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Abstract Decentralised systems composed of a large number of locally inter-
acting agents often rely on coherent behaviour to execute coordinated tasks.
Agents cooperate to reach a coherent collective behaviour by aligning their
individual behaviour to the one of their neighbours. However, system noise,
determined by factors such as individual exploration or errors, hampers and
reduces collective coherence. The possibility to overcome noise and reach col-
lective coherence is determined by the strength of social feedback, i.e. the
number of communication links. On the one hand, scarce social feedback may
lead to a noise-driven system and consequently incoherent behaviour within
the group. On the other hand, excessively strong social feedback may require
unnecessary computing by individual agents and/or may nullify the possible
benefits of noise. In this study, we investigate the delicate balance between so-
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cial feedback and noise, and its relationship with collective coherence. We per-
form our analysis through a locust-inspired case study of coherently marching
agents, modelling the binary collective decision-making problem of symmetry-
breaking. For this case study, we analytically approximate the minimal number
of communication links necessary to attain maximum collective coherence. To
validate our findings, we simulate a 500-robot swarm and obtain good agree-
ment between theoretical results and physics-based simulations. We illustrate
through simulation experiments how the robot swarm, using a decentralised
algorithm, can adaptively reach coherence for various noise levels by regulating
the number of communication links. Moreover, we show that when the system
is disrupted by increasing and decreasing the robot density, the robot swarm
adaptively responds to these changes in real time. This decentralised adap-
tive behaviour indicates that the derived relationship between social feedback,
noise, and coherence is robust and swarm size independent.

Keywords collective decision-making ¨ group coherence ¨ social feedback ¨
marching locusts ¨ noise ¨ physics-based simulations ¨ swarm robotics

1 Introduction

Several collective systems, in both natural and artificial swarms, rely on the
mechanism of self-organisation to perform collective tasks. Self-organisation is
driven by two main components: (i) random fluctuations caused by noise and
individual factors and (ii) the presence of feedback in form of external informa-
tion received from peers (social feedback) or the environment (environmental
feedback) (Bonabeau et al. 1999; Camazine et al. 2003; Khaluf and Hamann
2016; Pinero and Sole 2019). Typically individuals receive these feedbacks from
their local neighbourhood due to limited sensing and communication capabil-
ities.

In tasks that aim to achieve an agreement within the group, often referred
to as collective decision-making problems, the individual integrates the re-
ceived social feedback to modify its own behaviour and align it with its peers’
behaviour (Castellano et al. 2009; Baronchelli 2018; Bose et al. 2017; Rausch
et al. 2019). Therefore, in agreement tasks, social feedback is substantial to
attain a stable coherent behaviour within the swarm. Conversely, random fluc-
tuations may lead individuals to a behaviour contrary to the behaviour of the
majority of the group that would reduce the swarm coherence.

The source of random fluctuations can be various, normally ascribed to
noise in integrating/collecting feedback or to voluntary independent explo-
rative behaviour of the individuals (Tsimring 2014). On the one hand this
spontaneous exploration may drive the system away from the consensus. On
the other hand it allows regular exploration of different behaviours which may
enable the group to better adapt to changing conditions or dynamic swarm
densities (Mayya et al. 2019; Wahby et al. 2019).

Ecological advantages of spontaneous exploration have been documented
in many natural systems. For example, in ant colonies foragers may undertake
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individual explorations even if stable pheromone trails to food sources have
already been established (Dussutour et al. 2009). However, to maximise ben-
efits from coherence and adaptivity, the swarm needs to find and maintain a
balance between peer agreement and exploration of new solutions, which is not
a trivial task. This balance may be interpreted as an optimisation of the ex-
ploitation vs. exploration trade-off. On the one hand, the individuals exploit an
option by aligning their behaviour with their peers and therefore maintaining
coherence. On the other hand, the individuals explore other options through
random misalignment. In the current study, we focus on the maximisation of
exploitation in terms of group coherence, given a constant level of exploration.
In particular, at the individual level, this trade-off optimisation translates in
properly integrating the social feedback with noise. By noise we refer to any
source of randomness or fluctuations, including sensor noise in robotic systems
or, on a more abstract level, spontaneous exploration of new behaviours by
individuals, as commonly used in literature (Dussutour et al. 2009; Tsimring
2014; Hamann et al. 2014; Hamann 2018).

While in nature we can observe several self-organised systems that have
evolved to maintain a balance between feedback and noise (Bonabeau et al.
1999; Camazine et al. 2003; Tsimring 2014), the problem of embedding this
type of self-organised adaptivity in a decentralised artificial swarm is an open
challenge. This challenge resides in identifying the individual rules that an
agent must follow to allow the swarm to obtain the desired balancing in a fully
distributed way. In literature, this problem is often referred to as the micro-
macro link as it aims to find a link between the macroscopic dynamics and the
microscopic behaviour (Hamann and Wörn 2008; Lerman et al. 2004; Berman
et al. 2009; Reina et al. 2015a,b). In collective decision-making systems, the
interplay between social feedback and noise (e.g. individual exploration) has
a crucial role in determining the collective coherence of the group (Khaluf
et al. 2017b, 2018; Rausch et al. 2019). While a general solution to design any
adaptive decision-making system is not yet in reach, our goal is to advance the
understanding of the interplay between noise and social feedback in collective
systems by taking a bottom-up approach and by using particular case studies
as a starting point for the investigation of underlying fundamental properties.

Specifically, in the current work we focus on the prominent symmetry-
breaking case study of locust marching. This case study represents a binary
decision problem scenario where agents need to collectively decide to move
in clockwise or counterclockwise direction in a ring-shaped arena that mod-
els a pseudo one-dimensional environment (Vicsek et al. 1995; Buhl et al.
2006; Huepe et al. 2011; Ariel and Ayali 2015). This canonical scenario offers
a suitable setting for our purposes because it focuses on the collective sys-
tem’s ability to make a decision between two options of equal value. Thus, the
decision-making process is not influenced by any environmental bias but only
governed by the interplay of social feedback and noise. In this paper, noise is
represented by spontaneous switching of an individual’s opinion independent
of interactions with its neighbours. The agents cannot modify the noise level
however we assume that they can estimate it and adapt their social feedback
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to counterbalance it. Through this approach we do not intend to engineer
an efficient noise-cancelling behaviour. On the contrary, we acknowledge the
presence of noise as either unavoidable or favourable (e.g. to increase group
adaptivity). Our goal is to study the link between noise and social feedback,
and how this relationship affects group coherence. To put this relationship into
focus, we assume the agent not to be able to cancel noise but only to adapt its
social feedback. The advantages of modulating the social feedback have been
previously investigated in systems of collective motion (Torney et al. 2009;
Shklarsh et al. 2011; Khaluf et al. 2018), foraging (Pagliara et al. 2018; Piton-
akova et al. 2018; Talamali et al. 2019a; Rausch et al. 2019), and collective
decision-making (Talamali et al. 2019b).

Other works focused indirectly on the importance of finding a proper bal-
ance between the social feedback and the noise in the system in order to move
from undecided system to a decided one. For example, Khaluf et al. (2017b)
studied the impact of the population density on the ability of the system to
reach coherence. The density in this case is an indirect measure of the social
feedback required to counterbalance the noise. Similarly, Buhl et al. (2006)
investigated the impact of density in the locust-marching scenario; at low den-
sities locusts loose consensus on their motion direction because individuals do
not receive enough social feedback. Valentini and Hamann (2015) modelled
social feedback in terms of the number of communication links and studied
how it influences the decision-making dynamics. Another parameter that was
studied to investigate the influence of social feedback on collective decision-
making was the networking model. For instance, in (Huepe et al. 2011; Chen
et al. 2016) the authors considered dynamically changing building blocks of
adaptive networks and analytically derived their influence on the swarm de-
cision. Furthermore, network-theoretic concepts were applied to analyse the
impact of the number of interactions on flocking dynamics and collective re-
sponse to an oscillating signal (Shang and Bouffanais 2014; Mateo et al. 2017,
2019). Similarly, Khaluf et al. (2017a, 2018) highlighted the role of different
interaction models in enabling the system to restore a specific level of social
feedback necessary for convergence to a collective decision.

Likewise, our locust-marching case study includes fluctuations in individ-
ual decision-making. However, differently from the previous works, we focus on
the emergence and maintenance of maximum group coherence. In particular,
we analytically derive an upper bound of the latter as well as the minimum
social feedback needed to reach this upper bound. Thus, our results contribute
to the domain of swarm robotics by presenting a fundamental link between
communication, individual noise and global coherence. This link extends the
understanding of coherent collective behaviour in presence of fluctuations in
individual decision-making. This understanding is particularly useful in low-
density systems where robustness, scalability and flexibility are not guaran-
teed. We show that in such systems the maximum coherence can be recovered
in a fully decentralised manner by individuals that are able to maintain their
number of communication links.
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We first introduce our locust-marching case study in Sec. 2 which includes
a fixed level of noise in the individual decision-making process. We then find a
reliable estimate of the maximum coherence degree as a function of this noise
term in Sec. 3.1. From this result we derive a mean-field model of the minimal
number of communication links required for the social feedback to balance
the noise level such that the maximum coherence degree emerges globally
(Sec. 3.2). To validate our mean-field approximation, we compare the theo-
retical model with physics-based simulations of a robot swarm in collective
locust marching scenario (see implementation in Sec. 4). In Sec. 5 we first
show the ability of the simulated robot swarm to adapt the social feedback
to reach the maximum achievable coherence for various noise levels. Then, we
demonstrate how a swarm could potentially use the feedback-noise balance
to cope with time-varying swarm densities. We study this aspect by greatly
varying the number of robots in the system and letting the individual robots
adjust the amount of social feedback at runtime and in a fully decentralised
manner. Investigating the dynamics caused by runtime variation of the swarm
size is inspired by the studies of Czirók et al. (1999) and Buhl et al. (2006). In
particular, they observed that the consensus reached by a dense locust pop-
ulation is lost when the density of this population drops. In our system, the
robots react to this density drop by adjusting their communication range to
reach the desired level of social feedback. As discussed in Sec. 6, the presented
swarm robotics system does not allow direct implementation on a practical
application but aims at validating through physics-based simulations that our
analytically derived feedback-to-noise balance allows a generally robust, de-
centralised and swarm size independent recovery of the maximum coherence.

2 Locust-inspired decision-making model

In this work, we propose a decentralised decision-making strategy that al-
lows individual agents in a swarm to self-regulate their intake of information
in order to autonomously balance the level of social feedback against noise.
We design such a strategy for the binary decision problem in which a robot
swarm must agree on the motion direction. The reference decision model of
this study is the prominent natural system of the desert locust marching bands
(Buhl et al. 2006). By local interactions between the insects, the locust swarm
converges to a consensus on the direction of motion. Previous work has shown
that confining the locust swarm in a ring-shaped arena reduces the decision
problem to a binary decision problem in which the two options are clockwise
and counterclockwise marching directions (Buhl et al. 2006). Interpreting the
ring as a one-dimensional space, we refer to the two marching directions for
simplicity as left and right and analyse the collective decision in terms of the
proportion of left-goers vs right-goers. Analyses by Buhl et al. (2006) have
shown that the marching behaviour in this system can be modelled using the
Czirók model (Czirók et al. 1999). This model has been later extended to the
discrete Czirók model (Yates et al. 2009; Ariel and Ayali 2015), according to
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which after each time step ∆t “ 1, both the position xiptq P IR and velocity
uiptq P IR of the individual i are updated as in the following1:

xipt ` 1q “ xiptq ` νuiptq (1)

uipt ` 1q “ δs rGpxuiptqyq ` ζiptqs , (2)

where ν is a speed parameter and ζiptq P r´1.0, 1.0s is a uniformly distributed
real random number (i.e. source of noise). Moreover, the propulsion and friction
forces are given by the piecewise continuous function

Gpxuiptqyq “
1

2
rxuiptqy ` sgnpxuiptqyqs , (3)

where xuiptqy is the average over the set of velocities of i’s neighbours and
sgn pzq is a sign-function equal to +1 if z ą 0, ´1 if z ă 0 and 0 if z “ 0. In
the following we refer to i’s neighbours (or i’s neighbourhood) as the agents
with whom i established a communication connection at a given time t. Note
that in Eq. (2), we modified the classical Czirók model by introducing the
term δs which is ´1 with probability ps and 1 otherwise, re-sampled at ev-
ery time step for each agent individually. Adding δs allows us to include in
the model the probability ps that an individual spontaneously switches its
heading direction (i.e. the sign of uiptq)

2, inspired by previous studies on
symmetry-breaking (Huepe et al. 2011; Chen et al. 2016; Khaluf et al. 2018).
This spontaneous switching directly contributes to spontaneous exploration
by each agent. Hence, in a technical sense, ζiptq can be interpreted as the
individuals’ sensor noise and δs as the actuation noise (Huepe et al. 2011).
However, on a more abstract level, ζiptq represents fluctuations in commu-
nication while δs can be seen as an analogue to the spontaneous individual
exploration. Therefore, combining ζiptq and δs into one single term would be
impractical and may obscure the role of individual exploration.

The sign of uiptq indicates the marching direction and can be used to cate-
gorise each individual as a left-goer (for uiptq ă 0) or right-goer (for uiptq ą 0),
respectively, and it represents the agent i’s opinion. Aggregating the opinions
of the N agents composing the system, we can therefore compute the collective
state of the system as:

φptq “
1

N

N
ÿ

i

sgn puiptqq . (4)

Note that Eq. (4) is different from (Ariel and Ayali 2015) because, as in (Khaluf
et al. 2018), we are interested in measuring the coherence in the marching
direction, i.e. either left or right. Therefore, we reduce the velocity uiptq to the

1 As in this model agents move in one dimension, with velocity we refer to the speed |ui|
multiplied by ´1 or `1, depending on the agent’s motion orientation towards left or right,
respectively

2 Note that ps is only related to δs and not to ζi.
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binary value sgn puiptqq. We define the collective coherence degree |φptq| as the
absolute value of the measure given in Eq. (4). A degree |φptq| “ 1 indicates
that 100% of the individuals agreed on one direction and the system reached
consensus.

3 Social feedback and noise

In our study, the social feedback perceived by agent i is the collection of ve-
locities communicated by i’s neighbours, which i uses to calculate xuiy. Thus,
social feedback scales with the number of neighbours, ni, that i is communicat-
ing with. Additionally, from Eqs. (2)-(3), we can see that the agent dynamics
are dictated by the combination of the social feedback from the neighbours and
random noise from sensors (ζi) and actuation (δs). Each agent needs to rely
on the neighbours’ feedback in order to achieve a global agreement. However,
the feedback might be noisy either due to a sensing error of the agent acquir-
ing the feedback (as modelled by ζi), or due to an agent that spontaneously
switched its opinion (with probability ps).

Nevertheless, an agent i could mitigate the effect of such noise through
averaging the feedback from a large-enough number of neighbours ni. In the
trivial case, each agent would interact with all agents (ni “ N ´ 1) in or-
der to agree on a common direction. However, a complete interaction graph
may be impossible to implement in either biological or artificial systems due
to communication and/or computational limitations. In fact, communicating
and processing large amount of information can be expensive and in certain
systems even impossible. Therefore, the agent needs to rely on the feedback of
a limited number of neighbours (ni ! N´1). In this case, the global agreement
results from the sum of local coordination efforts. Conversely, relying on a too
small neighbourhood makes the agent vulnerable to random fluctuations of
its neighbours’ output, leading to a low degree of coherence (e.g. Czirók et al.
1999; Buhl et al. 2006). Thus, the agent faces a trade-off, it needs to adjust the
size of its neighbourhood to minimise communication cost while maintaining
high coherence with the rest of the swarm. However, as we show in Sec. 3.2,
coherence can be maximised even for ni ! N ´1 for a wide range of ps values.
To compute the lowest ni for which the highest possible coherence can emerge
on the global scale, we follow a two-step approach.

First, in Sec. 3.1, we derive the maximum coherence degree that can be
attained for a given noise level ps. Second, in Sec. 3.2, we derive a steady
state approximation of the minimal neighbourhood size that an agent must
maintain to reach this maximum coherence degree.

3.1 Maximum coherence degree |φm|

Consider a system in which the agent density is high enough for a stable
coherent motion to emerge. Then, assuming that every agent’s velocity satisfies
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|uiptq| ‰ 0 at every t, we can use sgnpuiq “ ui

|ui| and reformulate Eq. (4) to

φptq “
1

N

N
ÿ

i

uiptq

|uiptq|

“
1

2N

N
ÿ

i

δs

|uiptq|
pxuiptqy ` sgnpxuiptqyqq `

1

N

N
ÿ

i

δs

|uiptq|
ζi.

(5)

Recall that xuiptqy is the average velocity of agent i’s neighbours. The sec-
ond term on the right hand side of Eq. (5) corresponds only to spontaneous
switching and the sensor noise. Note that this term approaches zero for large
N , such that

lim
NÑ8

1

N

N
ÿ

i

δs

|uiptq|
ζi “ 0. (6)

Thus, for large enough N we can simplify Eq. (5) to

φptq “
1

2N

N
ÿ

i

δsp
xuiptqy

|uiptq|
`

sgnpxuiptqyq

|uiptq|
q . (7)

At the steady state with maximum coherence |φm| most agents march in the
same direction and the fluctuations within an agent’s communication range
become negligible, i.e. the collective state φptq « φm is time independent (φm is
the collective state at maximum coherence). In this case, the velocity ui of any
agent i fluctuates around a constant value uiptq « ˘1. Hence, we can rewrite
Eq. (7) by replacing the first and second terms inside the brackets with the

steady state local collective state3 and its sign, i.e. xuiptqy
|uiptq| « φi “ sgnpφiq|φi|

and sgnpxuiptqyq
|uiptq| « sgnpφiq. This yields

φm “
1

2N

N
ÿ

i

δspφi ` sgnpφiqq

“
1

2N

N
ÿ

i

δssgnpφiqp|φi| ` 1q.

(8)

Furthermore, at the steady state of maximum coherence local neighbourhoods
are maximally aligned — i.e. the opinion of any randomly selected agent is
likely to be reinforced by its neighbours. Therefore, at the steady state of
maximum coherence the system stabilises and the direction switching occurs
predominantly due to the spontaneous switching. As the probability for this
switching, ps, is equal for all agents, the local maximum coherence is equally
limited for all neighbourhoods. Therefore, the value of the global collective
state closely resembles the local collective state, i.e.

φi « φm (9)

3 The local collective state φi, similarly to Eq. (4), is the opinion agreement within the
local neighbourhood of agent i, and the local coherence degree is its absolute value |φi|.
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and therefore

φm “ sgnpφmq
p|φm| ` 1q

2N

N
ÿ

i

δs. (10)

As δs P t´1, 1u is a random variable sampled N times from

δs “

#

´1, with ps

1, with 1 ´ ps
(11)

we can approximate the sum in Eq. (10) by the expected value of δs multiplied
by N ; this leads to

φm “ sgnpφmqp|φm| ` 1qp0.5 ´ psq. (12)

Taking the absolute value of Eq. (12) and solving for |φm| returns the expres-
sion of the steady state maximum coherence degree

|φm| “
|0.5 ´ ps|

1 ´ |0.5 ´ ps|
, (13)

which is a function of only the time-independent noise term ps.

3.2 Minimum communication degree for maximum coherence

To obtain Eq. (9), which is crucial for Eq. (13), one could assume that every
agent receives maximum social feedback, i.e. the neighbourhood size of every
agent i is ni Ñ N ´1. However, this assumption is a strong simplification that
cannot be realised in most real systems due to physical constraints and/or com-
munication and computational limitations. Additionally, asking every agent to
process large quantity of information may not be necessary to attain consen-
sus, or at least the maximum coherence degree |φm|, and consequently be a
waste of energy. Therefore, finding the minimum neighbourhood size ni—i.e.
the social feedback strength—that guarantees the swarm to converge to |φm|
is of practical interest.

In general, the social feedback strength is determined by the agent density—
i.e. the number of agents per space unit—and the communication range, with
larger ni for increasing density or communication range. Previous work in-
vestigated how agent density influenced the collective coherence in symmetry
breaking scenarios. In particular, it has been shown that the stability of the co-
herent state is proportional to the agent density (Buhl et al. 2006; Huepe et al.
2011; Ariel and Ayali 2015). Systems with low agent density either reached
low collective coherence accompanied by frequent changes between the two
collective states (where a state was given by the motion direction of the ma-
jority) (Buhl et al. 2006; Huepe et al. 2011), or remained undecided, unable
to reach consensus (Khaluf et al. 2018); accordingly, highly dense systems re-
duced the number of transitions between coherent states and thus reduced
their flexibility to switch between the available options.
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(a) (b)

Fig. 1: Illustration of homogeneous NCs; the circles represent the agents, the
labels R and L represent right-goers and left-goers, respectively, and the arrows
represent the bidirectional communication links. In this example, the focal
agent is a right-goer (R) with the communication degree k. (a) Illustration of
a second-order NC, i.e. the focal agent (R) has k “ 2 left-going neighbours (L).
(b) k-order NC where the focal agent (R) is communicating with its k “ m`6
left-going neighbours (L).

Our goal is to preserve a communication degree that is sufficiently high for
the maximum group coherence to emerge but not higher. Additionally, limiting
communication to the lowest necessary value could allow the individuals to
save energy and reduce unnecessary overload. In this section, we compute the
minimal social feedback strength (in terms of the mean neighbourhood size
xnmy) to reach the maximum possible coherence degree |φm| as a function of
the spontaneous switch probability ps.

Let ρ and λ “ 1´ρ be the dynamic global proportion of the right-goers and
left-goers, respectively, and xny the mean communication degree. Moreover,
assume that the encountering probability per unit time is the same for all pairs
of individuals. This assumption is a well-known random-mixing approximation
(also known as well-mixed system approximation) widely applied in statistical
physics to simplify the system modelling (Keeling and Eames 2005; Gross
et al. 2006). For instance, applying this approximation, the rate ωρλ of finding
a communication link between a right-goer and a left-goer is given by

ωρλ “ xnyρλ. (14)

Next, consider an opinion-formation process for second-order homogeneous
neighbourhood configurations (NC), where a focal agent i has two neighbours,
both of which have the opposite opinion to i (see illustration in Fig. 1(a)).

Similarly to Eq. (14), the rate for the second-order homogeneous NC illus-
trated in Fig. 1(a) is given by ωλρλ “ xnyλωρλ “ xny2ρλ2. Thus, although the
time dependent equation for ρ is unknown and may be considerably complex,
following Chen et al. (2016) we can apply the above assumptions to formulate
the mean field approximation for the time evolution of ρ

dρ

dt
“ ps pλ ´ ρq ` π2 pωρλρ ´ ωλρλq

“ ps pλ ´ ρq ` π2 xny2
`

ρ2λ ´ ρλ2
˘

,

(15)
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where π2 is the probability to adopt the neighbours’ opinion in a second-order
homogeneous neighbourhood (i.e. two neighbours with the same opinion). The
term ps pλ ´ ρq takes into account that each agent may spontaneously switch
its opinion with a probability ps per time step, as introduced in Sec. 2.

While Eq. (15) is a powerful tool for regular networks in which all inter-
actions are only of second order, it is an oversimplification for systems with
larger and more complex neighbourhood structures. In particular, the approxi-
mation in Eq. (14) neglects correlations of ωρλ with the agent’s neighbourhood
dynamics. For instance, ωρλ is likely to be significantly influenced by links of
higher order, i.e. communication with a higher number of agents. Thus, to
increase the precision of the model, it would be reasonable to additionally

consider
dωρλ

dt
as a function of higher-order link densities such as ωρλρ, ωλρρ,

ωλλρ, etc.. This extension is well-known as pairwise approximation and there
is a large body of literature investigating the validity of such models in the
context of opinion-formation (Kimura and Hayakawa 2008; Böhme and Gross
2012) or spread of epidemics (House et al. 2009; Danon et al. 2011; Keeling

et al. 2016). Similarly, considering higher order approximations, i.e.
dωλρλ

dt

or
dωρλρ

dt
, would further improve the accuracy of the model. However, the

cost of higher precision is increased mathematical complexity. Moreover, due
to the non-linearity of physical systems as well as the abundance of random
fluctuations and unexpected events, the derivation of precise models may be
impractical. Therefore, for the purposes of our study we choose a different
approach, which relies on the random-mixing approximation but focuses on
higher-order NCs in the limit of maximum global coherence. In particular,
we extend Eq. (15) by considering the sum of probabilities of finding k-order
homogeneous NCs (for k ď N ´ 1), i.e. NCs in which i has k ě 1 neighbours
which oppose i’s opinion (such as illustrated in Fig. 1(b) for a right-going focal
agent). Similar to Eq. (15) we estimate

dρ

dt
“ ps pλ ´ ρq `

N´1
ÿ

k“1

πk xnyk
`

ρkλ ´ ρλk
˘

, (16)

where N is the total number of agents in the swarm. Note that, as Eq. (16)
shows, we are simplifying the analysis by restricting our model only to NCs in
which the neighbourhood of i is homogeneous, i.e. in which all k neighbours
oppose i’s opinion. This restriction greatly reduces mathematical complexity
while staying in good agreement with experimental observations, as will be
shown in Sec. 5. Moreover, the assumption of homogeneous neighbourhoods
appears valid in the limit of steady state maximum coherence, i.e. where the
deviation from local opinion homogeneity (i.e. from local consensus) is sig-
nificantly reduced and dominated by spontaneous switching. To account for
the frequency and significance of this deviation, we define the coefficient πk
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to be the probability that i adopts the opinion of its k-th order homogeneous
neighbourhood

πk “ pα|φi|q
k. (17)

First, the above definition of πk couples the neighbourhood coherence of i
with the probability that i adopts the opinion of its neighbourhood. Second, it
accommodates the fact that the likelihood of finding a k-order neighbourhood
decreases with k. Additionally, the first factor in Eq. (17), α, is an important
ad-hoc scaling parameter that includes several realistic non-linear character-
istics, such as finite-size effects due to interference within the communication
range of an agent (i.e. limited line-of-sight propagation, e.g. when the commu-
nication between two agents cannot be established because the path is physi-
cally interrupted by other agents or obstacles), finite size of agents or bounds
set by being confined within a finite space (i.e. a bounded finite area with
non-periodic boundary conditions). We assume that α satisfies the condition
0 ď α|φi|xny ă 1 which is necessary for the convergence of the sum in Eq. (16)
and guarantees that 0 ď πk ă 1. As shown in the supplementary material
Sec. S1, Fig. S1, this condition is indeed satisfied for the maximum coherence
|φm| after calibrating α with experiment data. In the limit of N Ñ 8, Eq. (16)
converges to

dρ

dt
“ ps pλ ´ ρq `

pπ1xnyq2λρpρ ´ λq

p1 ´ π1xnyλqp1 ´ π1xnyρq
(18)

Focusing on the decided state with maximum coherence, we consider the steady

state solution for which the left-hand side vanishes (i.e. for
dρ

dt
“ 0) and use

φ “ ρ ´ λ, obtaining

ps “
pπ1xnyq2p1 ´ φ2q

p2 ´ π1xnyp1 ´ φqqp2 ´ π1xnyp1 ` φqq
, (19)

Finally, solving Eq. (19) yields two solutions for xny from which only the one
that returns positive values xny ą 0 is meaningful in our context. Thus, with
Eq. (17) and with substituting φ2 “ |φm|2 we obtain

xnmyp|φm|, psq “
´ps `

a

psp1 ´ |φm|2p1 ´ psqq

0.5p1 ´ psqp|φm| ´ |φm|3qα
, (20)

which is the steady state solution for the minimal average communication
degree needed for the system to converge to the maximum coherence degree
|φm|. Note that Eq. (20) is not defined for ps “ 0.5 which leads to φ “ 0,
i.e. an entirely undecided collective state with ρ “ λ and zero coherence. By
contrast, for ps ‰ 0.5 we can use Eq. (13) to reduce Eq. (20) to a function
that is defined only in terms of the spontaneous switch probability ps, such
that xnmyp|φm|, psq “ xnmyppsq, shown in Fig. 2.
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Fig. 2: Minimal average degree xnmyppsq to enable emergence of maximum
global coherence degree |φm| (for α “ 0.07).

4 Validation with physics-based simulations

To validate the model introduced in Sec. 3, we implemented the locusts’ col-
lective marching behaviour as described in Sec. 2 on a simulated robot swarm
composed of N “ 175, 500 and 1500 Footbot robots (Bonani et al. 2010).
The chosen N was large enough to allow statistical reliability. We simulated
the robot swarm through ARGoS (Pinciroli et al. 2012), which is a swarm
robotics simulator that accurately reproduced physical interaction and the
sensing/actuating capabilities of the Footbot.

The benefits of using physics-based simulations in our study were three-
fold. First, the simulation allowed us to test to what extent our abstract,
networks-driven model is influenced by physical interference between robots,
density fluctuations and communication correlation caused by spatial effects.
Second, it allowed us to examine the behaviour of a swarm in which the robots
were unaware of ps. Third, the simulator provided a reliable platform for test-
ing the effect of swarm size N on swarm dynamics. Additionally, the AR-
GoS simulator is programmed to simplify the transition from simulated swarm
robotic experiments onto real robotic systems to close the reality gap.

The robot swarm operated in a ring-shaped arena that supported a circular
motion of the robots; the outer and inner circles had diameters of 24m and
4m, respectively; accounting for the wall thickness of 0.5m, the accessible
environment had the size A „ 374m2 (see simulator screenshots in Fig. 3). The
resulting initial robot density (i.e. „ 1.3 robot{m2 for N “ 500) was selected to
initially have a minimal level of spatial interference among robots (Khaluf et al.
2016). For each experimental setup we performed 30 independent simulations,
each with a different random seed.

4.1 Robot implementation

We programmed the robots to avoid unnecessary radial movement by always
maintaining an angle of p90 ˘ 5q˝ when moving in clockwise direction (or
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(a) 500 robots (b) 500 robots, closer view

(c) 175 robots (d) 1500 robots

Fig. 3: Top views on the simulated robot swarm moving in a ring-shaped
arena of 24m diameter. White and black robots are left-goers and right-goers,
respectively. The cyan lines represent communication links between robots.

p270 ˘ 5q˝, when moving in counterclockwise direction) to a light beacon lo-
cated in the center of the arena, unless collision avoidance was required. Robots
sensed possible collision events using a set of 24 proximity sensors. Collision
was avoided by performing a rotation with an angle that minimised the prob-
ability of a collision (calculated by the agent controller) without changing the
sign of uiptq, before continuing marching. The initial position and orientation
of the individuals were sampled uniformly from the available space within the
arena and r0, 2πs, respectively. The speed parameter ν (see Eq. (2)) was set
to ν “ 5m{ts, following the previous works that included the Czirók model
(Czirók et al. 1999; Ariel and Ayali 2015). We use ts to refer to the simulation
time step for more accurate phrasing, however the relation of the simulation
time to the simulated time was 1:1.

Robots communicated locally with their neighbours and exchanged their
velocity ui (i.e. the speed |ui| P IR` and the sign, plus or minus, representing
right or left, respectively) in order to reach agreement on a common direction of
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motion. For communication purposes each robot was equipped with a range-
and-bearing transceiver (Roberts et al. 2009) with a uniformly distributed
sensor noise ζiptq P r´1.0, 1.0s. Every agent was able to sense the number of
its communication links by counting the number of distinct received messages.
For this purpose, every time step, each robot i broadcast exactly one mes-
sage with its id and its velocity value uiptq from Eq. (2). Two robots could
exchange information as soon as the disks defined by their communication
range ri overlapped and both robots were in direct line-of-sight of each other.
Communication was therefore always bidirectional. In robotic systems, direct
communication is straightforward to implement and often preferred to indi-
rect communication (e.g. observing neighbours’ state via a camera) (Bayındır
2016). The robot behaviour was built upon previous work (Khaluf et al. 2018)
which has shown how the locust marching behaviour can be implemented
on directly communicating robots in order to qualitatively reproduce the dy-
namics observed in experiments with real locusts (Buhl et al. 2006) and the
predictions of theoretical models (Yates et al. 2009; Ariel and Ayali 2015).

4.2 The scenario of sudden global disruptions

To implement severe external stimuli that considerably disrupt the balance be-
tween social feedback and noise we simulated three sudden events, one break-
down and two influx events. During the breakdown the majority of robots
(65% of N i.e. 325 robots, randomly chosen) were removed from the arena so
that their communication with the remaining active robots was entirely inter-
rupted. Therefore the breakdown led to a substantial decrease of interactions
(social feedback intensity), causing a significant drop of the coherence degree
|φptq|. This event was used to investigate whether the group is able to recover
the maximum level of coherence applying Eq. (20).

By contrast, the influx events significantly increased the agent density by
moving a total of 1325 robots into the arena. At the first influx event, the
number of robots was restored back to N “ 500 and the subsequent second
influx event tripled the swarm size to N “ 1500. The influx events allowed to
examine the group ability to maintain the maximum level of coherence while
reducing the communication effort down to Eq. (20).

4.3 Range adjustment algorithm and parameters

In our study the robots responded to the above mentioned sudden global
changes by dynamically adjusting the communication range. This response
was efficiently distributed such that each individual i could find a communica-
tion range ri that is as high as necessary for global coherence to emerge but not
higher. On the one hand, one could argue that keeping a large ri would grant
the robot a strong social feedback and ease agreement. However, a downside
to this approach would be the higher energy consumption associated with a
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higher number of communication links as well as higher computational cost.
Furthermore, as argued in Sec. 3.1, there is a limit to the maximum value of
coherence |φm| which depends on ps. Indiscriminately increasing ri would at
most lead to a coherence degree of |φm|, therefore values of ri above the thresh-
old necessary for |φm| would be inefficient, leading to redundant computation
and energy consumption, without additional coherence benefits. Finally, too
high values of ri could lead to less local and more global information exchange,
resulting in loss of scalability, robustness and flexibility of the collective sys-
tem, as discussed in Sec. 3.2 and (Brambilla et al. 2013).

On the other hand, small ri would save energy while being sufficient to
maintain agreement for limited noise levels (or high enough agent density).
However, for sparse populations or higher noise levels, small ri would lead to
low coherence levels. A further difficulty is given by the agent density fluc-
tuations in space and time which, in case of small static values of ri, would
directly translate into coherence variations.

Consequently, to address all of the above challenges, we focused on find-
ing a distributed algorithm that allowed every agent i, unaware of the global
collective state, to individually and adaptively find a value of ri which was
high enough to contribute to maximum global coherence but not unnecessar-
ily higher. This requirement excluded the trivial solution in which all agents
had a communication range larger than the swarm diameter. Consequently,
as the intensity of the social feedback scaled with the communication degree
ni, each robot i adapted ni by dynamically tuning its interaction range ri.
The target communication degree was set to ntarget “ xnmy, which was calcu-
lated by the robot controller for a given ps using Eq. (13) and Eq. (20) (the
ad-hoc parameter α was calibrated prior to the simulation, see Sec. S1 and
Fig. S1(a)). The latter two equations are the key contributions of our study
and setting ntarget equal to the output of Eq. (20) allowed us to realise the
desired swarm behaviour. Through this decentralised approach, each robot i

found the minimal communication range ri that led to the maximum global
agreement and guaranteed an efficient balance between social feedback and
noise.

In particular, each time step the robot increased (decreased) its ri by κ if ni

was below (above) ntarget, respectively (see the parameter values in Table 1).
The upper limit of ri was assumed to be larger than the arena size to ensure
that every agent was able to establish any number of communication links.
Conversely, the robots could reduce the communication range to ri “ 0.0.
Note that due to the decentralised nature of the swarm, the robot was not
able to directly establish a connection to ni “ ntarget neighbours but only
indirectly through adjusting ri. Tuning the communication range allowed the
robot decision-making to be robust against agent density fluctuations. For
instance, to reach the same target ni “ ntarget, the robot needed to set its
ri to higher values when local distribution of robots was sparse, and to lower
values when local areas were crowded. In short, the communication range riptq
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of agent i with nipt ´ 1q neighbours was computed at each time step t as:

riptq “

$

’

&

’

%

ript ´ 1q ` κ, if nipt ´ 1q ă ntarget

ript ´ 1q, if nipt ´ 1q “ ntarget

ript ´ 1q ´ κ, if nipt ´ 1q ą ntarget

(21)

Parameter Value
initial swarm size N 500 robots
swarm size N after the breakdown 175 robots
swarm size N after the first influx 500 robots
swarm size N after the second influx 1500 robots
marching area „ 374m2

robot’s linear speed ν 5m/ts
ad-hoc scaling parameter α 0.07
communication range increment step κ 0.1m
initial communication range rinit 0.3m

Table 1: Overview of parameters used in the simulation; ts is a unit referring
to simulation time steps.

The initial communication range was set to a minimal value, rinit “ 0.3m,
approximately the radius of a robot as measured from the centre of the robot.
Due to Eq. (21) the robots rapidly increased the range and no physical contact
was required for communication. Note that it was also possible to initialise
the simulations with a communication range rinit " 0.3m. In this case, each
agent adaptively reduced ri down to the value that is necessary to obtain
ni “ ntarget. However, the differences in collective dynamics between high and
low rinit were not significant to the purposes of the current study (see Fig. S2
and Fig. S3 in Sec. S2 for a more detailed discussion).

5 Simulation results

Using data from physics-based simulations we validated Eq. (13) and Eq. (20).
Additionally, we examined the performance of the range-adjustment algorithm
from Sec. 4.3 with respect to the swarm response to abrupt global changes such
as agent breakdown and agent influx. For these purposes, we proceeded as in
the following:

(i) in Sec. 5.1, we confirmed that Eq. (13) returns the maximum coherence
degree |φm| at significantly high values of communication degree. For this,
we compared the theoretical prediction of Eq. (13) to data from simulations
in which the communication range was constant and at high values. Here
the range was not dynamically adjusted. However, it was sufficiently high
for each robot to obtain a communication degree ni ą xnmy (recall that
the latter is given by Eq. (20)). For this reason, we did not consider the
influx events at this point.
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(ii) In Sec. 5.2, we validated Eq. (20) by comparing the results from (i) to
simulations in which the agents applied the range-adjustment given by
Eq. (21) to maintain ni “ xnmy. Note that here ni was on average three
to four times lower than in (i).

(iii) In Sec. 5.3, we tested the performance of (ii) in the event of an agent break-
down and compared it to the performance of a null behaviour. The null
behaviour consisted of a swarm of robots with a constant communication
range which was set equal to the pre-breakdown average range xry from
(ii). Consequently, the average communication degree was xny « xnmy be-
fore the breakdown and xny ă xnmy after the breakdown. In addition, we
considered two influx events occurring after the breakdown to validate the
group ability to reduce communication cost without losing high coherence
following Eq.(21).

5.1 Maximum coherence degree as a function of ps

We quantified the agreement between theory (i.e. Eq. (13)) and experiment
for a large set of ps values. For this purpose, we set the communication range
to constant but high values to ensure a high average communication degree,
xny ą xnmy, and measured the global coherence degree |φptq| for two robot
densities. In particular, we kept the arena size constant and varied the swarm
size N P t500, 175u through a breakdown, as described in Sec. 4.2. In each
experiment we tested a different value of ps P p0, 1q and simulated a breakdown
at time step tbd “ 2500 ts which changed the robot density from „ 1.3 robot{m2

for t ă tbd “ 2500 ts to „ 0.47 robot{m2 for t ą tbd “ 2500 ts. Fig. 4 shows the
time averages |φ| as a function of ps for t ă tbd “ 2500 ts in panel (a) and
t ą tbd “ 2500 ts in panel (b), i.e. before and after the breakdown, respectively.

As Fig. 4 demonstrates, the theoretical model from Eq. (13) is in good
agreement with the experimental observations4. However, deviations occur for
low values of |φ|. This is expected, given that in deriving Eq. (13) we assumed
that the system is at the steady state of high coherence, with local coherence
degree approaching the global one (Eq. (9)). The assumption of Eq. (9) does
not hold for low degrees of global coherence as it would in a well-mixed system.
Nevertheless, its validity is evident in our spatial system for a considerable set
of ps values for high and low robot densities. In particular, Fig. 4 shows a
remarkably good agreement of the theoretical model with empirical data for
|φ| ą 0.3. For ps ă 0.5, |φ| decreases as ps increases and vice versa for ps ą 0.5.
In the latter case the global collective state φptq switches its sign at every time
step, due to the discrete nature of the simulation time (see plots of φptq in
Fig. S4 of Sec. S3). Moreover, as ps approaches 0.5, the agent motion decreases
significantly—and is negligible for ps ą 0.5—because the time between the ori-
entation switching approaches ∆t “ 1 ts, zeroing out the distance travelled.
Consequently, agent density fluctuations vanish and the neighbourhood sizes

4 Note that at the steady state |φ| “ |φ|, where the latter was averaged over the steady
state period.
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Fig. 4: Time-averaged maximum global coherence degree |φ| as a function of
the spontaneous switch probability ps before ((a), triangles) and after ((b),
circles) the breakdown event. Each data point represents the average value and
the error bars the standard deviation over 30 simulations. In the former (latter)
case, |φ| was averaged between t “ 1000 ts and t “ 2500 ts (t “ 3000 ts and
t “ 5000 ts), respectively, as illustrated in the inset for ps “ 0.2. The average
degrees were xny P r30, 62s (xny P r21, 42s) for before (after) the breakdown,
respectively, with higher xny corresponding to simulations with ps ą 0.2. The
maximum coherence predicted by Eq. (13) (blue solid line) nicely matches the
swarm robotics simulations’ results for |φ| ą 0.3.

become static. Furthermore, as ps increases, so does the likelihood that the
agent’s spontaneous opinion switch applies also to its neighbours. Therefore,
at high ps an agent switches its opinion almost simultaneously with its neigh-
bourhood, leading to the emergence of high coherence. Such high switching
rates may be rather rare in animals or robots if they are attributed solely to
individual failure. Nevertheless, spontaneous opinion switching with ps ě 0.5
may also occur due to contrarian behaviour (i.e. acting against the majority)
(Zhong et al. 2005; Liang et al. 2013), malicious agents (Saldaña et al. 2017)
or outsider attacks (Saulnier et al. 2017) and is therefore worth taking into
consideration.

5.2 Minimum communication degree in relation to ps and |φm|

The results in Fig. 4 were obtained by setting ri to values that were consid-
erably high and leading to ni ą xnmy. As a successive analysis, we tested
whether the theoretically derived minimal number of communication links
xnmy (i.e. given by Eq. (20)) applied to the range-adjustment behaviour (de-
fined in Sec. 4.3) was allowing the swarm to reach |φm|. For this purpose,
we selected the target communication degree ntarget “ xnmy. Fig. 5(a) shows

that, for ps ď 0.3 and ps ě 0.7, the simulation outcome is |φ| « |φm|, i.e. in
very good agreement with the theoretical maximum. We limit our analysis to
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ps ď 0.3 and ps ě 0.7 because outside of this ps range the system approaches
an undecided state, i.e. |φ| « 0 even for considerably large xny (see Fig. 4).
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Fig. 5: Time-averaged maximum global coherence degree |φ| as a function
of the spontaneous switch probability ps before the breakdown event (filled
triangles). The continuous curve shows |φm| from Eq. (13). (a) simula-
tions with robots that adaptively adjust the communication range to reach
ni “ xnmy given by Eq. (20) (with α “ 0.07); (b) null behaviour, communi-
cation range is constant and equal to the average communication range of the
range-adjustment behaviour before the breakdown. |φ| is averaged between
t “ 1000 ts and t “ 2500 ts as illustrated in the inset of (b) for the null
behaviour and ps “ 0.2;

The high standard deviations of |φ| for ps ą 0.85 originated from particular
simulation seeds for which the system remained undecided over the entire du-
ration of the experiment. There are two possible reasons for this observation:
(i) the duration of the warm-up period, i.e. the time period necessary to reach
the steady state, was longer than the experiment or (ii) the system could
not always escape the state in which |φptq| fluctuates around zero, even for
very long simulation times. However, the number of simulations for which the
steady state was not reached did not decrease significantly after extending the
pre-breakdown period from 2500 ts to 12500 ts. Both arguments indicate that
the occurrence of a steady state with maximum coherence may be significantly
influenced by the initial conditions (such as robot location and orientation).
Another influencing factor may be the communication degree as for very high
xny the steady state was almost always reached (low standard deviations in
Fig. 4) and for too low xny the steady state was never reached (see supplemen-
tary material Sec. S4 and Fig. S5). Nevertheless, we believe that high values
of ps may be considered as a pathological case of our system as the resulting
behaviour is a continuous switch of direction every time step and it may have
limited interest for a robotic implementation.

Additionally, we compared the range-adjustment approach to a null be-
haviour where the communication range is constant but significantly shorter
than in Sec. 5.1. Specifically, the communication range was configured to be
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equal to the pre-breakdown average range xry of the adaptive model from
Fig. 5(a). On average, this created comparable conditions between the null
behaviour and the adaptive behaviour outside of the breakdown or influx
events. However, in contrast to the adaptive behaviour, in the case of the
null behaviour local density fluctuations that arose due to robot motion sig-
nificantly influenced the average degree (see Sec. S5 for more details). On the
one hand, a robot i could have ni ă xnmy when the agent density is locally
sparse. On the other hand, this communication degree loss was not always
compensated in dense neighbourhoods due to interference (e.g. blocked line-
of-sight). Therefore, before the breakdown, xny was on average lower for the
null behaviour than for the adaptive behaviour. Consequently, as shown in
Fig. 5(b), the coherence degree |φ| for ps ď 0.3 was lower compared to the
adaptive behaviour. This reasoning is further supported by the comparably
higher |φ| for ps ě 0.7. For these ps values the system approached a state
in which the distance travelled by the robots was zero due to the frequent
opinion switches. Consequently, the local density fluctuations (e.g. temporary
crowding) disappeared and |φ| of the null behaviour was close to the adaptive
behaviour.

5.3 Swarm response to global changes

In order to understand the collective decision-making under sudden global dis-
ruptions we implemented the scenarios described in Sec. 4.2 and investigated
the communication dynamics for a set of spontaneous switch probabilities
ps P t0.01, 0.05, 0.1, 0.2u. Fig. 6 demonstrates the time evolution of the aver-
age degree xny. Directly after the breakdown event the communication degree
of the remaining active robots was greatly reduced (implying lower social feed-
back intensity). However, in the case of the range-adjustment behaviour, the
robots responded by increasing their communication range ri (see bottom plots
in Fig. 6) according to Eq. (21) and recovering ni « xnmy. As a result, the
swarm was able to maintain the same average degree as before the breakdown
and compensate for the removed links (see Fig. 6, squares). This behaviour
was not observed for the null behaviour (see Fig.6, diamonds). Furthermore,
in the adaptive case, xry was rapidly decreased to the pre-breakdown value
after the first influx event and below the pre-breakdown value after the sec-
ond, more severe, influx event (see bottom plots in Fig. 6). Despite the agent
density increases, xny was maintained at a constant level. As expected, the
inverse dynamics was observed for the null behaviour.

Note that for the range-adjustment behaviour, xny Ñ xnmy for all ps,
independent of the initial value of the communication range (see Fig. S2 in
Sec. S2 for more details). By contrast, the average degree of the null behaviour
approach demonstrates significant long-term variations. These variations are
a consequence of the agents’ inability to adjust the communication range in
response to agent density fluctuations as argued previously in Sec. 5.2.
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Fig. 6: Average degree xny for ps P t0.01, 0.05, 0.1, 0.2u and the corresponding
average communication range xry (top and bottom plot of each sub-figure,
respectively). For the case of the null behaviour (orange lines) xry was set equal
to the pre-breakdown time averaged values of the range-adjustment approach
(blue curves). The results are averages over 30 simulations, the shaded regions
around the xny curves show the 95% confidence interval. Grey dashed vertical
lines indicate the time of the three events in which the robot density was
changed: the breakdown at tbd “ 2500 ts, the first influx at tif1 “ 5000 ts and
the second influx at tif2 “ 7500 ts. For all four ps, xny was quickly recovered
after both events in the adaptive behaviour, in contrast to the null behaviour.

Fig. 7 reflects the influence of communication dynamics on the swarm abil-
ity to reach maximum coherence degree for the four tested values of ps, av-
eraged over 30 simulation runs (see Fig. S4 for the comparison of the time
evolution of φptq between the two behaviour models for only one simulation
seed). In general, in the adaptive approach the coherence degree agrees well
with the theory (the horizontal grey dashed lines in Fig. 7 are computed from
Eq. (13)). By contrast, in the null behaviour the |φptq| mainly lies below |φm|
and is subject to significant long-term fluctuations caused by the inability to
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Fig. 7: Global coherence degree for ps P t0.01, 0.05, 0.1, 0.2u. The results are
averages of 30 simulations, the shaded regions around the curves show the
95% confidence interval. Grey dashed vertical lines indicate the time of the
three events in which the robot density was changed: the breakdown event at
tbd “ 2500 ts, the first influx event at tif1 “ 5000 ts and the second influx
event at tif2 “ 7500 ts. The grey dashed horizontal line indicates the |φm|
given by Eq.(13). For all four ps, after the breakdown the group was able to
rapidly recover coherence in the adaptive behaviour, in contrast to the null
behaviour which suffered a significant drop in xny. After the influx events
both models showed recovery of the coherence level, as expected from our
theoretical considerations due to the increase of xny (in the null behaviour)
and maintenance of xny “ xnmy (in the adaptive behaviour).

regulate communication degree (Fig. 6). Outside of the breakdown event, mo-
tion dynamics was primarily responsible for these variations, as discussed in
the previous section and in Sec. S5. The breakdown event caused a significant
drop of coherence |φptq| ă |φm| due to the sudden decrease of social feed-
back (i.e. xny ă xnmy). Subsequently, the first influx event led to the increase
of |φptq| back to the pre-breakdown value due to the increase in agent den-
sity. After the second influx event, the latter is particularly high, leading to
the presence of strong social feedback and |φptq| Ñ |φm| for both behaviour
models.

For a more careful validation of Eq. (13) and Eq. (20), we simulated the
above behaviour for a larger set of spontaneous switch probabilities ps. The
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results are presented in Fig. 8. The figure contrasts the swarm performance of
the adaptive approach to the null behaviour with respect to reaching |φm| after
the breakdown and the first influx events. As Fig. 8 shows, applying Eq. (20)
in the range-adjustment behaviour enables the swarm to restore |φ| close to
the theoretical value of Eq. (13) after the breakdown (Fig. 8(a)) as well as
to maintain |φ| « |φm| after the first influx event (Fig. 8(c)). By contrast, in
the null behaviour the swarm coherence approaches the theoretical limit only
after the (first) influx (Fig. 8(d)), whereas after the breakdown (Fig. 8(b))
the swarm coherence is considerably below the |φ| « |φm| reached in Fig. 8(a).
The large standard deviation values observed for ps ą 0.8 in the null behaviour
can be explained using the same arguments as for the adaptive behaviour (see
Sec. 5.2).

The swarm coherence values after the second influx event (i.e. swarm size
increasing to N “ 1500) are not shown because they are similar to the results
in Fig. 4. For the null behaviour, the reason is the high agent density that
leads to a high number of communication links and therefore high coherence
(as expected from our considerations in Sec. 3). For the range-adjustment
behaviour, the maximum coherence is maintained together with the minimum
degree similar to Fig. 8(a) and Fig. 8(c).

6 Conclusion

In this paper, we have studied the relationship between noise—modelled as
random fluctuations of agents’ opinion—and social feedback—which scales
with the communication degree of an agent—as well as the influence of their
relationship on the coherence of a collective system. As a case study, we have
examined a collective symmetry-breaking problem inspired by locust marching
behaviour. In our system, the individuals selected one out of two options—
marching either in the clockwise or in the counterclockwise direction—based
on the input received from their neighbours. Additionally, any individual could
spontaneously switch its opinion with probability ps, modelling a form of noise.
We have showed that this probability determines the maximum degree of co-
herence that the swarm can achieve (i.e. the maximum proportion of agents
with the same opinion). Using mean-field approximations we have derived a
steady state estimate of the minimum communication degree xnmy (i.e. the
minimum average number of neighbours per agent) necessary to enable the
collective system reach maximum coherence degree under a specific level of
noise. Remarkably, we could formulate xnmy as a function of only the noise
level ps. As social feedback scales with the communication degree, the derived
function of xnmy (i.e. Eq. (20)) represents the relationship between social feed-
back and noise that leads to a coherent collective behaviour. This minimum
degree ensures that the communication between the individuals remains local
as well as energetically and computationally efficient.

To test the validity of our theoretic findings, we implemented an algorithm
which enabled an individual to adapt its communication range to reach the
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Fig. 8: Time-averaged maximum global coherence degree |φ| as a function of
the spontaneous switch probability ps after the breakdown event (top row,
empty circles) as well as after the subsequent first influx (bottom row, filled
circles). The continuous curve shows |φm| from Eq. (13). Left column: sim-
ulations with robots that adaptively adjusted the communication range to
reach ni “ xnmy given by Eq. (20) (with α “ 0.07); Right column: null
behaviour, communication range is constant and equal to the average commu-
nication range of the range-adjustment behaviour before the breakdown. After
the breakdown, |φ| is averaged between t “ 3000 ts and t “ 5000 ts as illus-
trated in the inset of (b) for the null behaviour and ps “ 0.2; after the influx
event the |φ| is averaged between t “ 5500 ts and t “ 7500 ts as illustrated in
the inset of (d) for the null behaviour and ps “ 0.2.

target communication degree xnmy. Through this decentralised algorithm, the
swarm was able to reach the maximum coherence degree and to online adapt
to robot density changes. To test the ability of our algorithm to adapt to
robot density changes, we simulated a breakdown in which the majority of
the swarm was removed from the system and two influx events in which the
swarm significantly increased (i.e. over a thousand individuals were added
to the swarm). By applying our range-adjustment algorithm the swarm was
able to implicitly sense the global changes and respond to them accordingly.
The key component of our approach was the analytically derived minimum
communication degree xnmy in terms of ps.
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Remarkably, although the formulation of xnmy included one ad-hoc pa-
rameter, it did not explicitly require information about the environmental
properties (such as size or shape of the arena) nor the physical configuration
of an agent. In particular, the ability of the swarm to reach maximum coher-
ence was independent of the swarm size as long the agents maintained xnmy
individually, i.e. in a decentralised, fully distributed manner. Therefore, our
results highlight the importance of the swarm density attribute in terms of
feedback density—i.e. average number of communication links per agent—as
opposed to the physical agent density—i.e. mean number of individuals per
unit area (Khaluf et al. 2017b). Although the impact of swarm density on
collective alignment has been intensively studied before in experiments with
real locusts (Buhl et al. 2006) as well as related models (Vicsek et al. 1995;
Yates et al. 2009; Huepe et al. 2011; Ariel and Ayali 2015), little emphasis was
put on the distinction between feedback density and the agent density. One
possible reason is that in natural systems this distinction is less relevant as
individuals tend to receive feedback from all agents within their perception.
However, in artificial systems it is common to distinguish between particle
density (i.e. number of agents per unit area of the arena) and sensor cover-
age density (i.e. disk area covered by the agent’s sensor per unit area of the
arena). The latter may be tuned in a decentralised manner by the individuals,
as opposed to most natural systems.

The adaptive distributed tuning of communication is vital to reduce fluc-
tuations in social feedback strength as a response to variations in agent den-
sity. Without the tuning of the communication range—the null behaviour in
Sec. 5.2 and 5.3—agent density fluctuations in the agent’s local neighbourhood
may lead to low levels of global coherence. Conversely, the adaptive approach
allows individuals to reduce social feedback fluctuations and lead to a collec-
tive behaviour that is swarm size independent, robust to agent removal and
scalable.

The key contribution of our study is the analytically derived xnmy. How-
ever, to enable an adaptive behaviour in which all agents can reach xnmy we
did not explicitly impose an upper bound rmax to the communication range
of the agents. Instead, we assumed that rmax may be longer than the diam-
eter of the arena (i.e. rmax ą 25m). However, in some cases—particularly in
real robotics implementations—a shorter rmax may be desirable, which creates
a trade-off. On the one hand, a high communication range may be energet-
ically or computationally costly and hard to realise on real robots. On the
other hand, a low rmax can lead to substantial loss of coherence. The latter
is confirmed by our simulations of a null behaviour in which, contrary to the
adaptive behaviour, all agents had a constant r “ rmax ă 2.5m. Note that
even if each agent could dynamically adjust the range up to this low rmax the
resulting dynamics would be similar to our null behaviour. In particular, when
rmax is low the decrease of agent density directly leads to a decrease of group
coherence. This indicates that when rmax is lower than what is necessary for
an agent i to reach ni “ xnmy, the robustness of collective decision-making
is significantly reduced. By contrast, allowing the agents to reach the analyti-
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cally derived xnmy maximises group agreement without imposing a higher than
necessary communication cost. Therefore, our approach is a step towards an
optimisation of the trade-off between high coherence and low communication
cost.

Nevertheless, implementing our model on real robots may pose significant
challenges such as the exclusion of environmental noise, the implementation of
range adjustment behaviour and the estimation of the spontaneous switching
rate. Although the technical realisation of a real robotic system is outside of the
scope of the current study, we believe that meeting the challenges associated
with translating our model onto real robots is not unrealistic. However, the
main focus of the current study is rather dedicated to the more abstract defini-
tion of xnmy. Consequently, for the purpose of validating our theoretical model
under more realistic conditions our effort aimed not at thoroughly reproducing
a real-world scenario but rather at implementing a collective system in an en-
vironment that is far from ideal. For instance, due to the implemented physical
interference and line-of-sight blocking, the communication range of robots in
crowded neighbourhoods was confined to the nearest neighbours even without
an explicit definition of rmax. By contrast, a predefined value of rmax that is
lower than the size of the arena has the major disadvantage of forcefully limit-
ing the agents’ ability to establish xnmy communication links. Therefore, it is
not suitable for the purposes of validating a relationship between xnmy and the
maximum global coherence. It is important to emphasise that, at its core, the
range-adjustment algorithm is a tool used to enable the robots to adapt the
strength of social feedback through the number of communication links. An
alternative technique could be the adjustment of the motion speed such that
faster motion leads to more frequent communication. Nevertheless, we believe
that extending our simulations to more practical and realistic scenarios is a
promising direction for future research. These scenarios should consider realis-
tic values of rmax as well as address other technical challenges associated with
range-adjustment by real robots.

In general, our results contribute to the domain of swarm robotics by re-
vealing a fundamental link between coherent collective behaviour, fluctuations
in individual decision-making and social interactions. Provided a robot is ca-
pable of dynamically adjusting its communication range, our findings can be
applied to a wide range of swarm robotic decision-making processes. In the
present study our theoretical model was tested on the simulated case-study
of coordinated motion, however other swarm robotic tasks such as navigation,
path formation, flocking or foraging are also viable alternatives for further
investigation and potential application. Thus, our results have far reaching
implications for the research on collective symmetry-breaking as they show-
case the critical and fundamental relationship between social feedback, noise
and coherence in collective systems, and demonstrate the ability of collective
systems to reach maximum coherence after severe external interference.
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