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COHERENT AND PARACOHERENT STATES IN JOSEPHSON-COUPLED
GRANULAR SUPERCONDUCTORS

J. ROSENBLATT

Institut National des Sciences Appliquées, 35031 Rennes Cedex, France
Centre National d’Etudes en Télécommunications, 22301 Lannion, France

Résumé. 2014 Le paramètre d’ordre d’un ensemble de grains supraconducteurs de diamètre plus
grand que la longueur de cohérence est un ensemble de vecteurs dans le plan complexe. On montre
que si les grains sont couplés par l’effet Josephson, le système est analogue à un ferromagnétique
d’Heisenberg avec un espace de spin à deux dimensions. Il se produit une transition de phase d’un
état paracohérent à un état cohérent à une température T0  Tc. En dessous de la température de
cohérence To les phases sont ordonnées et l’ensembl du système présente des effets Josephson.
On obtient les équations de mouvement des phases et les effets des fluctuations sur les caractéristi-
ques V-I. Les supraconducteurs granulaires obéissent à l’électrodynamique de London et présentent
des effets d’interférence quantique particuliers.

Abstract. 2014 The order parameter of an assembly of superconducting grains of diameter greater
than the coherence length is a set of vectors in the complex plane. It is shown that if the grains
are coupled through the Josephson effect, the system is the analog of a Heisenberg ferromagnet
with spin dimensionality 2. A phase transition occurs from a paracoherent state to a coherent one
above and below, respectively, a coherent temperature To  Tc. It is only in the latter domain of
temperatures, where superconducting phases are ordered, that Josephson effects will be fully
displayed by the system as a whole. Approximate equations of motion are derived and thereby
effects due to phase fluctuations upon the DC characteristics are studied theoretically and experi-
mentally. The systems obey London electrodynamics and possess peculiar quantum interference
properties.

REVUE DE PHYSIQUE APPLIQUÉE TOME 9, JANVIER 1974, PAGE

1. Introduction. - We shall be concerned here
with bulk granular superconductors (BGS) [1],
that is, one-, two- or three-dimensional arrays of

bulk superconducting regions (grains or not-too-

thin thin films) interconnected by weak links displaying
Josephson effects. Such systems are not conceptually
different from those described in the preceding
paper [2]. In fact, our samples look typically as

in figure 1, differing from Dr. Clark’s in grain dia-
meter (~ 170 Jl ± 10 u, which allowed us to have
a few hundred contacts per mm3) and in their three-
dimensional character. The main interest of such

systems is of course the possibility of superradiance [3],
which stems from a physical phenomenon which
one can call synchronisation, that is, locking of phase
slip velocities in neighbouring links interacting through
an electromagnetic field. This is a dynamical effect
whose efficiency may strongly depend on another

feature of the system, namely phase coherence. We
mean by this ordering of superconducting phases
in different grains coupled by the Josephson phase
dependent interaction. Phase ordering is an equili-
brium property of arrays whose effects are apparent
already in their DC behaviour. In the following we
shall successively study the process through which
phase coherence is attained, a model allowing to

REVUE DE PHYSIQUE APPLIQUÉE. - T. 9 N° 1, JANVIER 1974

make definite predictions on the dc properties of

BGS, and the electrodynamics of BGS in the coherent
state.

2. Transition to phase cohérence. - Let us point
out that our experimental results [4], [5], as well as
other studies [6], [7] indicate that BGS usually show
Josephson behaviour only at temperatures sizeably
different from the superconducting critical tempe-
rature T,. In particular the dynamical resistance at
zero current bias R = dV/dI/I~0 ~ 0 in a more or
less extended temperature region. One may ascribe
this to the presence of thermal noise in the system,
but then the effective noise temperature which would
fit the measured values of R [8] decreases sharply
by more than an order of magnitude around a certain
bath temperature To, characteristic of each sample.
We have proposed the following explanation for

this behaviour [5]. The superconducting order para-
meter of an assembly of superconducting grains in
the absence of applied current can be represented
by a set of vectors in the complex plane da = |~| 1 eiCPoc,
~03B1 being the superconducting phase in the ath grain.
For bulk grains the superconducting free energy

(proportional to the volume) is much greater than kT
immediately below Tc, so that fluctuations in 1 4 
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FIG. 1. - Typical granular sample. The grains (170 ± 10 p
in diameter) are kept in position inside a plastic cylinder by two
screws. These serve as electrical contacts and are conveniently

drilled to allow the passage of liquid He.

can be neglected. On the other hand, if there is a

tunneling interaction between grains a temperature
interval may exist where the Josephson free energy
1 FJ |  kT (Fj = - (h/2e) Ic cos ~03B103B1’, where

(p.., = ~03B1 - ~03B1’, a and oc’ designing first neighbours),
resulting in fluctuations of the phases ~03B1 while

Ic = IcO A 1) practically does not fluctuate. At tem-
peratures close to 7c we expect no long-range corre-
lation of the phases while a weak first-neighbour
correlation il =  eiqJaa’ &#x3E; may be present. The
representative vectors da are oriented at random in
the complex plane, as shown pictorially in figure 2.
This defines the paracoherent region. As temperature
decreases below a certain coherence temperature To,
where 1 FJ| ~ kTo, a phase transition to a coherent
state characterised by the appearance of long-range
correlations between the phases, is performed. It is

natural to define an order parameter M =  ei~03B1 &#x3E; = 0
in the coherent region, which may be taken as real
(M =  cos ~03B1 &#x3E;) in the absence of applied fields
and currents. We note that the average superconduct-

FIG. 2. - A pictorial description of phase ordering in the
complex plane.

ing order parameter in the system  L1 &#x3E; = M 1 A 1
is non zero only in the coherent region of temperatures.
More precisely, let Eka design the unperturbed

electronic energy levels of the ath grain. The partition
function of the system is

The phase in each grain can be assigned arbitrarily,
any two phase configurations differing only by a
gauge transformation. If now the tunneling Hamil-
tonian is switched on, second-order perturbation
theory shows [9] that the energy levels become

Eka + bEka cos cpaa,, where Eka represents all phase-
independent terms. The partition function is trans-

formed into

where the prime denotes summation over first neigh-
bours only. If the perturbation is small, the phase
dependent free energy difference becomes

where

is just the Josephson coupling energy. Now, expres-
sion (3) gives the free energy at constant phase. Actually,
the phase configuration cannot be fixed in a granular
sample and one has to allow for a statistical distri-
bution of phases. The partition function becomes

finally, for a system of N grains with no applied
current,
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The main interest of expression (5) is to show, firstly
that Z can be factored into a phase-independent
part Z’ 0 and a phase-dependent one Z, and secondly,
that Z, coincides with the partition function of a
classical ferromagnetic Heisenberg system with rigou-
rously isotropic two-dimensional spin space (the
complex plane). We expect indeed a phase transition
of such a system to a coherent state, as described
above.

We have obtained [5] the equations oi phase motion
in a homogeneous system in the Bethe approximation
[10], which amounts to consider a cluster whose
central grain is subject to the first-neighbour inter-
action J and whose outer grains are linked to the
external world by some mean field Hl. The resulting
equations of motion for a single junction in the cluster
are

where 0 represents the departure of the phase from
its equilibrium value, and Vi, Ci, Ri and Il are the
voltage, capacity, normal resistance and (assumedly
small) current in the barrier, respectively. Eq. (6)
are just the equations of phase motion of a single
point contact whose maximum supercurrent would
be given by

and therefore displays a rather unusual temperature
dependence [11] : the supercurrent per junction is

weakened in the paracoherent region T &#x3E; To
(il  1, M = Hl = 0) and strengthened in the cohe-
rent region T  To as compared to that of a single
junction.

3. de properties of BGS. - According to the
last paragraph, phase ordering should result in a

sharp increase of the maximum supercurrent in the
system. Above the coherence temperature and imme-
diately below it, on the other hand,  J &#x3E; is of the
order of kT, and the effects of thermal noise cannot
be neglected. In the strong damping approximation [8]
noise produces a non zero dynamical resistance even
at zero current bias,

where Rq is the quasiparticle resistance of the contact
and Io is the modified Bessel function of order zero.

Performing the same analysis as in reference [8]
on eq. (6) one obtains

for a bulk granular sample. For want of an exact
calculation on the Heisenberg model, we have obtained
 J &#x3E; in terms of an Ising model in the Bethe approxi-
mation and compared our experimental results [5]
with the predictions of eq. (9). This is shown in

figure 3a. Of course, the use of an Ising model is

objectionable in principle, because we are replacing
the infinite degeneracy of the complex plane by the
two-fold degeneracy of one-dimensional spin space.
However, a look at figure 3b shows that the devia-

FIG. 3. - a) Experimental dynamical resistance R at zero

current bias divided by the quasiparticle resistance Rq of granular
samples. Crosses : Nb, Rq = 13.0 Q ; squares : Ta, Rq = 12.3 03A9,
circles : Ta, Rq = 3.403A9; triangles : Ta, Rq = 0.89 03A9. Full
curves are a fit from a calculation based on the phase transition
model in the Bethe approximation. The arrows mark the cohe-
rence temperatures. (From ref. [5].) b) A comparison between
the internal energy per particle from an exact solution of the
Ising model (curve 1) for the quadratic lattice and the corres-

ponding predictions of the Bethe approximation (curve 2).
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tions of the Bethe approximation from an exact

solution of the Ising model are qualitatively of the
same type as those of theory from experiment in

figure 3a. In other words, this tends to prove that
the lack of fit in certain regions (cf. rounding off of
experimental curves as compared with the slope
discontinuity of the theoretical ones at To) is due to
the approximation used rather than to the description
in terms of a phase transition.

4. Electrodynamics of BGS in the cohérent state. -
Below the coherence temperature, phase ordering
extends itself over a large number of grains. We may
consider the system as a continuum at least in the

long wavelength limit, i. e. for excitations with wave-

number k  d-1, where d is the distance between
grains. (More precisely d = n - 1/3, where n is the

number of grains per unit volume.) In doing so,
we shall necessarily overlook the original non linear
properties of the individual junctions, which should
become apparent in a treatment of short wavelength
excitations.

4.1 BULK PROPERTIES. - External electric and

magnetic fields induce, on the one hand Josephson
currents, on the other a linear response which can be

easily estimated. Consider, for example, the normal
conductivity. On the average, only one third of the
junctions carry a current, the other two thirds being
branched in parallel with respect to the direction
of current flow. If q is the coordination number,
there are t q junctions per grain and therefore the
current is divided among q/6 junctions of resistance R1
across a length d and a section d2. One obtains

that is, for d - 100 g, R1 ~ 1 Q the resistivity

The dielectric constant can be obtained similarly [12]
by computing the field and electric induction in the
q/6 junctions of capacity Ci :

which, for a typical capacity of 10-12 F gives values
of 03B5 ~ 103.
A magnetic field H applied on the system results

in the diamagnetic response of the individual grains.
The average field in the volume occupied by the
BGS is the magnetic induction

where the magnetisation M ~ - (H/4 03C0) f with f
the filling factor of the array. The permeability is

then 03BC ~ 1 - f. If the grains are perfect spheres,
y - 0.7 for a diamond type structure (q - 4) and

p - 0.3 for a close-packed array (q = 12). Taking
into account eq. (11) one obtains for the characte-
ristic impedance of the medium, in ohms,

4.2 SUPERCURRENTS AND FIELD EQUATIONS. -

In addition to circulating currents in each grain,
Josephson supercurrents flow across the barriers.
The resulting phase gradient along the sample implies
that the phase order parameter M =  e’9- &#x3E; may
no longer be real. Consider two neighbouring grains
along the z-axis with (complex) superconducting
order parameters 03941 and L12. The supercurrent flowing
through the junction is

Making the continuum approximation, we replace
e’l’ by M, eil’2 by M + d DMIDZ. The q/6 current-

carrying barriers per grain finally contribute to an
average current density

where the last term, containing the vector potential A,
insures gauge invariance (1). This suggests the defi-
nition of a time and position dependent phase
7P = § 1 In M*/M. Eq. (15) becomes :

It is now an easy matter to write down the equations
governing electromagnetic fields in BGS. From

Josephson’s voltage-frequency relation,

where 03A60 is the flux quantum. The normal current

density is jN = JE and the displacement current

becomes jD = (E/4 xc) ôelôt. Finally, from Maxwell’s
equation

(1) Note that the signs chosen in eq. (14) and (15) correctly
give the direction of particle flow (toward increasing phases)
and that (opposite) of electrical current. A different convention
amounts to a description of Josephson effects in superconducting
antimatter !
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one obtains, for fields weak enough so that the vor-
ticity of the phase gradient can be neglected,

where

is the penetration depth of a three-dimensional bulk
granular superconductor. Similarly, one recognizes
in eq. (19) a phase velocity of electromagnetic waves

Using the same typical parameters as above, one

finds v - 10-2 c. It is interesting to compare these
quantities with the corresponding ones v J, 03BBJ, of a

single barrier in the assembly :

where L2 is the area of the junction and AL the London
penetration depth. With 1 M | ~ 1, ÂL = 500 À,
Âlîj - 5. As in a single junction there is a plasma
frequency

and a dispersion law for the propagation of electro-
magnetic waves of wave vector k and frequency co

is obtained from eq. (19) (neglecting the normal

component of current) :

which implies that only the propagation of waves
with m &#x3E; 03C90 is possible in the medium. Contrary
to the case of a single junction, propagation can
take place in all directions.
The above equations describe a London super-

conductor with rather unusual characteristic lengths.
In fact, eq. (16) and (17) give

which is the basic London equation. But 03BB here may
be of the order of a few millimeters ! Parmenter [12]
arrived at similar results by making the continuum
assumption from the very beginning in the case of
grains of a few angstrôms. This is equivalent to

assuming that coherence is established simultaneously
with the superconducting transition of the grains.
Bulk grains, on the other hand, will always display
a paracoherent behaviour in a finite temperature inter-
val, although this can be made in principle as small

as desired if one can manage to achieve a sufficiently
strong coupling between grains.

4.3 QUANTUM INTERFERENCE. - As an application
of the above formulae, let us consider a cylindrical
sample of radius R, with a constant applied field

along its axis. If the transversal dimensions of the

sample are small compared to 03BB, the field 03BCHz will
be constant inside and derive from a vector potential
A = 1 B A r. In a cylindrical system of coordinates
(r, e, z) the only component of A will be AB = -1 03BCrHz.
Since there are no vortices (R  Â), V A (Vg) = 0
and the gauge invariant phase gradient ~03B4 can be
taken proportional to the vector potential in the

London gauge

and

where 0 is the total flux through the sample and ôo
is a constant such that Mo = |1 M0| 1 exp(iôo) is the
order parameter in zero field. Assume now that a
current is applied along the z-axis. Because of the
small dimensions of the sample jz is a constant and
results in a constant z-component of the phase gra-
dient. Straightforward integration over the sample
cross section of jz from eq. (16) shows no interfe-
rence effects on the total current. However, our

derivation of eq. (16) assumes implicitly that M

does not change much over a large number of grains
along directions perpendicular to the current flow.
Eq. (27) shows that this need not be the case in the
presence of the field. Furthermore, since the actual
current paths do not necessarily coincide with the
z-axis, each grain at an r, 03B8 position receives current
from others having different values of r and 03B8. In

the extreme limit of very small R we may tentatively
replace M in eq. (16) by its spatial average M in a
plane z = constant, which, taking into account

eq. (27) is :

One obtains

This results in small oscillations of 1 M| 1 as shown

in figure 4. In an extended sample one may expect
a host of superimposed oscillations of different perio-
dicity, corresponding to averages taken over diffe-
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FIG. 4. - Average (over a plane normal to the applied field) of
the reduced order parameter as a function of reduced applied
flux (full curve). The asymptotic curve (dashed line) is shown

for comparison.

rent values of R, but in any case of decreasing ampli-
tude (cf. the (03C003A6/03A60)-1 factor in eq. (29)) as R
increases. We have indeed seen such oscillations in
the critical supercurrent in our very first experiments
[13]. The reason for their extremely small amplitude
remained however a puzzle for some time. Actually,
one observes three types of behaviour : well above To
there are no oscillations at all. As coherence gradually
sets in, periodicities of the order of a few gauss
appear, corresponding to areas of N 1 Jl2. This

obviously indicates a single junction interference

pattern. Finally, below To the multiply periodic
pattern is observable.

5. Discussion. - We have studied statistical and

electromagnetic properties of assemblies of Josephson
barriers. Experimental and theoretical evidence indi-

cates the existence of a phase transition between a
paracoherent (disordered) and a coherent (ordered)
state. This phase transition results from a first neigh-
bour interaction between man-made objects (the
grains). One may expect that these artificial systems
will allow the experimental study of subjects such as
critical indices in two- and three-dimensional struc-

tures, statistics of the few-body problem, etc. A draw-
back, of course, is that we cannot hope for the same
degree of regularity as is found in natural crystals.

In the coherent state bulk granular superconductors
behave as extreme type II superconductors with
unusual parameters. In fact, one can estimate the
coherence length at T = 0 as being of the order of
the distance between grains, while the penetration
depth is of the order of a few millimeters. If one
can extrapolate the definition of the Ginsburg-
Landau parameter to this case, one finds values of
x N 50. Conversely, they can be regarded as super-
conducting « macrojunctions », since they display
the main features of weak superconductivity, such
as quantum interference, plasma oscillations and
radiation [2]. It is perhaps a little early to forecast
any definite application of these systems : efforts

should be made towards the fabrication of rugged
and reproducible devices as well as towards a deeper
theoretical understanding of their behaviour.
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