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Abstract 
 
We discuss several features of coherent choice functions 
– where the admissible options in a decision problem are 
exactly those which maximize expected utility for some 
probability/utility pair in fixed set S of probability/utility 
pairs.  In this paper we consider, primarily, normal form 
decision problems under uncertainty – where only the 
probability component of S is indeterminate.  Coherent 
choice distinguishes between each pair of sets of 
probabilities.  We axiomatize the theory of choice 
functions and show these axioms are necessary for 
coherence.  The axioms are sufficient for coherence 
using a set of probability/almost-state-independent utility 
pairs.  We give sufficient conditions when a choice 
function satisfying our axioms is represented by a set of 
probability/state-independent utility pairs with a common 
utility. 
 
Keywords. Choice functions, coherence, Γ-Maximin, 
Maximality, uncertainty, state-independent utility. 
 
1 Introduction 
In this paper we continue our study of coherent choice 
functions, which we started in our (2004) “Rubinesque” 
theory of decision.  Coherent choice function theory 
provides a more general account of Imprecise 
Probabilities than the theory of coherent strict preference, 
which we used in our (1995).  Coherent choice function 
theory does not reduce to binary comparisons between 
options, as Example 1 (below) illustrates.  By contrast, 
coherent strict preference is a binary relation that fails, in 
principle, to distinguish between some convex sets of 
probabilities that have the same convex hull.   

Specifically, as we show in Section 2, with coherent 
choice functions, for each two different sets of 
probabilities it requires only a simple decision problem 
in order to distinguish by admissibility between them.  
That is, with coherent choice functions, each set of 
probabilities has its own footprint of admissible options.   
In Section 4, we illustrate this added generality with a 

non-convex (even a disconnected) set S of probabilities 
that share the common structure that, for each 
distribution in S, two specific events are independent.   
Coherent choice with respect to the set S avoids making 
information about one event valuable in decisions that 
depend solely on the other event.   This is in sharp 
contrast with theories that rely on convex sets to depict 
Imprecise Probabilities 

Let O be a (closed) set of feasible options.  A choice 
function C(O) identifies the (non-empty) subset of O that 
are the admissible options in the decision problem given 
by the feasible set O.  We say that C(••••) is coherent 
provided that there is a non-empty set S of 
probability/utility pairs S ={(p,u)} such that the 
admissible options under C are precisely those that are 
Bayes with respect to some probability/utility pair (p,u) 
in S.  That is, for each admissible option, for each o ∈ 
C(O), there is a pair (p,u) ∈ S such that o maximizes the 
p-expected u-utility over O.  For short, we will call these 
the Bayes-admissible options in O (with respect to S).  

Aside:  If the option set O is not closed, then given a set S 
there may be no coherently admissible options in O.  For 
example, if utility is linear and increasing in the quantity 
X, then in the decision-under-certainty problem with O = 
{0 ≤ x < 1}, each option is inadmissible with respect to S.  

In Section 3 we adapt Anscombe-Aumann Horse-lottery 
theory in order to axiomatize coherent choice functions 
for cases where only probability (not utility) is 
indeterminate.   This affords a representation of choice 
functions in the style of our previous work (1995), where 
we represented coherent strict (binary) preference 
between options using sets of probabilities and almost-
state-independent utilities.  One way to understand how 
the new representation generalizes our previous work is 
to consider the partial order 〈 defined on pairs of sets of 
options {O1,O2}: where O1 〈 O2 obtains whenever there 
are no admissible options from set O1 in a choice 
problem given the combined set of options O1 ∪ O2.   
When the two sets {O1,O2} are singletons, this relation 



reduces to the binary comparison of strict preference 
between options.  Because our (1995) theory leads to a 
representation in terms of sets of probabilities and 
almost-state-independent utilities, that feature is inherited 
by our representation in Section 3. 

The use of a coherent choice function coincides with 
Levi’s (1980) principle of E-admissibility in cases where 
the set S is a cross-product of a convex set of 
probabilities and a convex set of utilities: S = P×U  for 
convex sets P and U.  Also, we find that Savage [1954, 
pp. 123-124, particularly where he argues that option b is 
“superfluous” for the decision pictured by his Figure 1] 
endorses a coherent choice rule with S a convex set of 
probabilities and a common utility. The following 
example, which we repeat from our ISIPTA-03 paper, 
illustrates how coherent choice does not reduce to binary 
comparisons in a setting where only probability is 
indeterminate.  

Example 1: Consider a binary decision problem, Ω = 
{ω1, ω2} with three feasible options O = {f,g,h}, and 
where utility is determinate: u(f(ω1)) = u(g(ω2)) = 0.0, 
u(f(ω2)) = u(g(ω1)) = 1.0, and u(h(ω1)) = u(h(ω2)) = 0.4. 
Let uncertainty over the states be indeterminate, with P = 
{p: 0.25 ≤ p(ω2) ≤ .75}.  We rehearse three decision rules 
for this problem. 

Γ-Maximin – Maximize minimum expected utility over 
the feasible options.  This rule is well studied in Gilboa 
and Schmeidler (1989).  In brief, Γ-Maximin induces a 
preference ordering over options, but fails the von 
Neumann-Morgenstern Independence postulate.  Under 
Γ-Maximin only {h} is admissible from the set {f,g,h}. 

Maximality (Sen/Walley) – admissible options are those 
that are undominated in expectations (over p ∈ P) by any 
single alternative option.  Under Maximality all three 
options are admissible from the set {f,g,h} as none 
dominates the others in pairwise comparisons.  
Maximality does not induce a preference ordering over 
options; however, admissibility is given by pairwise 
comparisons.  As is evident from Example 1, whether an 
option (e.g., option h) is admissible under Maximality 
depends upon whether the feasible options are closed 
under mixtures. 
 
Coherent choice.  Since the set of probabilities P is 
convex in this example, coherent choice reduces to 
Levi’s rule of. E-admissibility – admissible choices have 
Bayes’ models, i.e., they maximize expected utility  for 
some probability in the (convex) set P.   Subset {f,g} 
identifies  the Bayes-admissible options  from {f,g,h} 
under Coherent Choice.   This rule does not induce an 
ordering over options and does not reduce to pairwise 
comparisons.  
 

Note that h, which is never “Bayes” with respect to P, is 
uniformly dominated by some mixtures of f and g, e.g.,  
the mixed option given by .5f  ⊕ .5g, with expected 
utility 0.5 independent of p, uniformly dominates h.  This 
is no coincidence, as the following result establishes. 
 
Let Ω = {ω1, ω2, …, ωn} be a finite  partition of states.  
Let O = {o1, o2, …, om } be a finite set of  options defined 
on Ω, such that for oi ∈ O, u(oi(ωj)) = uij, a cardinal 
utility of the consequence of oi when state ωj obtains.  
Let P be the class of all probability distributions over Ω.  
Similarly, let Q be the class of all (simple) mixed acts 
over O, with a mixed act denoted q. 
 
Theorem 1 (Pearce, 1984, p.1048).    
Suppose for each p ∈ P, act o* ∈ O fails to maximize 
expected utility.  Then there is a mixed alternative q* that 
uniformly, strictly dominates o*.  That is,  u(q*(ωj)) > 
u(o*(ωj)) + ε,  for  j = 1, ..., n, with ε  > 0.   
 
Aside: With this result we are able to apply the strict 
standard of de Finetti’s “incoherence” (= uniform, strict 
dominance) to a broad class of decisions under 
uncertainty, analogous to traditional Complete Class 
Theorems for Bayes decisions (Wald, 1950).  The 
standard of incoherence used here is notably stronger 
than the mere inadmissibility (= weak dominance) of 
non-Bayes decisions, as is used in those Complete Class 
theorems. 
 
Let H(O) denote the result of taking the closed, convex 
hull of the option set O.  That is, H(O) is the set of all 
(simple) mixed acts based on O.  Since O is finite, q* of 
Theorem 1 may be taken to be an option that also is 
Bayes for some p*∈ P.  That is, in Theorem 1 we may 
choose q* ∈ H(O) such that q* ∈ C(H(O)) for a coherent 
choice function using the set P of all probability 
distributions on Ω.  
 
Aside: Theorem 1 generalizes to infinite states spaces Ω 
and infinite, closed options sets O by using Theorem 2.1 
of Kindler (1983) to replace Pearce’s use of von 
Neumann’s Minimax Theorem, which does not 
generalize to infinite games. 
 
In terms of Theorem 1, in Example 1 with o* = h, then 
qx* = xf ⊕ (1-x)g  for .4 < x < .6 uniformly dominates o*.    
But each such qx* is Bayes with respect to H(O) for 
precisely for one probability on Ω: p(ω1) = .5.   We use 
this fact, next, to establish that each set of probabilities 
has its own unique coherent choice function.    
 
2. Distinguishing sets of probabilities by 
their coherent choice functions 
Consider a finite state space  Ω = {ω1, …, ωn} with the 
class of all options given by horse lotteries (Anscombe 
and Aumann, 1963) defined on two consequences 1 and 



0.  In general horse-lottery theory there is a denumerable 
set of prizes, {r1, r2, ... }.  A (simple) horse lottery is a 
function from states to (simple) probability distributions 
over the set of prizes.  In this section we use decision 
problems involving horse lotteries defined on only two 
consequences, 0 and 1, with a strict preference for the 
constant act 1 over the constant act 0, as explained 
below.  And we consider coherent choice using a state-
independent utility, u where u(1) = 1 and u(0) = 0 in 
each state, ω.  Our goal is to show that if P and P’ are 
different sets of probabilities, the coherent choice 
function based on P×{u} is different from the coherent 
choice function based on P’×{u}.   
 
Let P be a set of probabilities.  For a (closed) set O, C(O) 
is the non-empty set of Bayes-admissible options.  Let 
R(O) = O\C(O) be the associated Bayes-rejection 
function that identifies the inadmissible options in O.    
So, we assume that {0} = R{0, 1}. 
 
Let p = (p1, …, pn) be a probability distribution on Ω .  
Let p be the smallest nonzero coordinate of p. 
Define the constant horse lottery act a = p1 + (1-p)0. 
For each  j = 1, .., n, define the act hj  by 
hj(ωi)  = 1  if i = j and pj  = 0, 

=   a  if i ≠ j and pj  = 0, 
=  (p/pj)1 + (1- p/pj)0  

if i = j and pj  > 0, 
=  0  if i ≠ j and pj  > 0. 

 
Define the option set Op = {a, h1, …, hn}. 
Theorem 2: p ∈ P  if and only if  R(Op) = ∅. 
 
Proof:  First, note that for all j and every utility u, 
Ep(u(hj)) = p = Ep(u(a)).  For the “only if” direction, 
assume that (p; u) ∈ S for some utility u. Then by this 
equality, every element of Op is Bayes with respect to (p; 
u) and R(Op) = φ.  For the “if” direction, assume that 
R(Op) = φ. Notice that Eq(v(a)) = p for every probability 
/utility pair (q, v).  Let (q, v ) be a probability/utility pair 
with q ≠ p. First, consider the case with p < 1. Then there 
exists j with qj > pj .  So,  
                     qj p / pj  >  p  if  pj > 0, 
Eq(v(hj))     =          

qj + (1-qj)p  > p  if  pj = 0. 
 

Hence, for each (q, v) with q ≠ p, Eq(v(hj)) > Eq(v(a)). It 
follows that a ∈ R(Op) unless (p, u) ∈ S for some utility 
u. Finally, consider the case with p = 1. In this case, Op = 
{1, hj} where pj = 1. So, Eq(v (hj)) = qj < 1 = Eq(v (a)) for 
every probability/utility pair (q, v) with q ≠ p. It follows 
that hj ∈ R(Op) unless (p, u) ∈ S for some utility u.◊  
 
Corollary Let P1 and P2 be two distinct (nonempty) sets 
of probabilities with corresponding Bayes rejection 
functions R1 and R2.  There exists a finite option set Op, 
as above, such that R1(Op)  ≠ R2(Op). 

 
Thus, each set of probabilities P has its own distinct 
pattern of Bayes rejection functions with respect to 
option sets Op for p ∈ P. 
 
Aside: This is a generalization of Theorem 1 that appears 
at the end of our (2004) paper.  That Theorem 1 is the 
restriction of the corollary to pairs of convex sets of 
probabilities. 
 
3. Axiomatizing coherent choice functions 
We turn, next, to a system of axioms for choice functions 
that are necessary for coherence, and which are jointly 
sufficient for a representation of choice by a set S of 
probability/almost-state-independent utility pairs, as 
explained below. We provide sufficient conditions when 
these pairs have a common state-independent utility.  In 
such a case the coherent choice function corresponds to 
choice under indeterminate uncertainty with a 
determinate utility. 

We continue within the framework of the previous 
section: horse lotteries over a finite state space Ω = {ω1, 
…, ωn}.  In that we are using choice functions over sets 
of options, the theory presented here extends our (1995) 
work, which deals solely with binary choice problems.  
Thus, results that follow from binary choice problems are 
available also within this theory.  For example, it follows 
from Section II.6 of our (1995) theory that each agreeing 
cardinal utility for the choice function C(•), if one exists, 
is a bounded utility function.  
 
Aside:  The aspects of the theory given here that compel 
the use of almost-state-independent utilities parallel the 
same issues that arise in Section IV of our (1995) 
representation for partially ordered preferences.  In the 
context of this paper, that theory, which addresses binary 
choice only, can be taken to axiomatize choice under the 
Maximality rule. 

In this paper, we focus on a representation for choice 
when utility is determinate, i.e., regarding the two 
distinguished prizes 1 and 0,  the constant act 1 is better 
than, and the constant act 0 is worse than, all other 
constant acts.  Also, we assume that all cardinal utilities 
are scaled so that u(1) = 1 and u(0) = 0.   
 
Given a strict preference between these two prizes, the 
Anscombe-Aumann (1963) theory of  horse-lotteries is 
given by four substantive axioms, which we summarize 
as follows.  
A-A Axiom 1: Choice over horse lotteries reduces to a 
pairwise comparison of options since binary preference 
satisfies ordering. 
A-A Axiom 2: Preference satisfies the von Neumann-
Morgenstern postulate of Independence. 
A-A Axiom 3: An Archimedean postulate is introduced 
in order to assure that preference has a real-valued 



representation, thus insuring also a real-valued 
representation for subjective probability over Ω and a  
real-valued cardinal utility over prizes. 
A-A Axiom 4: To insure existence of a state-independent 
utility representation for preference over horse lotteries, a 
final axiom requires that the decision maker’s preference 
for constant horse lotteries reproduces under each non-
null state in the form of called-off horse lotteries. 
 
We adapt our presentation here to match these four 
axioms.   
 
Axiom 1a (Sen’s property alpha):  
If O2 ⊆ R(O1) and O1⊆ O3, then O2 ⊆ R(O3). 
You cannot promote an unacceptable option into an 
acceptable option by adding to the choice set of options. 
  
Axiom 1b (a variant of Aizerman’s 1985 condition):  
If O2 ⊆ R(O1) and O3 ⊆ O2, then O2\O3 ⊆ 
R(closure[O1\O3]). 
You cannot promote an unacceptable option into an 
acceptable option by deleting unacceptable options from 
the option set. (We require closure[O1\O3] since O1\O3 
may not be closed, despite closure of O1 and of O3.) 
 
With Axioms 1a and 1b, define a strict partial order  〈  on 
sets of options as follows.   Let O1 and O2 be two option 
sets. 

Defn:  O1 〈 O2   if and only if    O1   ⊆   R[O1 ∪ O2]. 
 
Lemma 1 of our (2004) establishes that given Axioms 1a 
and 1b, the binary relation 〈 is a strict partial order over 
pairs of sets of options: 〈  is  transitive  and  anti-
symmetric. 
 
The role of mixtures is captured in the following pair of 
axioms for  〈.  With  O1 an option set and o an option, the 
notation αO1 ⊕ (1-α)o  denotes the set of pointwise 
mixtures,  αo1 ⊕ (1-α)o  for o1 ∈ O1.   
 
Axiom 2a Independence is formulated for the relation 〈 
over sets of options.  Let o be an option and 0 < α ≤ 1. 
O1 〈  O2   if and only if   αO1 ⊕ (1-α)o   〈  αO2 ⊕ (1-α)o. 
Axiom 2b Mixtures  If o ∈ O and o ∈  R[H(O)], then o ∈ 
R[O]. 
Axiom 2b asserts that unacceptable options from a mixed 
set remain so even before mixing. 
 
Aside: Independence (Axiom 2a) fails in Γ-Maximin 
theory.  Mixing (Axiom 2b) fails for the choice function 
determined by Maximality. 
 
The Archimedean condition requires a technical 
adjustment, as the canonical form used by, e.g. von 
Neumann-Morgenstern theory or Anscombe-Aumann 
theory is too restrictive in this setting.  (See section II.4 
of our 1995.) The reformulated version of the 

Archimedean condition is as a continuity principle 
compatible with strict preference as a strict partial order.   
It reads as follows. 
 
Let An and Bn (n = 1, …) be sets of options converging 
pointwise, respectively, to the option sets A and B.  Let 
N be an option set. 
Axiom 3a: If, for each n, Bn 〈 An and A 〈 N, then B 〈 N. 
Axiom 3b: If, for each n, Bn 〈 An and N 〈 B, then N 〈 A.  
 
State-neutrality / dominance is captured by the following 
relations.  Consider horse lotteries h1 and h2, with hi(ωj) 
=  βij1 ⊕ (1-βij)0;  i = 1,2  j = 1, …, n. 
 
Definition: h2 weakly dominates h1 if β2j  ≥ β1j for j = 1, 
…, n. 
 
Axiom 4: Assume that o2 weakly dominates o1, and that a 
is an option different from each of these two. 
4a: If o2 ∈ O and a ∈ R({o1} ∪ O) then a ∈ R(O). 
4b: If o1 ∈ O and a ∈ R(O) then a ∈ R({o2}∪O\o1). 
 
In words, Axiom 4a says that when a weakly dominated 
option is removed from the set of options, other 
inadmissible options remain inadmissible.  So, by Axiom 
1, when an option is replaced in the option set by one that 
it weakly dominates, other admissible options remain 
admissible. 
 
Axiom 4b says that when an option is replaced by one 
that weakly dominates it, (other) inadmissible options 
remain inadmissible.  Trivially by Axiom 1, merely 
adding a weakly dominating option cannot promote an 
inadmissible option into one that is admissible. 
 
Axiom 4 captures key aspects of what Savage’s postulate 
P3 asserts about state-independent utility of the prizes 1 
and 0 without assuming states are not-null.  That is, the 
intended representation for the choice function C(•) is by 
the expected utility rule applied with a set of probability 
distributions P.  However, it may be that for each state ωj 
there is a probability distribution pj ∈ P such that Pj(ωj) 
= 0.  In the language of our (1995) paper, each state in Ω 
is potentially null under P.  Then Savage’s P3 (or the 
corresponding axiom of Anscombe-Aumann theory) is 
vacuous.   Nonetheless, Axiom 4 reports two facts about 
weakly dominated lotteries that obtain even when each 
state is potentially null. 
 
Theorem 3:  Axioms 1–4 are necessary for a coherent 
choice function.   
That is, let S be a non-empty set of pairs of 
probability/state-independent utilities, and let CS(•) be 
the coherent choice function defined by setting the 
admissible options in feasible set O to be exactly those 
that are Bayes-admissible with respect to S.    Then CS(•) 
satisfies Axioms 1–4. 



 
Proof:  The argument for the necessity of  Axioms 1–3 is 
given in our (2004).  That Axiom 4 is necessary as well 
follows immediately by noting  that whenever o2 weakly 
dominates o1 then for each (p,u) ∈ S, Ep(u(o2)) ≥ 
Ep(u(o1)). ◊ 
 
The following result is helpful in linking our theory with 
Theorem 1. 
Definition: h2 strongly dominates h1 if β2j  > β1j for j = 1, 
…, n. 
Lemma–Inadmissibility of  strongly dominated options:  
If h2 strongly dominates h1 then {h1} = R({h1, h2}). 
 
Proof:  The strategy of the proof is as follows: Use the 
Independence axiom to convert the problem with option 
set O = {h1, h2} into an equivalent problem O` = {h`1, 
h`2}, where h`1 is a constant horse lottery, and where h`2 
strongly dominates h`1.  Then we show that h`2

 weakly 
dominates another constant horse lottery, h``2 which also 
strongly dominates h`1.  Then, by Independence {h`1} = 
R({h`1, h``2}) and by Axiom 4b, {h`1} = R({h`1, h`2})    
Last, by Independence, {h1} = R({h1, h2}). 
 
Here are the details.  Let 0 ≤ β* = min{β1j} and 1 > β* = 
max{β1j}.  Let h3(ωj) = β3j1 ⊕ (1-β3j)0, where β3j = β* + 
β* - β1j.  Then the horse lottery h`1 = .5h1 ⊕ .5h3 is the 
constant (von Neumann-Morgenstern) lottery with β`1j = 
(β*+β*)/2.  Define h`2 = .5h2 ⊕ .5h3.   The Independence 
axiom asserts that {h1} = R({h1, h2}) if and only if {h1`} 
= R({h1`, h2`}).  But h2` strongly dominates h1`, because 
h2 strongly dominates h1.  In fact, β`2j -β`1j = (β2j -β1j )/2 
> 0.  So,  let 0 < δ = min{β2j -β1j}, and then δ/2 = 
min{β`2j -β`1j}.  Let h``2 be the constant (von Neumann-
Morgenstern) lottery defined with β``2j = β`1j + δ/2 = 
(β*+β* + δ)/2  > β`1j.  Observe, also, that h`2 weakly 
dominates h``2. 
 
Then, as announced before, by Independence {h`1} = 
R({h`1, h``2}) and by Axiom 4b, {h`1} = R({h`1, h`2}), 
and by another application of Independence, {h1} = 
R({h1, h2}).◊ 

 
Next we introduce two concepts central to our argument 
for representing coherent choice functions.   
 
Definitions:  The pair (p,u) is a local Bayes model for 
option o provided that o maximizes (p,u)-expected utility 
with respect to the options in set O. 
 
The pair (p,u) is a global Bayes model for the choice 
function C(•) provided that, for each option set O, if  o ∈ 
O maximizes (p,u)-expected utility with respect to the 
options in set O  then o ∈ C(O). 
 
We adapt the concept of a set of almost state-
independent utilities, presented  in our (1995, Definition 

31), as follows.  Let {r1, ..., rm} be a set of rewards and 
assume that  for each constant horse lottery r ∈ {r1, ..., 
rm} , {0} 〈 {r} 〈 {1}, so that the constant acts 0 and 1 
strictly bound the value of the other constant acts.    
 
The set of probability/utility pairs S# = {(pj, uj): j = 1, 
....} form a set of almost state independent utilities for 
{r1, ..., rm} provided that for each ε > 0, there is a pair 
(pε, uε) ∈ S# and a set of states Ω(1-ε) ⊆ Ω  with  pε( Ω(1-ε)) 
≥ 1-ε such that for each r ∈ {r1, ..., rm} 

εωω −Ω∈ 1j,imax | uε,ωi(r) - uε,ωj(r) | ≤ ε. 

 
The remaining theorem we seek is this one.   
 
Theorem 4:  A choice function C(•) defined on the class 
H of simple Anscombe-Aumann Horse-lotteries using 
(at least) three prizes {0, r, 1}, with {0} 〈 {r} 〈 {1},  
satisfies our 4 axioms only if it is represented by a set S 
of probability/almost-state-independent utility pairs. 
 
A sufficient condition is given at the end of Appendix 2 
for the global Bayes models of S to be comprised solely 
of probability/state-independent utility pairs. 
 
This theorem follows from three lemmas, described next. 
 
Lemma 1: For each choice set O and admissible option o 
∈ C(O), o has at least one local Bayes model. 
Proof:  By Theorem 1, an option lacking a local Bayes 
model is strongly dominated by a finite mixture of other 
options already available in the same choice problem.  
Then, Axiom 3 and the Lemma on inadmissibility of 
strongly dominated acts demonstrates Lemma 1.  
 
Aside: Let o ∈ C(O).  If (p,u) and (p’,u) both are local 
Bayes models for o, then so too is each pair (q,u) of the 
form q = xp + (1-x)p’ (0 ≤ x ≤ 1).  Likewise, if each of 
(pj,u) (j = 1, ... ) is a local Bayes model for o and the 
sequences of distributions {pj} converges to distribution 
q, then also (q,u) is a local Bayes model for o.  Hence, 
we have the following corollary 
 
Corollary:  The set of local Bayes models for o ∈ C(O) 
with a common utility u is given by a non-empty, closed, 
convex set of probabilities. 
 
Next, following the ideas presented in Section 2, given a 
distribution p, we identify a special choice problem O* 
so that precisely when all of its options are admissible, 
then p is a global Bayes model for the choice function.  
Thus, the notation for the special choice problem should 
be ‘O*p’ with the subscript identifying the distribution p.  
To make the proofs readable, that subscript is suppressed 
here. 
 



Lemma 2:  Suppose that C(O*) = O*.  Then p is a global 
Bayes model for the choice function C(•).   
Proof:  See Appendix 1. 
 
Lemma 3: For each admissible option o ∈ C(O) at least 
one of its local Bayes models is a global Bayes model or 
else there is a set of probability/almost-state-independent 
utility pairs that represent C. 
Proof: See Appendix 2. 
   
4. An example of coherent choice using a 
non-convex set P reflecting “expert” opinion 
In this section we illustrate how coherent choices may 
represent “expert” opinions while preserving 
independence between two events.   
 
Example 2: Consider a decision problem among three 
options – three treatment plans {T1, T2, T3} defined over 
4 states Ω = {ω1, ω2, ω3, ω4} with determinate utility 
outcomes given in the following table.  That is, the 
numbers in the table are the utility outcomes for the 
options (rows) in the respective states (columns)  
  ω1  ω2  ω3 ω4 
 
T1  0.00 0.00 1.00 1.00 
 
T2  1.00 1.00 0.00 0.00  
 
T3  0.99 -0.01 -0.01 0.99 
 
Let a convex set P of probabilities be generated by two 
extreme points, distributions p1 and p2, defined by the 
following table.  Distribution p3 is the .50-.50 (convex) 
mixture of  p1 and p2. 

ω1  ω2  ω3 ω4 
 
p1  0.08 0.32 0.12 0.48 
 
p2  0.48 0.12 0.32 0.08  
 
p3  0.28 0.22 0.22 0.28 
Note that (for i = 1, 2, 3) under probability pi, only option 
Ti is Bayes-admissible from the option set of {T1, T2, 
T3}.   
 
Without convexity – that is, using only the set comprised 
by the two (extreme) distributions {p1, p2} –  option T3 is 
the sole Bayes-inadmissible option from among the three 
options {T1, T2, T3}.  
 
Now, interpret these states as the cross product of two 
binary partitions: a medical event A (patient allergic) and 
its complementary event NA (patient not-allergic), with a 
binary meteorological partition. S (sunny) and NS 
(cloudy).   Specifically: ω1 = A&S  ω2 = A&NS  ω3 = 
NA&S  ω4 = NA&NS.   

 

Under  probability distribution p1, the two partitions are 
independent events with p1(A) = .4 and p1(S) = .2.  
Likewise, under probability distribution p2, the two 
partitions are independent events with p2(A) = .6 and 
p2(S) = .8.  And under distribution p3 the events A and S 
are positively correlated: .56 = p3(A | S ) >  p3(A) = .5, as 
happens with each distribution q  that is a non-trivial 
mixture of p1 and p2. 
 
Continuing with the example, we see that the three 
options have the following interpretations: T1 and T2 are 
ordinary medical options for how to treat the patient, 
with outcomes that depend solely upon the patient’s 
allergic state.  T3 is an option that makes the allocation of 
medical treatment a function of the meteorological state, 
with a “fee” of 0.01 utile assessed for that input.  That is, 
T3 is the option “T1 if cloudy and T2 if sunny, while 
paying a fee of 0.01.” 
 
Suppose that p1 represents the opinion of medical expert 
1, and p2 represents the opinion of medical expert 2.  
Without convexity of the credal probabilities, T3 is 
inadmissible.  This captures the shared agreement 
between the two medical experts that T3 is unacceptable 
from the choice of three {T1, T2, T3}, and it captures the 
pre-systematic understanding that under T3 you pay to 
use medically irrelevant inputs about the weather in order 
to determine the medical treatment.  However, with 
convexity of the set generated by p1 and p2, then T3 is 
admissible as well.  Convexity of the set of indeterminate 
probabilities, we note, is required in each of Gilboa and 
Schmeidler’s (1989) version of Γ-Maximin, in Walley’s 
(1990) version of Maximality, and in Levi’s (1980) 
account of E-admissibility.. 
 
Aside: This illustration relies on the fact that normal and 
extensive form decisions are generally not equivalent in 
decision theories with indeterminate probabilities. 
Example 2 is in the normal form, as are all the choice 
problems considered in this paper.  In the extensive form 
of this decision problem, the decision maker has the 
opportunity to make a terminal choice between T1 and T2 
first, or to take as a third option a sequential alternative: 
pay a fee of 0.01 utiles in order to learn the state of the 
weather before choosing between T1 and T2.  Under 
decision rules for extensive form  problems that we 
endorse, and which we believe also are endorsed by Levi, 
then it is E-inadmissible to postpone the immediate 
medical decision between T1 and T2 in order to pay an 
amount to acquire the irrelevant meteorological evidence.  
And this holds whether the indeterminate probability set 
is convex or not. Related results about independence with 
indeterminate probability are presented in Cozman and 
Walley (2005). 
 
5. Concluding Remarks 
We have discussed coherent choice functions – where the 
admissible options in a decision problem are exactly 



those which maximize expected utility for some 
probability/utility pair in fixed set S of probability/utility 
pairs.  All of the decision problems used here to 
characterize and axiomatize coherent choice functions 
are normal form decision problems. But, as indicated in 
section 4, normal and extensive form decisions generally 
are not equivalent when probability (or utility) is 
indeterminate.  One of our future projects is to study 
coherent choice for extensive form, i.e., sequential 
decision problems 
 
Also, as noted in Lemma 3, in parallel with our findings 
about coherent strict partial orders (1995) the axioms are 
sufficient for coherence using a set of probability/almost-
state-independent utility pairs. Though we give sufficient 
conditions when a choice function satisfying our axioms 
is represented by a set of probability/state-independent 
utility pairs with a common utility, also we intend to 
study how to modify the axioms to avoid the use of 
almost-state-independent utilities. 
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Appendix 1 – Lemma 2 
Lemma 2:  Suppose that C(O*) = O*.  Then p is a global 
Bayes model for the choice function C(•).   
Proof.  Let p = (p1, …, pn) be a probability distribution 
on Ω with p its smallest nonzero coordinate.  O* is 
comprised by a set of acts that span all the elements of H 
with p-Expected utility p. 

Partition the states in Ω in two sets: p
1Ω  = {ω1, …, ωk} 

those that comprise the support of p and, p
2Ω  = {ωk+1, 

…, ωn} those states null under p.  Clearly, p
2Ω  = φ if and 

only if p has full support.  We define O* by two cases, 

depending whether p
2Ω  = φ or not. 

Case 1: p
2Ω  = φ and p has full support.  O* is comprised 

by n-many acts, { ja : j = 1, …, n}  For each  j = 1, …, n, 

define the act ja   by 

ja (ωi)   =    
jp

p
1  ⊕  (1-

jp
p

)0   if i = j 

=  0     if i ≠ j. 

Case 2: p
2Ω ≠ φ. O* is defined by k(n+2-k)-many acts 

which can be understood to be the product of acts 

defined on p
1Ω  ×××× p

2Ω .  With respect to p
1Ω , O* 

contains k-many acts that span horse lotteries defined on 

p
1Ω  that have p-Expected utility p, similarly to Case 1. 

With respect to p
2Ω , O* contains (n+2-k)-many acts that 

span all horse lotteries defined on p
2Ω , including the two 

constants 0 and 1. 
For each  j = 1, …, k,  and m = k+1, …, n+2 define the 

act m
ja   by 

m
ja (ωi)   =   

jp
p

1  ⊕  (1-
jp

p
)0   if i = j 

    =      1 if i = m  or (m= n+2 and i > k) 
    =      0     otherwise 

 

Note that 1+n
ja (ωi)  ≠  0 if and only if i = j.  In particular, 

it equals 0 on p
2Ω . And note that 2+n

ja (ωi)  ≠  0 if and 

only if, either i = j or i > k.  It equals 1 on p
2Ω . 

 
Let O* be the choice problem formed by taking the 
convex hull of these options: 

In Case 1  O* = H{ ja : j = 1, …, n}, the convex hull of 

n-many options.  In Case 2 O* = H{ m
ja : j = 1, …, k; m 

= k+1, ..., n+2}, the convex hull of  k(n+2-k)-many 
options. 
 
Let ap denote the constant horse lottery that awards the 
identical von Neumann-Morgenstern lottery in each state, 
with ap = p1 ⊕ (1- p)0. 
 
Claim 1: ap ∈ O*. 
Proof: In Case 1, when p has full support,  p1a1 ⊕ p2a2 ⊕ 
… ⊕ pnan

 is the horse lottery ap.   In Case 2, when p-null 
states exist, for each  j = 1, …, k, define the horse lottery 

bj = (1-p) 1+n
ja  ⊕  p 2+n

ja  with  payoffs: 

jb (ωi)   =     ap    if i > k 

jb (ωi)   =   
jp

p
1  ⊕  (1-

jp
p

)0   if i = j 

jb (ωi)   = 0     if i ≠ j and  i ≤.k. 

 
Then  p1b1 ⊕ p2b2 ⊕ … ⊕ pkbk

  is the horse lottery ap. 
◊−claim 1. 
 
Note that (p,u) is a local Bayes model for each element 
of O* as the p-Expected utility for each element of O* is 
the same value, namely p. 
 
Claim 2: If p < 1 then (p,u) is the only local Bayes model 
for ap 



Proof:  Note that regardless the distribution q on Ω,  ap 
has q-Expected utility p.  We argue by cases that when p 
< 1, q is not a local model for ap with respect to O*. 

If p has full support ( p
2Ω  = φ), the q-Expected utility of 

ja  =  qj
jp

p
> p.  And if  j = m > k, so that pj = 0 and 

q( p
2Ω ) > 0, then the q-Expected utility of 

p1
2

1
+na  ⊕ p2

2
2

+na ⊕ … ⊕ pk
2+n

ka   

=   q(Ω1) p + q(Ω2)    >  p. 
Hence, (q,u) is not a local Bayes model for ap . ◊-claim 2 
 
Note also that for the case p1  = p = 1, ap = 1 and then O* 

= H{1 , 
2
1a , … 2

1
+na }.  In which case if q ≠ p, q is not a 

local Bayes model for 1
1

+na , which has a q-expected 
value of q1 < 1.  Thus, we have  
Proposition:  

p is the sole local Bayes model for all of O*.  
 
Claim 3: O* contains all the horse lotteries in H with p-
expected utility equal to p. 
Proof: Let o be a horse lottery with p-Expected utility p.  
Write o(ωj) = αj1 ⊕ (1- αj)0,  j = 1, …, n.     

Case 1 (p has full support.): For ωi ∈ Ω = p
1Ω  we have 

that ∑i piαi = p and 0 ≤ αi ≤ 1.  The set of α-vectors 
satisfying these two equations is closed and convex, with 
extreme points given by the acts {aj}.  That is, if α* = 
<α∗1, …., α∗n> is an extreme point of this set of α-
vectors, then α* = aj for some 1 ≤  j ≤  n.   Since a 
closed, convex set is identified by its extreme points, this 
establishes that o ∈ O*. 
Case 2 (There are null states under p.):  The reasoning is 
similar to Case 1, noting that O* spans all horse lotteries 

defined over p
2Ω .◊−Claim 3. 

We complete the proof of Lemma 2, as follows. Let O be 
a choice set and let φ ≠ Op ⊆ O be those options for 
which p is a local Bayes model.   So, each a ∈ Op 
maximizes the p-Expected utility of options in O at 
common value r.   There are two cases, depending upon 
whether r  ≥ p or  r  < p. 
In the former case, mix 0 into each act in O to form the 

choice set O` =  r
p

O  ⊕  (1-
r
p

)0, with the  isomorphism 

between O and O` that associates each o ∈ O with o’ ∈ 

O, where o` = r
p

o  ⊕  (1- r
p

 )0. 

In case r  < p mix 1 into each act in O to form the choice 

set O` =  r
p

−
−

1
1

O  ⊕  ( r
rp

−
−

1
)1, with the  isomorphism 

between O and O` that associates each o ∈ O with o’ ∈ 

O,  where o` = r
p

−
−

1
1

o  ⊕  ( r
rp

−
−

1
 )1. 

The argument continues in parallel between the two 
cases.  By the Axiom 2, a ∈ C(O) if and only if a` ∈ 
C(O`).  Also evident is the fact that for each a` ∈ O`p the 
p-Expected utility of a` equals p.  Thus, by Claim 3, for 
each a` ∈ O`p, a`∈ C(O*). 
 
Claim 4: Let o`∈ O`  and o`∉ O`p .  Then each local 
Bayes model q for o` with respect to O* ∪ {o`} is 

singular with respect to p, i.e., q
1Ω ∩ p

1Ω = φ. 

Proof: Because o`∉ O`p  then Ep(o`) < p and, trivially,  p 
is not a local Bayes model for o`.  Fix a distribution q ≠ p 

where q
1Ω ∩ p

1Ω ≠ φ.  We argue indirectly that q is not a 

local Bayes model for o’ with respect to O* ∪ {o`}. 

First consider the case where q
1Ω  ⊆ p

1Ω , that is where q 
is absolutely continuous with respect to p.  Within the n-
1 dimensional simplex of distributions on Ω, let Lpq be 
the line determined by the two points p and q, having 
endpoints denoted q* and q*.  Identify these endpoints by 
placing q in the closed line segment [q*, p], and thus p 
lies in the closed line segment [q, q*], from which we 
know that p ≠ q*, though it is possible that q = q*. 

Moreover, since q
2Ω  ⊇ p

2Ω  we have that p ≠ q*, since 
each endpoint of Lpq has some null-state not shared as a 
null state with any other point on that line.   So, p is 
internal to the line Lpq.  Because q* is an endpoint of Lpq, 

as just argued, *q
2Ω ∩ p

1Ω ≠ φ. Assume that ωk ∈ 

*q
2Ω ∩ p

1Ω .  Since p lies on the line [q*, q*], ωk ∈ *q
1Ω . 

Consider the act 1+n
ka  (or the act ka  if p has full 

support).  Since Eq(o`)  ≥  Eq( 1+n
ka ) and  Ep(o`) < 

Ep( 1+n
ka ) = p, there exists a unique distribution rk 

situated on the line Lpq and between p and q (possibly 

with rk = q), such that krE (o`) = krE ( 1+n
ka ).  Because 

expected utility is linear in probability, for each 
distribution t in the half open interval   (rk, q*],  Et(o`) < 

Et( 1+n
ka ).  But *qE [ 1+n

ka ] = 0 > *qE [o`], which is a 
contradiction as no act has a negative expected value. 
This completes the argument when q is absolutely 
continuous with respect to p. 

Next, assume that q
1Ω ∩ p

1Ω ≠ φ and write 

q(•) = q(• | p
1Ω )q( p

1Ω )  +  q(• | p
2Ω )q( p

2Ω ), 

where  q( p
1Ω ) > 0.  So, q(•| p

1Ω ) is absolutely 
continuous with respect to p. 



Eq(•) = Eq(• | p
1Ω )q( p

1Ω )  +  Eq(• | p
2Ω )q( p

2Ω ).  Since 

2+n
ka ∈ O* and Eq(o`)  ≥  Eq( 2+n

ka ), it follows that  

Eq(o`| p
1Ω ) ≥  Eq( 2+n

ka  | p
1Ω )  =  Eq( 1+n

ka  | p
1Ω ).  

However, as q(• | p
1Ω ) is absolutely continuous with 

respect to p, we have the same situation involving q(• | 
p
1Ω ) and p as when q is absolutely continuous with 

respect to p, completing the proof.  ◊-Claim 4 
 
Next, we show that if there is a local Bayes model for o’ 
with respect to O* ∪ {o`}, then no element of O* 
becomes inadmissible by adding option o`. 
 
Claim 5:  Assume that a ∈ C(O* ), o`∈ O`  but o`∉ O`p, 
and let  o` have a local Bayes model q with respect to O* 
∪ {o`}.  Then a ∈ C(O* ∪ {o`}). 
Proof: Assume the premise.  In the light of Axiom 4 we 
are done proving Claim 5 if we identify an act a* ∈ O* 
such that a* weakly dominates o’.   This we do as 
follows. 
 
By Claim 4, q is singular with respect to p.  Consider an 

act 2+n
ka  for ωk ∈ p

1Ω . 

Definition: For W ⊆ Ω and act o, define the act  o|W  by: 
o(ω)|W = o(ω),  for ω ∈ W, 

and  o(ω)|W  = 0,  otherwise. 
 

Write o` as an sum of three acts o` = o`| q
1Ω + 

o`|( p
2Ω ∩ q

2Ω ) + o`| p
1Ω , and likewise for 2+n

ka  = 

2+n
ka | q

1Ω   +  2+n
ka |( p

2Ω ∩ q
2Ω ) +  2+n

ka | p
1Ω .  

Because 2+n
ka (ω) = 1 for ω ∈ p

2Ω , then 2+n
ka | q

1Ω  

weakly dominates o`| q
1Ω , and likewise 

2+n
ka |( p

2Ω ∩ q
2Ω ) weakly dominates o`|( p

2Ω ∩ q
2Ω ).  

By Claim 4,  o`| p
1Ω  fails to have a local Bayes model 

with respect to O* ∪ {o`| p
1Ω }.  So, by Lemma 1, there 

exists an option b ∈ H(O*) that uniformly dominates 

o`| p
1Ω .  Let  a* = 2+n

ka | q
1Ω  + 2+n

ka |( p
2Ω ∩ q

2Ω ) + 

b| q
1Ω .  Then a* weakly dominates o` and, as Ep[a*] = 

Ep[b| q
1Ω ] = p, we have a*∈ O*.◊-Claim 5 

 
Assume that a` ∈ C(O*).  Let N` ={o`: o` ∈ O` and o`∉ 
O`p but o` has no local Bayes model with respect to O* 
∪ {o`}}.  Then by Lemma 1, o`∈ R(O* ∪ N`).  By 

Axiom 1, as a` ∈ C(O*) then a` ∈ C (O* ∪ N`) .   If  o` 
∈ O` \N` , then using Claim 5, a` ∈ C(O* ∪ N` ∪ o`). 
By a simple induction on an arbitrary well-ordering of 
O`\N`, then a` ∈ C(O* ∪ N` ∪ O`\N`)  =  C(O* ∪ O`). 
By Axiom 1, if a`∈ O` then a`∈ C(O`).  Finally, by 
Axiom 2, a ∈ C(O).  ◊-Lemma 2 

 
Appendix 2 – Lemma 3 

Lemma 3: For each admissible option o ∈ C(O) at least 
one of its local Bayes models is a global Bayes model or 
else there is a set of probability/almost-state-independent 
utility pairs that serve as a global Bayes-model. 
Proof:  The next claim, which we use to establish 
Lemma 3, extends the idea of Axiom 4 to the strict 
partial order 〈. 
Claim 6: Suppose that for option sets A, B and D, B 〈 A 
and B ∩ C(D) ≠ φ.  Then A ∩ C(closure{D\B ∪ A}) ≠ φ.   
Proof (indirect): Suppose that A ⊆ R(closure{D\B ∪ 
A}).  By Axiom 1 applied twice, A ⊆ R(D ∪ A) and A ⊆ 
R(D ∪ A ∪ B).  Since B 〈 A, likewise B ⊆ R(D ∪ A ∪ 
B).  Thus, A ∪ B 〈 D.  By transitivity, B 〈 D and so B ∩ 
C(D) = φ. ◊-Claim 6 
 
Given o ∈ C(O) and following the ideas we used in 
(1995, Definition 19), we introduce the notion of a target 
set T(o,O) of probability distributions for o with respect 
to choice problem O.  The target set for o is a subset of 
the local Bayes models for o which, we show, contains 
all of its global Bayes models.  We demonstrate that 
whenever the target set includes a boundary point, that 
boundary point is a global Bayes model.   
 
Given a probability distribution p, recall the decision 

problem Op = {ap, ph1 , …, ph1 } defined in Section 2.  
We state without proof that whenever C(Op) = Op then 
C(O*) = O* for O* defined with respect to p as in 
Lemma 2, and so p is a global Bayes model. 
 
Definition:  T(o,O)   = {p: p is local Bayes model for o in 

choice problem O and  { ph1 , …, p
nh } ⊆ C(Op)} 

 
Claim 7: T(o,O) is a non-empty, convex set. 
Proof: Without loss of generality, and to simplify the 
presentation, we give  the proof for a binary state space 
Ω = {ω1, ω2} .  Convexity is shown as follows. Note that 

for p defined by p(ω2) = 0, ph2 ∈ C(Op), and for p 

defined by p(ω2) = 1, ph1 ∈ C(Op).  And by Claim 6, if 

ph2 ∈ C(Op), then for all distributions q with q(ω2) ≤ 

p(ω2) we have qh2 ∈ C(Oq); and if ph1 ∈ C(Op), then for 

all distributions q with q(ω2) ≥ p(ω2) we have qh1 ∈ 



C(Oq).  In the general case, with more than 2 states, the 
same result follows by noting that T(o,O) is an 
intersection of half-planes.  We show that T(o,O) is non-
empty by an indirect argument using the Archimedean 

axiom.  So, assume that for each p, C{ ph1 , ph2 } is a unit 
set, and by the observation above, let q be the lub 

{p(ω2):
ph2 ∈ C{ ph1 , ph2 }.  There are two cases. 

Case 1: { qh2 } = C{ qh1 , qh2 }  So q(ω2) < 1 and then 

qh1 〈〈〈〈    
qh2 and for all p(ω2) > q(ω2),  

ph2 〈〈〈〈    
ph1 .  But as p 

approaches q, p
ih  converges to q

ih  for i = 1, 2.  Then by 

Axiom 3, qh1 〈〈〈〈    
qh1 . 

Case 2: { qh1 } = C{ qh1 , qh2 } .  So q(ω2) > 0 and then 

qh2 〈〈〈〈    
qh1 and for all p(ω2) < q(ω2),  

ph1 〈〈〈〈    
ph2 .   But as p 

approaches q, p
ih  converges to q

ih  for i = 1, 2.  Then by 

Axiom 3, qh2 〈〈〈〈    
qh2 .◊-Claim 7 

To complete the proof of Lemma 3 there are two cases to 
consider. 
Case 1: T(o,O) contains at least one of its boundary 

points.  Suppose, e.g., that q is the lub {p(ω2):
ph2 ∈ 

C{ ph1 , ph2 } and  that R{ qh1 , qh2 } = φ.  Then for each 0 

≤  x ≤ 1, R{ qh1 , qh2 , x qh1 ⊕ (1-x) qh2 } = φ, as the 
following reasoning establishes.   
 
Assume that q(ω2) < 1, or we are done.  Then for all 

p(ω2) > q(ω2),  ph2 〈〈〈〈    
ph1 as before.  For 0 < x ≤ 1, by 

Axiom 2, ph2 〈〈〈〈     x ph1 ⊕ (1-x) ph2 .  As p approaches q, by 

Axiom 3, then x qh1 ⊕ (1-x) qh2 ∈ C{ qh1 , qh2 , x qh1 ⊕ (1-

x) qh2 }, on pain of contradiction otherwise  that qh2 〈〈〈〈    
qh2 .  

The reasoning is similar if the target set T(o,O) is closed 
at the other end.  Then, at each point p of closure for 
T(o,O), R(Op) = φ and p is global Bayes model. 
 
Case 2: If the target set is entirely open and there is no p 
∈ T(o,O) such that R(Op) = φ, we arrive at the parallel 
situation studied in Section IV.2 of our (1995).  That 
situation is one where, first, a coherent choice function C 
is induced by a finite set P of linearly independent 
probabilities on Ω.  The convex target sets for C include 
subsets of P as extreme points, i.e., R(Op) = φ for each p 
∈ P. Hence, C is represented by the set P of global Bayes 
models.  Then, this choice function C is changed into 
another C+ which is formed by adding the strict 

preferences associated with finitely many conditions  of 
the form T(o,O)∩R(Op) ≠ φ.  The results established in 
Section IV.2 of our (1995) show that then C+ satisfies the 
axioms.  Also, those results show that in a neighborhood 
of the extreme points of the target sets for C there are 
sets of probability/almost-state-independent utility pairs 
that are local Bayes models for C, and which then 
represent the choice function C+.  These almost-state-
independent utilities result by adding at least one new 
prize {r} to the two {0, 1} used to create the horse 
lotteries studied here. ◊-Lemma 3 

 

Corollary: If for each choice problem O and o ∈ C(O) 
and the target set T(o,O) includes at least one of its 
boundary points, then C is represented by a set of 
probability/state-independent utility pairs. 
 
References 
[1]  Aizerman, M.A. (1985) “New Problems in General 
 Choice Theory,” Soc Choice Welfare 2: 235-282.  
[2]  Anscombe, F.J. and Aumann, R.J. (1963) “A 
 definition of subjective probability,” Ann. Math. 
 Stat. 34: 199-205. 
[3]  Cozman, F.G. and Walley, P. (2005) “Graphoid 
 properties of epistemic irrelevance and 
 independence,” Ann. Math. and A.I. 45: 173-195. 
[4]  Gilboa, I. and Schmeidler, D. (1989) “Maxmin 
 expected utility with non-unique prior,” J. 
 Math.Econ. 18: 141-153. 
[5]  Kadane, J.B., Schervish, M.J., and Seidenfeld, T. 
 (2004) “A Rubinesque theory of decision,” IMS  
 Lecture Notes Monograph 45: 1-11. 
[6]  Kindler, J. (1983) “A General Solution Concept for 
 Two Person, Zero Sum Games,” J. Optimization 
 Theory and Applications 40: 105-119. 
[7]  Levi, I. (1974) “On indeterminate probabilities” 
 J.Phil. 71: 391-418. 
[8]  Pearce, D. (1984) “Rationalizable Strategic Behavior 
 and the Problem of Perfection,” Econometrica 52: 
 1029-1050. 
[9]  Savage, L.J. (1954) The Foundations of Statistics. 
 Wiley, New York. 
[10] Schervish, M.J., Seidenfeld, T, Kadane, J.B., and 
 Levi, I. (2003) “Extensions of expected utility theory 
 and some limitations of pairwise comparisons”  In 
 Proceedings of the Third International Symposium 
 on Imprecise Probabilities and Their Applications 
 (J-M Bernard, T.Seidenfeld, and M.Zaffalon, eds.) 
 496-510. Carleton Scientific. 
[11] Seidenfeld, T., Schervish, M.J., and Kadane, J.B. 
 (1995) “A representation of partially ordered 
 preferences,” Ann Stat. 23: 2168-2217. 
[12] Sen, A. (1977) “Social choice theory: a re-
 examination,” Econometrica 45: 53-89. 
[13] Wald, A. (1950) Statistical Decision Functions. John  
 Wiley, New York. 
[14] Walley, P. (1990) Statistical Reasoning with 
 Imprecise Probabilities. Chapman and Hall, London. 


