
Coherent Composition of Distributed

Knowledge-Bases through Abdu
tion

Ofer Arieli, Bert Van Nu�elen, Mar
 Dene
ker, and Mauri
e Bruynooghe

Department of Computer S
ien
e, University of Leuven

Celestijnenlaan 200A, B-3001 Heverlee, Belgium

Abstra
t. We introdu
e an abdu
tive method for
oherent
omposition

of distributed data. Our approa
h is based on an abdu
tive inferen
e

pro
edure that is applied on a meta-theory that relates di�erent, pos-

sibly in
onsistent, input databases. Repairs of the integrated data are

omputed, resulting in a
onsistent output database that satis�es the

meta-theory. Our framework is based on the A-system, whi
h is an ab-

du
tive system that implements SLDNFA-resolution. The out
ome is a

robust appli
ation that, to the best of our knowledge, is more expressive

(thus more general) than any other existing appli
ation for
oherent data

integration.

1 Introdu
tion

In many
ases
omplex reasoning tasks have to integrate knowledge frommultiple

sour
es. A major
hallenge in this
ontext is to
ompose
ontradi
ting sour
es of

information su
h that what is obtained would properly re
e
t the
ombination

of the distributed data on one hand

1

, and would still be
oherent (in terms of

onsisten
y) on the other hand.

Coherent integration and proper representation of amalgamated data is ex-

tensively studied in the literature (see, e.g., [1, 3, 7, 13, 14, 20{23,26, 29℄). Com-

mon approa
hes for dealing with this task are based on te
hniques of belief

revision [20℄, methods of resolving
ontradi
tions by quantitative
onsiderations

(su
h as \majority vote" [21℄) or qualitative ones (e.g., de�ning priorities on

di�erent sour
es of information or preferring
ertain data over another [2, 4, 5℄).

Other approa
hes are based on rewriting rules for representing the information in

a spe
i�
 form [14℄, or use multiple-valued semanti
s (e.g., annotated logi
 pro-

grams [28, 29℄ and bilatti
e-based formalisms [12, 22℄) together with non-
lassi
al

refutation pro
edures [11, 19, 28℄ that allow to de
ode within the language itself

some \meta-information" su
h as
on�den
e fa
tors, amount of belief for/against

a spe
i�
 assertion, et
.

Ea
h one of the te
hniques mentioned above has its own limitations and/or

drawba
ks. For instan
e, in order to properly translate the underlying data to

a spe
i�
 form, formalisms that are based on rewriting te
hniques must assume

1

This property is sometimes
alled
ompositionality ; see, e.g., [30℄.

that the underlying data (or some part of it, su
h as the set of integrity
on-

straints) has a spe
i�
 synta
ti
al stru
ture. Other formalisms (e.g., that of

[20℄) are based on propositional languages, and so in both
ases the expressive-

ness is limited. In some of the non-
lassi
al formalisms mentioned above (e.g.,

those that are based on annotated logi
s and several probabilisti
 formalisms),

semanti
al notions interfere with the syntax. Moreover, in many of these frame-

works synta
ti
al embeddings of �rst-order formulae into non-
lassi
al languages

are needed. Su
h translations may damage or bias the intuitive meaning of the

original formulae. Finally, some of the approa
hes mentioned above are not
ap-

able of resolving
ontradi
tions unless the reasoner spe
i�es his/her preferen
es.

In other approa
hes, the me
hanism of resolving
ontradi
tions is determined

in advan
e, or is ad-ho
 (thus it is oriented towards spe
i�
 kinds of problems).

This interferen
e ne
essarily redu
es the
exibility and the generality of the

orresponding mediative engine.

In this paper we start from the perspe
tive of a pure de
larative representa-

tion of the
omposition of distributed data. This approa
h is based on a meta-

theory relating a number of di�erent (possibly in
onsistent) input databases with

a
onsistent output database. The underlying language is that of ID-logi
 [9℄,

whi
h
an be embedded in an abdu
tive logi
 program. Our
omposing system

is implemented by the abdu
tive solver the, A-system [18℄. In the
ontext of

this work, we extended this system with an optimizing
omponent that will al-

low us to
ompute preferred
oherent solutions to restore the
onsisten
y of the

database.

Our approa
h is related to other work on the use of abdu
tion in the
ontext

of databases. [16℄ proposed to use abdu
tion for database updating. [15, 27℄ de-

veloped a framework for explaining or unexplaining observations by an extended

form of abdu
tion in whi
h arbitrary formulas may be added or formulas of the

theory may be removed. In this paper, the fo
us is on a di�erent appli
ation of

abdu
tion, namely
omposition and integrity restoration of multiple databases.

By this de
larative approa
h we are able to over
ome some of the short
om-

ings of the amalgamating te
hniques mentioned above. In parti
ular, our system

has the following
apabilities:

1. Any �rst-order formula may be spe
i�ed for des
ribing the domain of dis-

ourse (as part of the integrity
onstraints). Thus, to the best of our know-

ledge, our approa
h is more general and expressive than any other available

appli
ation for
oherent data integration.

2. No synta
ti
al embeddings of �rst-order formulae into di�erent languages

nor any extensions of two-valued semanti
s are ne
essary. Our approa
h is

based on a pure generalization of
lassi
al refutation pro
edures.

3. The way of keeping the data
oherent is en
apsulated in the
omponent that

integrates the data. This means, in parti
ular, that no reasoner's input nor

any other external poli
y for making preferen
es among
on
i
ting sour
es

is
ompulsory in order to resolve
ontradi
tions.

In the sequel we show that our system is sound,
omplete, and supports

various types of spe
ial information, su
h as timestamps and sour
e tra
ing. We

also dis
uss implementation issues and provide some experimental results.

2 Coherent
omposition of knowledge-bases

2.1 Problem des
ription

De�nition 1. A knowledge-base KB is a pair (D; IC), where D (the database)

is a set of atomi
 formulae, and IC (the set of integrity
onstraints) is a �nite

set of �rst order formulae.

As usual in su
h
ases, we apply the
losed world assumption on databases,

i.e., every atom that is not mentioned in the database is
onsidered false. The

underlying semanti
s
orresponds, therefore, to minimal Herbrand interpreta-

tions.

De�nition 2. A formula follows from a database D if the minimal Herbrand

model of D is also a model of .

De�nition 3. A knowledge-base KB=(D; IC) is
onsistent if all the integrity

onstraints are
onsistent, and ea
h one follows from D.

Our goal is to integrate n
onsistent knowledge-bases, KB

i

= (D

i

; IC

i

), i=

1; : : : n, to a single knowledge-base in su
h a way that the data in this knowledge-

base will
ontain everything that
an be dedu
ed from one of the sour
es of

information, without violating any integrity
onstraint of another sour
e. The

idea is to
onsider the union of the distributed data, and then to restore its

onsisten
y. A key notion in this respe
t is the following:

De�nition 4. [14℄ A repair of KB=(D; IC) is a pair (Insert;Retra
t) su
h that

Insert \ Retra
t= ;, Insert \ D= ;, Retra
t � D, and every integrity
onstraint

follows from D [Insert n Retra
t.

2

(D [Insert n Retra
t ; IC) is
alled a repaired knowledge-base of KB.

As there may be many ways to repair an in
onsistent knowledge-base, it is

often
onvenient to make preferen
es among the repairs and to
onsider only the

most preferred ones. Below are two
ommon preferen
e
riteria.

De�nition 5. Let (Insert;Retra
t) and (Insert

0

;Retra
t

0

) be two repairs of a

given knowledge-base.

{ set in
lusion preferen
e
riterion :

(Insert

0

;Retra
t

0

) �

i

(Insert;Retra
t) if Insert � Insert

0

and Retra
t � Retra
t

0

.

2

I.e., Insert are elements that should be inserted into D and Retra
t are elements that

should be removed from D in order to obtain a
onsistent knowledge-base.

{
ardinality preferen
e
riterion:

(Insert

0

;Retra
t

0

) �

(Insert;Retra
t) if jInsertj+jRetra
tj�jInsert

0

j+jRetra
t

0

j.

Let � be a semi-order on the set of repairs, expressing a preferen
e
riterium.

De�nition 6. [14℄ A �-preferred repair of a knowledge-base KB is a repair

(Insert;Retra
t) of KB s.t. there is no other repair (Insert

0

;Retra
t

0

) of KB for

whi
h (Insert;Retra
t)�(Insert

0

;Retra
t

0

).

3

De�nition 7. The set of all the �-preferred repairs of a knowledge-base KB is

denoted by !(KB;�).

De�nition 8. A �-repaired knowledge-base of KB is a repaired knowledge-base

of KB,
onstru
ted from a �-preferred repair of KB. The set of all the �-repaired

knowledge-bases of KB is denoted by

R(KB;�) = f (D [Insert n Retra
t ; IC) j (Insert;Retra
t) 2 !(KB;�) g.

Note that if KB is
onsistent and the preferen
e
riterion is a partial order and

monotoni
 in the size of the repairs (as in De�nition 5), then R(KB;�) = fKBg,

i.e., KB is the (only) �-repaired knowledge-base of itself, and so there is nothing

to repair in this
ase, as expe
ted.

De�nition 9. For KB

i

= (D

i

; IC

i

), i = 1; : : : n, let UKB = (

n

[

i=1

D

i

;

n

[

i=1

IC

i

).

In the rest of this paper we des
ribe a system that, given n distributed

knowledge-bases and a preferen
e
riterion �,
omputes the set R(UKB;�)

of the �-repaired knowledge-bases of UKB. The reasoner may use di�erent

strategies to determine the
onsequen
es of this set. Among the
ommon ap-

proa
hes are the skepti
al (
onservative) one, that it is based on a \
onsensus"

among all the elements ofR(UKB;�) (see [14℄), a \
redulous" approa
h in whi
h

entailments are de
ided by any element inR(UKB;�), an approa
h that is based

on a \majority vote", et
. A detailed dis
ussion on these methods and ways of

assuring the
onsisten
y of the
omposed data in ea
h method, will be presented

elsewhere.

We
on
lude this se
tion by noting that in the sequel we shall assume that

IC =

S

n

i=1

IC

i

is
onsistent. This is a usual assumption in the literature and

it is justi�ed by the nature of the integrity
onstrains as des
ribing statements

that are widely a

epted. Thus, it is less likely that integrity
onstraints would

ontradi
t ea
h other. Contradi
tions between the data in the di�erent KB's and

integrity
onstraints are more frequent, and may o

ur due to many di�erent

reasons. In the next se
tion we
onsider some
ommon
ases.

3

In [14℄ this notion is de�ned for the spe
i�

ase where the preferen
e
ondition is

taken w.r.t. set in
lusion.

2.2 Examples

In all the following examples we use set in
lusion as the preferen
e
riterion.

4

Example 1. [14, Example 1℄ Consider a distributed knowledge-base with rela-

tions of the form tea
hes(
ourse name; tea
her name). Suppose also that ea
h

knowledge-base
ontains a single integrity
onstraint, stating that the same

ourse
annot be taught by two di�erent tea
hers:

IC = f 8X8Y 8Z (tea
hes(X;Y) ^ tea
hes(X;Z) ! Y = Z) g.

Consider now the following two knowledge-bases:

KB

1

= (ftea
hes(

1

; n

1

); tea
hes(

2

; n

2

)g; IC),

KB

2

= (ftea
hes(

2

; n

3

)g; IC)

Clearly, KB

1

[KB

2

is in
onsistent. Its preferred repairs are (;; ftea
hes(

2

; n

2

)g)

and (;; ftea
hes(

2

; n

3

)g). Hen
e, the two repaired knowledge-bases are:

R

1

= (ftea
hes(

1

; n

1

); tea
hes(

2

; n

2

)g; IC), and

R

2

= (ftea
hes(

1

; n

1

); tea
hes(

2

; n

3

)g; IC).

Example 2. [14, Example 2℄ Consider a distributed knowledge-base with rela-

tions of the form supply(supplier; department; item) and
lass(item; type).

Let

KB

1

= (fsupply(

1

; d

1

; i

1

);
lass(i

1

; t

1

)g; IC), and

KB

2

= (fsupply(

2

; d

2

; i

2

);
lass(i

2

; t

1

)g; ;), where

IC = f 8X8Y 8Z (supply(X;Y; Z)^
lass(Z; t

1

)! X =

1

) g

states that only supplier

1

an supply items of type t

1

.

KB

1

[KB

2

is in
onsistent and has two preferred repairs: (;; fsupply(

2

; d

2

; i

2

)g)

and (;; f
lass(i

2

; t

1

)g). Hen
e, there are two ways to repair it:

R

1

= (fsupply(

1

; d

1

; i

1

);
lass(i

1

; t

1

);
lass(i

2

; t

1

)g; IC),

R

2

= (fsupply(

1

; d

1

; i

1

); supply(

2

; d

2

; i

2

);
lass(i

1

; t

1

)g; IC).

Example 3. [14, Example 4℄ Let D

1

= fp(a); p(b)g;D

2

= fq(a); q(
)g, and IC=

f8X(p(X)!q(X))g. Again, (D

1

; ;)[(D

2

; IC) is in
onsistent. The
orresponding

preferred repairs are (fq(b)g; ;) and (;; fp(b)g). The repaired knowledge-bases

are therefore the following:

R

1

= (fp(a); p(b); q(a); q(b); q(
)g; IC),

R

2

= (fp(a); q(a); q(
)g; IC).

3 Knowledge integration through abdu
tion

In this se
tion we introdu
e an abdu
tive method for a
oherent integration of

knowledge-bases. Our framework is
omposed of a language for des
ribing the

4

Generally, in what follows we shall �x a preferen
e
riterion for
hoosing the \best"

repairs and omit its notation whenever possible.

problem domain (ID-logi
, [9℄), an abdu
tive solver that is based on an abdu
tive

refutation pro
edure (SLDNFA, [10℄), and a
omputational model for
ontrolling

the sear
h (A-system [18℄).

3.1 ID-logi
 and abdu
tive logi
 programming

ID-logi
 [9℄ is a framework for de
larative knowledge representation that extends

lassi
al logi
 with indu
tive de�nitions. This logi
 in
orporates two types of

knowledge: de�nitional and assertional. Assertional knowledge is a set of �rst

order statements, representing a general truth about the domain of dis
ourse.

De�nitional knowledge is a set of rules of the form p B, in whi
h the head p is

a predi
ate and the body B is a �rst order formula. A predi
ate that does not

o

ur in any head is
alled open (sometimes
alled abdu
ible).

Below we present an ID-logi
 meta-theory des
ribing the
omposition of data-

bases in terms of open predi
ates insert and retra
t. The key property of this

theory is that its abdu
tive solutions des
ribe the
oherent
ompositions. Ab-

du
tive reasoning on an ID-logi
 theory
an be performed by mapping it into

an abdu
tive logi
 program [8℄ under the extended well-founded semanti
s [24℄

and applying an abdu
tive inferen
e pro
edure to it. An abdu
tive logi
 program

(ALP)) is a triple T =(P ;A; IC), su
h that

{ P is a logi
 program, the
lauses of whi
h are interpreted as de�nitions for

the predi
ates in their head,

{ A is a set of predi
ates, none of whi
h o

urs in the head of a
lause in P .

The elements in A are
alled the abdu
ible predi
ates .

{ IC is a set of �rst-order formulae,
alled the integrity
onstraints .

Constants, fun
tors and predi
ate symbols are de�ned as usual in logi
 programs.

De�nition 10. An (abdu
tive) solution for a theory (P ;A; IC) and a query

Q is a set � of ground abdu
ible atoms, all having a predi
ate symbols in A,

together with an answer substitution �, su
h that: (a) P [� is
onsistent, (b)

P [� j= IC, and (
) P [� j= 8Q�.

In what follows we use ID-logi
 to spe
ify the knowledge integration, and

implement the reasoning pro
ess by an abdu
tive refutation pro
edure. For this

we represent any data in some distributed database by a predi
ate db, and

denote the elements in the
omposed database by the predi
ate fa
t. The latter

predi
ate is de�ned as follows:

fa
t(X) :- db(X), not retra
t(X).

fa
t(X) :- insert(X).

In parti
ular, in order to restore
onsisten
y, some fa
ts may be removed

and some other fa
ts may be introdu
ed. These fa
ts are represented by the

(abdu
ible) predi
ates retra
t and insert, respe
tively. To assure proper
om-

putations of the solutions, the following integrity
onstraints are also spe
i�ed:

5

5

In what follows we use the notation \i
 :- B" to denote the denial \false B".

{ An element
annot be retra
ted and inserted at the same time:

i
 :- insert(X), retra
t(X).

{ An inserted element should not belong to a given database:

i
 :- insert(X), db(X).

Assuming that all the integrity
onstraints of the distributed knowledge-

bases are
ompatible and that no distin
tions are made among the origins of the

omposed fa
ts, the following steps are performed:

1. Ea
h database fa
t X is represented by an atom db(X).

2. Every o

urren
e of an atom P in some integrity
onstraint is repla
ed by

fa
t(P). This is done in order to assure that every integrity
onstraint would

hold for the
omposed data as well.

3. A solution is
omputed in terms of the abdu
ible predi
ates insert and

retra
t.

3.2 The A-system

The reasoning pro
ess of our revision system is performed by the A-system,

introdu
ed in [18℄. The basi
 idea of this system is a redu
tion of a high level

spe
i�
ation into a lower level
onstraint store, whi
h is managed by a
onstraint

solver. The system is a synthesis of the refutation pro
edures SLDNFA [10℄ and

ACLP [17℄, together with an improved
ontrol strategy. The latest version of the

system
an be obtained from http://www.
s.kuleuven.a
.be/�dtai/kt/. It

runs on top of Si
stus Prolog 3.8.5. Below we sket
h the theoreti
al ba
kground as

well as some pra
ti
al
onsiderations behind this system. For more information,

see [10℄ and [18℄.

Abdu
tive inferen
es Given an abdu
tive theory (P ;A; IC) as de�ned above,

the logi
al redu
tion of a query Q
an be des
ribed as a derivation for Q through

a rewriting state pro
ess. A state S
onsists of two types of elements: a set Pos(S)

of literals (possibly with free variables),
alled positive goals , and a set Neg(S)

of denials,
alled negative goals . The set �(S) denotes the abdu
ible atoms in

S, i.e. positive goal atoms whose predi
ate is an abdu
ible. C(S) denotes the set

of
onstraint atoms in S.

A rewriting derivation pro
eeds from state S

i

by sele
ting a literal of S

i

and

applying a suitable inferen
e rule, yielding a new state S

i+1

. The main inferen
e

rules are given by the following rewrite rules. In the list below we denote by

A and B some literals, and by C a
onstraint literal. P denotes the theory

under
onsideration. For readability, we do not mention
ases in whi
h Pos(S)

or Neg(S) is the same in states number i and i+ 1.

{ Rules for de�ned predi
ates:

� if A(X) B

j

[X℄ 2 P and A(t) 2 Pos(S

i

), then Pos(S

i+1

) = Pos(S

i

) n

fA(t)g [fB

j

[t℄g.

� if A(t); Q 2 Neg(S

i

), then Neg(S

i+1

) = Neg(S

i

) n f A(t); Qg [U ,

where U = f B

j

[t℄; Q j A(t) B

j

[t℄ 2 Pg.

{ Rules for open predi
ates:

� if A(t); Q 2 Neg(S

i

) and p(s) 2 �(S

i

) then Neg(S

i+1

) = Neg(S

i

) n f

A(t); Qg [fUg [fRg, where U = t = s;Q, and R = A(t); t 6= s;Q.

{ Rules for negations: Assume that A is not a
onstraint literal.

� if :A 2 Pos(S

i

) then Pos(S

i+1

) = Pos(S

i

) n f:Ag and Neg(S

i+1

) =

Neg(S

i

) [f Ag.

� if :A;Q 2 Neg(S

i

) then one of the following bran
hes is taken:

1. Pos(S

i+1

) = Pos(S

i

) [fAg and Neg(S

i+1

) = Neg(S

i

) n f :A;Qg.

2. Neg(S

i+1

) = Neg(S

i

) n f :A;Qg [f A; Qg.

{ Rules for
onstraint literals:

� if C;Q 2 Neg(S

i

) then one of the following bran
hes is taken:

1. Pos(S

i+1

) = Pos(S

i

) [f:Cg, Neg(S

i+1

) = Neg(S

i

) n f C;Qg.

2. Pos(S

i+1

) = Pos(S

i

)[fCg, Neg(S

i+1

) = Neg(S

i

)nf C;Qg[f Qg.

Remark: It is important here to assume that the underlying
onstraint

solver is
apable of handling negated
onstraint literals. This is indeed

the
ase with the
onstraint solver used by our system (Si
stus).

The initial state S

0

for a theory P and a query Q
onsists of the query Q

as a positive goal and the set of all denials in P as negative goals. A su

essful

state S ful�lls the following
onditions:

1. S
ontains positive goals only of the form of abdu
ible atoms or
onstraint

atoms,

2. negative goals in S are denials
ontaining some open atom p(t) whi
h has

already been sele
ted and resolved with ea
h abdu
ed atom p(s) 2 S, and

3. the
onstraint store C(S) of S is satis�able.

De�nition 11. A su

essful abdu
tive derivation of a query Q w.r.t. P is a

sequen
e of states S

0

; S

1

; : : : ; S

n

, where: (a) S

0

is an initial state for P and

Q, (b) For every 0� i�n�1, S

i+1

is obtained from S

i

by applying one of the

transition rules, and (
) S

n

is a su

essful state.

Whenever false is derived (in one of the
onstraint domains) the derivation

ba
ktra
ks. A derivation
ounders when universally quanti�ed variables appear

in a sele
ted negated literal in a denial.

Let S

n

be a �nal state of a su

essful derivation. Then any substitution �

that assigns a ground term to ea
h free variable of S

n

and whi
h satis�es the

onstraint store C(S

n

) is
alled a solution substitution of S

n

. Su
h a substitution

always exists sin
e C(S

n

) is satis�able for a su

essful derivation.

Theorem 1. [18℄ Let T = (P ;A; IC) be an abdu
tive theory s.t. P j= IC, Q

a query, S the �nal state of a su

essful derivation for Q, and � a solution

substitution of S. Then the pair �(�(S)) and � is an abdu
tive solution for T

and Q.

Control strategy The sele
tion strategy applied during the derivation pro
ess

is
ru
ial. A Prolog-like sele
tion strategy (left �rst, depth �rst) often leads to

trashing, be
ause it is blind to other
hoi
es and it does not result in a global

overview of the
urrent state of the
omputation. In the development of the

A-system the main fo
us was on the improvement of the
ontrol strategy. The

idea is to apply �rst those rules that have a deterministi

hange of the state, and

so information is propagated. If none of su
h rules are appli
able, then one of the

left over
hoi
es is sele
ted and a
hoi
e is made. This resembles a CLP-solver, in

whi
h the
onstraints propagate their information as soon a
hoi
e is made. This

propagation yields less amount of
hoi
es and thus often dramati
ally in
reases

the performan
e.

3.3 Implementation and experiments

In this se
tion we present the stru
ture of our system, dis
uss a few implement-

ation issues, and give some experimental results.

The stru
ture of the system Figure 1 shows a layered des
ription of the

implemented system. The upper most level
onsists of the data to be integrated,

i.e., the database information and the integrity
onstrains. This layer together

with the
omposer form an ID-Logi
 theory that is pro
essed by the A-system.

The
omposer
onsists of the meta-theory for integrating the distributed data

in a
oherent way. It is interpreted here as an abdu
tive theory, in whi
h the

abdu
ible predi
ates provide the information on how to restore the
onsisten
y

of the amalgamated data.

The abdu
tive system (en
losed by dotted lines in Figure 1)
onsists of three

main
omponents: A �nite domain
onstraint solver (the one of Si
stus Prolog),

an abdu
tive meta-interpreter (des
ribed above), and an optimizer.

The optimizer is a
omponent that, given a preferen
e
riterion on the spa
e

of the solutions,
omputes only the most-preferred (abdu
tive) solutions. Given

su
h a preferen
e
riterion, this
omponent prunes \on the
y" those bran
hes of

the sear
h tree that lead to worse solutions than what we have already
omputed.

This is a
tually a bran
h and bound \�lter" on the solutions spa
e that speeds-

up exe
ution and makes sure that only the desired solutions will be obtained. If

the preferen
e
riterion is monotoni
 (in the sense that from a partial solution

it
an be determined whether it potentially leads to a solution that is not worse

than a
urrent one), then the optimizer is
omplete, that is, it
an
ompute all

the optimal solutions (see also Se
tion 3.4).

Note that the optimizer is a general
omponent added to the A-system. Not

only this domain bene�ts, but it is useable in other appli
ation domains like e.g.

planning.

Experimental study Figure 2
ontains the
ode (data se
tion +
omposer) for

implementing Example 1 (The
odes for Examples 2 and 3 are similar). We have

exe
uted this
ode as well as other examples from the literature in our system.

KB

1

KB

2

� � � � � �

KB

n

Composer

Optimizer

A-system (based on SLDNFA)

Si
stus Prolog

6

ID-Logi

Theory

?

6

Abdu
tive

System

?

6

User Input

?

6

Composing

System

?

Fig. 1. A s
hemati
 view of the system
omponents.

As Theorem 3 below guarantees, the output in ea
h
ase was the set of the most

preferred solutions of the
orresponding problem.

3.4 Soundness and
ompleteness

In this se
tion we give some soundness and
ompleteness results for our system.

In what follows we denote by T an abdu
tive theory in ID-logi
,
onstru
ted

as des
ribe above for
omposing n given knowledge-bases KB

1

; : : : ;KB

n

. Also,

Pro

ALP

denotes some sound abdu
tive proof pro
edure (e.g., SLDNFA [10℄).

Proposition 1. Every abdu
tive solution that is obtained by Pro

ALP

for a the-

ory T is a repair of UKB.

Proof: By the
onstru
tion of T it is easy to see that all the
onditions spe
i�ed

in De�nition 4 are met: the �rst two
onditions are assured by the integrity

onstraints of the
omposer. The third
ondition immediately follows from the

omposer's rules. The last
ondition is satis�ed sin
e by the soundness of Pro

ALP

it produ
es abdu
tive solutions �

i

for T , thus by the se
ond property in De�ni-

tion 10, for every su
h solution�

i

= (Insert

i

;Retra
t

i

) we have that P[�

i

j= IC.

Sin
e P
ontains a data se
tion with all the fa
ts, it follows that D [�

i

j= IC,

i.e. every integrity
onstraints follows from D [Insert

i

n Retra
t

i

. 2

Theorem 2. (Soundness) Every output that is obtained by running T in the

A-system together with a �

-optimizer [respe
tively, together with an �

i

-optimizer℄

is a �

-preferred repair [respe
tively, an �

i

-preferred repair℄ of UKB.

Proof: Follows from Proposition 1 (sin
e the A-system is based on SLDNFA that

is a sound abdu
tive proof pro
edure), and the fa
t that the �

-optimizer prunes

/* ------- Composer: -------

:- dynami
 i
/0, fa
t/1, db/1.

abdu
ible(insert(_)).

abdu
ible(retra
t(_)).

fa
t(X) :- db(X), not(retra
t(X)).

fa
t(X) :- insert(X).

i
 :- insert(X), db(X).

i
 :- insert(X), retra
t(X).

/* ------- Example 1: -------

db(tea
hes(1,1)). db(tea
hes(2,2)). % D1

db(tea
hes(2,3)). % D2

i
 :- fa
t(tea
hes(X,Y)), fa
t(tea
hes(X,Z)), Y\=Z. % IC

Fig. 2. Code for Example 1

paths that lead to solutions whi
h are not �

-preferable. Similar arguments hold

for systems with an �

i

-optimizer. 2

Proposition 2. Suppose that the query ` true' has a �nite SLDNFA-tree

w.r.t. T . Then every �

-preferred repair and every �

i

-preferred repair of UKB

is obtained by running T in the A-system.

Outline of proof: The proof that all the abdu
tive solutions with minimal
ar-

dinality are obtained by the system is based on [10, Theorem 10.1℄, where it is

shown that SLDNFA

o

, whi
h is an extension of SLDNFA, aimed for
omput-

ing solutions with minimal
ardinality, is
omplete (see [10, Se
tion 10.1℄ for

further details). Similarly, the proof that all the abdu
tive solutions whi
h are

minimal w.r.t. set in
lusion are obtained by the system is based on [10, Theorem

10.2℄ that shows that SLDNFA

+

, whi
h is another extension of SLDNFA, aimed

for
omputing minimal solutions w.r.t. set in
lusion, is also
omplete (see [10,

Se
tion 10.2℄ for further details).

Now, A-system is based on the
ombination of SLDNFA

o

and SLDNFA

+

.

Moreover, as this system does not
hange the refutation tree (but only
ontrols

the way rules are sele
ted), Theorems 10.1 and 10.2 in [10℄ are appli
able in our

ase as well. Thus, all the �

- and the �

i

-minimal solutions are produ
ed. This

in parti
ular means that every �

-preferred repair as well as every �

i

-preferred

repair of UKB is produ
ed by our system. 2

Theorem 3. (Completeness) In the notations of Proposition 2 and under its

assumptions, the output of the exe
ution of T in the A-system together with a

�

-optimizer [respe
tively, together with an �

i

-optimizer℄ is exa
tly !(UKB;�

)

[respe
tively, !(UKB;�

i

)℄.

Proof: We shall show the
laim for the
ase of �

; the proof w.r.t. �

i

is similar.

Let (Insert;Retra
t) 2 !(UKB;�

). By Proposition 2, � = (Insert;Retra
t)

is one of the solutions produ
ed by the A-system for T . Now, during the ex-

e
ution of our system together with the �

-optimizer, the path that
orres-

ponds to �
annot be pruned from the refutation tree, sin
e by our assump-

tion (Insert;Retra
t) has a minimal
ardinality among the possible solutions,

so the pruning
ondition is not satis�ed. Thus � will be produ
ed by the �

-

optimized system. For the
onverse, suppose that (Insert;Retra
t) is some repair

of UKB that is produ
ed by the �

-optimized system. Suppose for a
ontradi
-

tion that (Insert;Retra
t) 62 !(UKB;�

). By the proof of Proposition 2, there is

some �

0

= (Insert

0

;Retra
t

0

)2 !(UKB;�

) that is
onstru
ted by the A-system

for T , and (Insert

0

;Retra
t

0

)<

(Insert;Retra
t). But j�

0

j < j�j, and so the �

-

optimizer would prone the path of the � solution on
e its
ardinality be
omes

bigger than j�

0

j. This
ontradi
ts our assumption that (Insert;Retra
t) is pro-

du
ed by the �

-optimized system. 2

4 Handling spe
ialized information

4.1 Timestamped information

Many database appli
ations
ontain temporal information. This kind of data

may be divided to two types: time information that is part of the data itself, and

time information that is related to database operations (e.g., re
ords on when the

database was updated). Consider, for instan
e, birth day(John,15/05/2001)

16=05=2001

.

Here, John's date of birth is an instan
e of the former type of time information,

and the subs
ripted data that des
ribes the time in whi
h this fa
t was added

to the database, is an instan
e of the latter type of time information.

In our approa
h, timestamp information
an be integrated by adding a tem-

poral theory des
ribing the state of the database at any parti
ular time point.

One way of doing so is by using situation
al
ulus . In this approa
h a database

is des
ribed by initial information and a history of events performed during the

database lifetime (see [25℄). Here we use a di�erent approa
h, whi
h is based on

event
al
ulus . The idea is to make a distin
tion between two kinds of events:

add db and del db that des
ribe the database modi�
ations, and the
omposer-

driven events insert and retra
t that are used for
onstru
ting database re-

pairs. In this view, the extended
omposer has the following form:

holds at(P,T) :- initially(P), not
lipped(0,P,T).

holds at(P,T) :- add(P,E), E<T, not
lipped(E,P,T).

lipped(E,P,T) :- del(P,C), E�C, C<T.

add(P,T) :- add db(P,T). add(P,T) :- insert(P,T).

del(P,T) :- del db(P,T). del(P,T) :- retra
t(P,T).

i
 :- insert(P,T), retra
t(P,T).

i
 :- insert(P,T), add db(P,T).

i
 :- retra
t(P,T), del db(P,T).

In this extended
ontext the integrity
onstrains must be
arefully spe
i�ed.

Consider, e.g. the statement that a person
an be born only on one date:

i
 :- holds at(birth day(P,D1),T), holds at(birth day(P,D2),T), D1 6=D2.

The problem here is that to ensure
onsisten
y this
onstraint must be
he
ked

at every point in time. This may be avoided by a simple rewriting that ensures

that the
onstraint will be veri�ed only when an event o

urs:

i
(birth,T) :- holds_at(birth_day(P,D1),T),

holds_at(birth_day(P,D2),T), D1\=D2.

i
 :- add_db(birth_day(_,_),T), NT = T+1, i
(birth,NT).

i
 :- del_db(birth_day(_,_),T), NT = T+1, i
(birth,NT).

4.2 Keeping tra
k of sour
e identities

There are
ases in whi
h it is important to preserve the identity of the database

from whi
h a spe
i�
 pie
e of information was originated. This is useful, for

instan
e, when one wants to make preferen
es among di�erent sour
es, or when

some spe
i�
 sour
e should be �ltered out (e.g, when the
orresponding database

is not available or be
omes unreliable). This kind of information may be de
oded

by adding another argument to every fa
t, whi
h denotes the identity of its origin.

This requires minor modi�
ations in the basi

omposer, sin
e the
omposer

ontrols the way in whi
h the data is integrated. As su
h, it is the only
omponent

that
an keep tra
k to the sour
e of the information.

Suppose, then, that for every database fa
t we add another argument that

identi�es its sour
e. I.e., db(X,S) denotes that X is a fa
t originated from a data-

base S. The
omposer then has the following form:

fa
t(X,S) :- db(X,S), not retra
t(X)

fa
t(X,
omposer) :- insert(X)

i
 :- insert(X), db(X,S)

i
 :- insert(X), retra
t(X)

Note that the
omposer
onsiders itself as an extra sour
e that inserts brand

new data fa
ts. Now it is possible, e.g., to tra
e information that
omes from

a spe
i�
 sour
e, make preferen
es among di�erent sour
es (by spe
ifying ap-

propriate integrity
onstraints), and �lter data that
omes from
ertain sour
es.

The last property is demonstrated by the following rule:

validFa
t(X) :- fa
t(X,S), trusted sour
e(S)

where trusted sour
e enumerates all reliable sour
es of the data.

4.3 Handling quantitative information

Next we
onsider a potential way of de
oding in the integrated data some quant-

itative information, su
h as
ertainty fa
tors or probabilities.

Suppose that db(X,i) denotes that fa
t X holds with probability i. One
an

de�ne a strategy on how to reason with this kind of information, and de
ode

it in the
omposer. For instan
e, the
omposer below uses a
onservative poli
y

that takes for ea
h fa
t its lowest probability:

fa
t(X,i) :- db(X,), not retra
t(X), i = min fj | db(X,j)g

fa
t(X,1) :- insert(X,1)

i
 :- insert(X,1), db(X,)

i
 :- insert(X,1), retra
t(X)

For implementing this kind of program the underlying system should be able to

ompute aggregations (possibly together with re
ursion). Adding this
apability

to our system is one of the subje
ts for a future work.

5 Con
lusion and further work

In this paper we have developed a formal de
larative foundation for rendering

oherent data, provided by di�erent knowledge-bases, and presented an appli
a-

tion that implements this approa
h. Like other systems (e.g., [6, 14, 20, 29℄), our

system mediates among the sour
es of information and between the reasoner

and the underlying data.

Composing distributed data by a meta-theory in ID-logi
 yields a robust

and easily extendable system. Extra meta information about the data fa
ts,

su
h as time stamps and sour
e, are easily dealt with by extending the meta-

theory properly. Due the inherent modularity of the
hosen approa
h, ea
h part

is independent and
an be adapted a

ording to the needs.

It is important to note that our
omposing system inherits the fun
tionality

of the underlying solver. This implies, in parti
ular,
exibility, modularity, easy

intera
tion with di�erent sour
es of information, and the ability to reason with

any set of �rst order integrity
onstraints.

6

As su
h, our system may be easily

modi�ed and extended with addition ba
kground knowledge.

Among the dire
tions for further exploration are dealing with more general

forms of databases, in whi
h views (or rules) are allowed, and lifting the
ondi-

tion that all the integrity
onstraints are
ompatible with ea
h other. Another

important
hallenge is to extend the
apabilities of the abdu
tive system with

aggregation. This would allow us to integrate di�erent types of databases, and

would provide means of solving new kinds of problems.

Referen
es

1. M.Arenas, L.E.Bertossi, J.Chomi
ki. Consistent query answers in in
onsistent

databases. Pro
. PODS'99 , 68{79, 1999.

2. O.Arieli. Four-valued logi
s for reasoning with un
ertainty in prioritized data. In:

Information, Un
ertainty, Fusion, 263{309, Kluwer, 1999.

3. C.Baral, S.Kraus, J Minker. Combining Multiple Knowledge Bases. IEEE Trans.

on Knowledge and Data Enginnering 3(2), 208{220, 1991.

4. S.Benferhat, C.Cayrol, D.Dubois, J.Lang, H.Prade. In
onsisten
y management and

prioritized syntax-based entailment. Pro
. IJCAI'93 , 640{645, 1993.

6

Provided that the
onstraints do not lead to
oundering. To the best of our knowledge

no other appli
ation of data integration has this ability.

5. S.Benferhat, D.Dubois, H.Prade. How to infer from in
onsistent beliefs without

revising? Pro
. IJCAI'95 , 1449{1455, 1995.

6. L.Bertossi, M.Arenas, C.Ferretti. SCDBR: An automated reasoner for spe
i�
a-

tions of database updates. Intelligent information Systems 10(3), 253{280, 1998.

7. F.Bry. Query Answering in Information Systems with Integrity Constraints. Pro
.

IICIS'97 , 113{130, 1997.

8. M. Dene
ker, A.C. Kakas. Abdu
tive Logi
 Programming, Spe
ial issue of Journal

of Logi
 Programming, 44 (1-3), 2000.

9. M.Dene
ker. Extending
lassi
al logi
 with indu
tive de�nitions. Pro
. CL'2000 ,

J. Lloyd et al., editors, LNAI 1861, Springer, 703{717, 2000.

10. M.Dene
ker, D.De S
hreye. SLDNFA an abdu
tive pro
edure for abdu
tive logi

programs. Journal of Logi
 Programming 34(2), 111{167, 1998.

11. M.Fitting. Negation as refutation. Pro
. LICS'89 , IEEE Press, 63{70, 1989.

12. M.Fitting. Bilatti
es and the semanti
s of logi
 programming. Journal of Logi

Programming 11(2), 91{116, 1991.

13. M.Gertz, U.W.Lipe
k. An extensible framework for repairing
onstraint violations.

Pro
. IICIS'97 , 89{111, 1997.

14. S.Gre
o, E.Zumpano. Querying in
onsistent databases. Pro
. LPAR'2000 ,

M.Parigot and A.Voronokov, editors, LNAI 1955, 308{325, Springer, 2000.

15. K.Inoue, C.Sakama. Abdu
tive framework for nonmonotoni
 theory
hange. Pro
.

IJCAI'95 , 204-210, 1995.

16. T.Kakas, P.Man
arella. Database updates through abdu
tion. Pro
 VLDB'90 ,

650{661, 1990.

17. T.Kakas, A.Mi
hael, C.Mourlas. ACLP: Abdu
tive
onstraint logi
 programming.

Journal of Logi
 Programming 44(1{3), 129{177, 2000.

18. T.Kakas, B.Van Nu�elen, M.Dene
ker. A-System: Problem solving through abdu
-

tion. Pro
. IJCAI'01, 2001.

19. M.Kifer, E.L.Lozinskii. A logi
 for reasoning with in
onsisten
y. Journal of Auto-

mated Reasoning 9(2), 179{215, 1992.

20. P.Liberatore, M.S
haerf. BReLS: a system for the integration of knowledge bases.

Pro
 KR'2000 , 145{152, 2000.

21. J.Lin, A.O.Mendelzon. Merging databases under
onstraints. Int. Journal of Co-

operative Information Systems 7(1), 55{76, 1998.

22. B.Messing. Combining knowledge with many-valued logi
s. Data and Knowledge

Engineering 23, 297{315, 1997.

23. A.Oliv�e. Integrity
he
king in dedu
tive databases. Pro
 VLBD'91 , 513{523, 1991.

24. L.M. Pereira, J.N. Apari
io, J.J. Alferes. , Hypotheti
al Reasoning with Well Foun-

ded Semanti
s , Pro
. of the 3th S
andinavian Conferen
e on AI , B. Mayoh, IOS

Press, 289-300, 1991

25. R. Reiter. On spe
ifying database updates. Journal of Logi
 Programming, 25(1),

53{91, 1995.

26. P.Z.Revesz. On the semanti
s of theory
hange: Arbitration between old and new

information. Pro
. PODS'93 , 71{82, 1993.

27. C.Sakama, K.Inoue. Updating extended logi
 programs through abdu
tion. Pro

LPNMR'99 , 147{161, 1999.

28. V.S.Subrahmanian. Me
hani
al proof pro
edures for many valued latti
e-based

logi
 programming. Journal of Non-Classi
al Logi
 7, 7{41, 1990.

29. V.S.Subrahmanian. Amalgamating knowledge-bases. ACM Trans. on Database

Systems 19(2), 291{331, 1994.

30. S.Verbaeten, M.Dene
ker, D.De S
hreye. Compositionality of normal open logi

programs. Journal of Logi
 Programming 41(3), 151{183, 2000.

