotating wave approximation has been
applied to all interactions, and the integrals are taken over all
bath modes, �1 , k , 1. Using the commutation relations
[ck, c

y
k0 ] ¼ δ k� k0ð Þ and [ck, ck0 ] = 0 (analogous for dk), the equa-

tions of motion for the bath modes are

_ck ¼ � i

�h
ck, H½ � ¼ �iωkck � iλca, (E2a)

_dk ¼ � i

�h
dk, H½ � ¼ �iωkdk � iλda, (E2b)

which have the integral solutions

ck tð Þ ¼ e�iωk t�t0ð Þck t0ð Þ � i

ðt

t0

λcae
�iωk t�t0ð Þdt0, (E3a)

dk tð Þ ¼ e�iωk t�t0ð Þdk t0ð Þ � i

ðt

t0

λdae
�iωk t�t0ð Þdt0, (E3b)

where ck t0ð Þ and dk t0ð Þ are the initial states of the bath modes at
t0 , t. From Eq. (E1), the equations of motion for the cavity
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resonance and magnon are

_a ¼ �ieωca� iJb� i

ð
λkckdk� i

ð
λddkdk, (E4a)

_b ¼ �ieωrb� iJa: (E4b)

Since the external modes only couple to the cavity photon, its
equation of motion is directly modified, while the magnon equa-
tion of motion is only affected indirectly through the changes to
a. With a mode independent external coupling (the first Markov
approximation), λc,d can be taken outside the k integrals, and
therefore, substituting the integral solutions of Eq. (E3), the
equation of motion for the cavity resonance is

_a ¼ �ieωca� iJb� i
ffiffiffiffiffi
2π

p
λccin � πλ2ca� i

ffiffiffiffiffi
2π

p
λddin � πλ2da: (E5)

Here, cin and din are the input fields, defined as

cin ¼
1ffiffiffiffiffi
2π

p
ð
e�iωk t�t0ð Þck t0ð Þdk, (E6a)

din ¼
1ffiffiffiffiffi
2π

p
ð
e�iωk t�t0ð Þdk t0ð Þdk, (E6b)

which are just wavepackets formed by the time evolution of the
ck t0ð Þ [dk t0ð Þ] modes to time t. The external coupling introduces
a new source of dissipation, the πλ2c,da terms in Eq. (E5), and
therefore, it is convenient to define the extrinsic damping rates
κc,d ¼ 2πλ2c,d and redefine the cavity resonance as eωc ! ωc

�iβL ¼ ωc � i β þ κc þ κdð Þ=2½ �. With these substitutions, the
coupled equations of motion for the cavity photon and magnon,
including the effects of the external baths, are

_a ¼ �ieωca� iJb� i
ffiffiffiffiffi
κc

p
cin � i

ffiffiffiffiffi
κd

p
din, (E7a)

_b ¼ �ieωrb� iJa: (E7b)

These are the quantum Langevin equation for canonical coherent
cavity magnonics.

To calculate the transmission spectra, note that the integral
solution for ck can also be written in terms of a late time state
ck(t1) at t1 . t,

ck tð Þ ¼ e�iωk t�t1ð Þck t1ð Þ � i

ðt1

t

λcae
�iωk t�t0ð Þdt0, (E8)

which defines the output field,

cout(t) ¼
1ffiffiffiffiffi
2π

p
ð
e�iωk t�t1ð Þck t1ð Þ: (E9)

Carrying out the same procedure that led to Eq. (E7a) yields the
time reversed Langevin equation, relating a and b to cout and din,
which can then be combined with Eq. (E7a) to determine the

input–output relation for port 1,

cin ¼ cout þ i
ffiffiffiffiffi
κc

p
a: (E10)

Physically, this just means that the input field is either reflected at
the port or enters the cavity. Taking the same approach for port 2
leads to

din ¼ dout þ i
ffiffiffiffiffi
κd

p
a: (E11)

Equations (E7), (E10), and (E11) can be used to determine the
reflection and transmission parameters of Eq. (16).

APPENDIX F: MICROWAVE TRANSMISSION FOR
DISSIPATIVE CAVITY MAGNONICS MEDIATED BY
TRAVELING PHOTONS

In this appendix, we derive the microwave transmission pre-
sented in Eq. (26) of the main text. The Hamiltonian for the
traveling-wave-mediated system is similar to Eq. (E1),

H ¼ �heωca
yaþ �heωmb

ybþ �h

ð
ωkp

y
k pkdk

þ �h

ð
λc(ap

y
k þ aypk)dkþ �h

ð
λme

if(bp
y
k þ bypk)dk, (F1)

where p
y
k is the creation operator for the traveling-wave mode,

eωc ¼ ωc � iβ and eωm ¼ ωm � iα. The first line in Eq. (F1) contains
the kinetic terms for the cavity mode, the magnon mode, and the
traveling wave, while the second line describes the interaction
between the traveling wave and the cavity and magnon modes,
with real valued coupling strength λc and λm, respectively. These
coupling strengths can also be thought of as the extrinsic dissipa-
tion of the cavity and magnon modes to the traveling-wave reser-
voir, hence our choice of notation. Here, only the lowest order
interaction terms are kept and the rotating wave approximation is
used. The cavity and magnon are spatially separated by a distance
L, and therefore, the traveling wave has a phase delay between
these two locations, characterized by f in Eq. (F1). In general,
f ¼ kL; however, if focusing on the behavior near ωc � ωm, then
f is approximately k independent.

Using the commutation relations [pk, pk0 ] ¼ δ(k� k0) and
[pk, pk0 ] ¼ 0, the equation of motion for the traveling wave is

_pk ¼ � i

�h
[pk, H] ¼ �iωkpk � iλme

ifb� iλca, (F2)

and therefore,

pk(t) ¼ e�iωk(t�t0)pk(t0)

� i

ðt

t0

λme
ifbþ λca

� �
e�iωk(t�t0)dt0, (F3)

where pk(t0) is the initial state of the traveling wave at t0 , t.
Combining Eqs. (F1) and (F3) and taking λc,m independent of k in
the first Markov approximation, the quantum Langevin equations
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for the two modes are

_a ¼ �ieωca� 2π(λ2caþ λmλce
ifb)� i

ffiffiffiffiffi
2π

p
λcpin,

_b ¼ �ieωmb� 2π(λ2mbþ λmλce
ifa)� i

ffiffiffiffiffi
2π

p
λme

i(fþθ)pin,
(F4)

where

pin(t) ¼
1ffiffiffiffiffi
2π

p
ð
e�iωk(t�t0)pk(t0)dk (F5)

is the input field through the transmission line. In addition to the
traveling phase f, the phase of the input field will shift after
passing through a resonance. This is characterized by the resonance
phase θ, i.e., θ ¼ 0 for ωk � ωc, θ ¼ 90� at ωk ¼ ωc, and θ ¼ 180�

for ωk � ωc. Redefining the extrinsic damping rates κc ¼ 2πλ2c and
κm ¼ 2πλ2m and the complex frequencies to include the extrinsic
damping, eωc ¼ ωc � iβL ¼ ωc � i β þ κcð Þ and eωm ¼ ωm � iαL

¼ ωm � i α þ κmð Þ, the equations of motion for the cavity and
magnon modes are

_a ¼ �ieωca�
ffiffiffiffiffiffiffiffiffiffi
κcκm

p
eifb� i

ffiffiffiffiffi
κc

p
pin, (F6a)

_b ¼ �ieωmb�
ffiffiffiffiffiffiffiffiffiffi
κcκm

p
eifa� i

ffiffiffiffiffiffi
κm

p
ei fþθð Þpin: (F6b)

Therefore, the cavity–magnon coupling occurs in two ways: (1) An
indirect traveling-wave-mediated interaction with coupling strength
Γ ¼ ffiffiffiffiffiffiffiffiffiffi

κcκm
p

eif, which indicates that the traveling phase will influ-
ence the coherent/dissipative nature of the interaction and (2) a
direct independent driving of the cavity and magnon modes byffiffiffiffiffi
κc

p
pin and

ffiffiffiffiffiffi
κm

p
ei(fþθ)pin, respectively, which results in two-tone

interference.19,63

Analogous to Appendix E, the traveling-wave equation of
motion can also be solved by defining the output state at t1 . t,

pout(t) ¼
1ffiffiffiffiffi
2π

p
ð
e�iωk(t�t1) pk(t1)dk: (F7)

Using pout to determine the time reversed Langevin equations and
combining with Eq. (F6a) yields the input–output relation,

pout ¼ pin � i
ffiffiffiffiffi
κc

p
a� i

ffiffiffiffiffiffi
κm

p
ei fþθð Þb: (F8)

Finally, combining Eqs. (F6) and (F8) leads to the transmission
spectrum of Eq. (26).
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