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Abstract. We introduce an abductive method for coherent composition
of distributed data. Our approach is based on an abductive inference
procedure that is applied on a meta-theory that relates different, pos-
sibly inconsistent, input databases. Repairs of the integrated data are
computed, resulting in a consistent output database that satisfies the
meta-theory. Our framework is based on the A-system, which is an ab-
ductive system that implements SLDNFA-resolution. The outcome is a
robust application that, to the best of our knowledge, is more expressive
(thus more general) than any other existing application for coherent data
integration.

1 Introduction

In many cases complex reasoning tasks have to integrate knowledge from multiple
sources. A major challenge in this context is to compose contradicting sources of
information such that what is obtained would properly reflect the combination
of the distributed data on one hand!, and would still be coherent (in terms of
consistency) on the other hand.

Coherent integration and proper representation of amalgamated data is ex-
tensively studied in the literature (see, e.g., [1,3,7,13,14,20-23,26,29]). Com-
mon approaches for dealing with this task are based on techniques of belief
revision [20], methods of resolving contradictions by quantitative considerations
(such as “majority vote” [21]) or qualitative ones (e.g., defining priorities on
different sources of information or preferring certain data over another [2,4, 5]).
Other approaches are based on rewriting rules for representing the information in
a specific form [14], or use multiple-valued semantics (e.g., annotated logic pro-
grams [28,29] and bilattice-based formalisms [12, 22]) together with non-classical
refutation procedures [11,19, 28] that allow to decode within the language itself
some “meta-information” such as confidence factors, amount of belief for /against
a specific assertion, etc.

Each one of the techniques mentioned above has its own limitations and/or
drawbacks. For instance, in order to properly translate the underlying data to
a specific form, formalisms that are based on rewriting techniques must assume

! This property is sometimes called compositionality; see, e.g., [30].



that the underlying data (or some part of it, such as the set of integrity con-
straints) has a specific syntactical structure. Other formalisms (e.g., that of
[20]) are based on propositional languages, and so in both cases the expressive-
ness is limited. In some of the non-classical formalisms mentioned above (e.g.,
those that are based on annotated logics and several probabilistic formalisms),
semantical notions interfere with the syntax. Moreover, in many of these frame-
works syntactical embeddings of first-order formulae into non-classical languages
are needed. Such translations may damage or bias the intuitive meaning of the
original formulae. Finally, some of the approaches mentioned above are not cap-
able of resolving contradictions unless the reasoner specifies his/her preferences.
In other approaches, the mechanism of resolving contradictions is determined
in advance, or is ad-hoc (thus it is oriented towards specific kinds of problems).
This interference necessarily reduces the flexibility and the generality of the
corresponding mediative engine.

In this paper we start from the perspective of a pure declarative representa-
tion of the composition of distributed data. This approach is based on a meta-
theory relating a number of different (possibly inconsistent) input databases with
a consistent output database. The underlying language is that of ID-logic [9],
which can be embedded in an abductive logic program. Our composing system
is implemented by the abductive solver the, A-system [18]. In the context of
this work, we extended this system with an optimizing component that will al-
low us to compute preferred coherent solutions to restore the consistency of the
database.

Our approach is related to other work on the use of abduction in the context
of databases. [16] proposed to use abduction for database updating. [15,27] de-
veloped a framework for explaining or unexplaining observations by an extended
form of abduction in which arbitrary formulas may be added or formulas of the
theory may be removed. In this paper, the focus is on a different application of
abduction, namely composition and integrity restoration of multiple databases.

By this declarative approach we are able to overcome some of the shortcom-
ings of the amalgamating techniques mentioned above. In particular, our system
has the following capabilities:

1. Any first-order formula may be specified for describing the domain of dis-
course (as part of the integrity constraints). Thus, to the best of our know-
ledge, our approach is more general and expressive than any other available
application for coherent data integration.

2. No syntactical embeddings of first-order formulae into different languages
nor any extensions of two-valued semantics are necessary. Our approach is
based on a pure generalization of classical refutation procedures.

3. The way of keeping the data coherent is encapsulated in the component that
integrates the data. This means, in particular, that no reasoner’s input nor
any other external policy for making preferences among conflicting sources
is compulsory in order to resolve contradictions.



In the sequel we show that our system is sound, complete, and supports
various types of special information, such as timestamps and source tracing. We
also discuss implementation issues and provide some experimental results.

2 Coherent composition of knowledge-bases

2.1 Problem description

Definition 1. A knowledge-base KB is a pair (D, ZC), where D (the database)
is a set of atomic formulae, and ZC (the set of integrity constraints) is a finite
set of first order formulae.

As usual in such cases, we apply the closed world assumption on databases,
i.e., every atom that is not mentioned in the database is considered false. The
underlying semantics corresponds, therefore, to minimal Herbrand interpreta-
tions.

Definition 2. A formula ¢ follows from a database D if the minimal Herbrand
model of D is also a model of 1.

Definition 3. A knowledge-base KB = (D, ZC) is consistent if all the integrity
constraints are consistent, and each one follows from D.

Our goal is to integrate n consistent knowledge-bases, KB; = (D;, ZC;), i =
1,...n, to a single knowledge-base in such a way that the data in this knowledge-
base will contain everything that can be deduced from one of the sources of
information, without violating any integrity constraint of another source. The
idea is to consider the union of the distributed data, and then to restore its
consistency. A key notion in this respect is the following;:

Definition 4. [14] A repair of KB=(D, ZIC) is a pair (Insert, Retract) such that
Insert N Retract =0, Insert N D = (), Retract C D, and every integrity constraint
follows from D U Insert \ Retract. >

(D U Insert \ Retract, ZC) is called a repaired knowledge-base of KB.

As there may be many ways to repair an inconsistent knowledge-base, it is
often convenient to make preferences among the repairs and to consider only the
most preferred ones. Below are two common preference criteria.

Definition 5. Let (Insert, Retract) and (Insert’, Retract’) be two repairs of a
given knowledge-base.

— set inclusion preference criterion :
(Insert’, Retract’) <; (Insert, Retract) if Insert C Insert’ and Retract C Retract’.

2 Ie., Insert are elements that should be inserted into D and Retract are elements that
should be removed from D in order to obtain a consistent knowledge-base.



— cardinality preference criterion:
(Insert’, Retract’) <. (Insert, Retract) if |Insert|+|Retract| < |Insert’|+|Retract’|.

Let < be a semi-order on the set of repairs, expressing a preference criterium.

Definition 6. [14] A <-preferred repair of a knowledge-base KB is a repair
(Insert, Retract) of KB s.t. there is no other repair (Insert’, Retract’) of KB for
which (Insert, Retract) < (Insert’, Retract’). *

Definition 7. The set of all the <-preferred repairs of a knowledge-base KB is
denoted by (KB, <).

Definition 8. A <-repaired knowledge-base of KB is a repaired knowledge-base
of KB, constructed from a <-preferred repair of XCB. The set of all the <-repaired
knowledge-bases of KB is denoted by

R(KB,<) = {(DUlnsert \ Retract, ZC) | (Insert, Retract) € (KB, <) }.

Note that if ICB is consistent and the preference criterion is a partial order and
monotonic in the size of the repairs (as in Definition 5), then R(KB, <) = {KB},
i.e., KB is the (only) <-repaired knowledge-base of itself, and so there is nothing
to repair in this case, as expected.

Definition 9. For KB; = (D;, IC;), i = 1,...n, let UKB = (| | D;, | ] 7Cs).

i=1 i=1

In the rest of this paper we describe a system that, given n distributed
knowledge-bases and a preference criterion <, computes the set R(UKB, <)
of the <-repaired knowledge-bases of UK B. The reasoner may use different
strategies to determine the consequences of this set. Among the common ap-
proaches are the skeptical (conservative) one, that it is based on a “consensus”
among all the elements of R(UKB, <) (see [14]), a “credulous” approach in which
entailments are decided by any element in R(UKB, <), an approach that is based
on a “majority vote”, etc. A detailed discussion on these methods and ways of
assuring the consistency of the composed data in each method, will be presented
elsewhere.

We conclude this section by noting that in the sequel we shall assume that
IC = U, IC; is consistent. This is a usual assumption in the literature and
it is justified by the nature of the integrity constrains as describing statements
that are widely accepted. Thus, it is less likely that integrity constraints would
contradict each other. Contradictions between the data in the different X5’s and
integrity constraints are more frequent, and may occur due to many different
reasons. In the next section we consider some common cases.

% In [14] this notion is defined for the specific case where the preference condition is
taken w.r.t. set inclusion.



2.2 Examples
In all the following examples we use set inclusion as the preference criterion.*

Ezample 1. [14, Example 1] Consider a distributed knowledge-base with rela-
tions of the form teaches(course name, teacher name). Suppose also that each
knowledge-base contains a single integrity constraint, stating that the same
course cannot be taught by two different teachers:

IC = {VXVYVZ (teaches(X,Y) A teaches(X,Z) - Y =Z) }.
Consider now the following two knowledge-bases:

KB, = ({teaches(c1,n1), teaches(cz,n2)}, IC),

KBy = ({teaches(c2,n3)}, IC)

Clearly, KB1UKB, is inconsistent. Its preferred repairs are (0, {teaches(ca,n2)})
and (0, {teaches(ca,n3)}). Hence, the two repaired knowledge-bases are:

R1 = ({teaches(ci,n1), teaches(c2,n2)}, ZIC ), and
Ro = ({teaches(ci,n1), teaches(ca,n3)}, IC).

Ezample 2. [14, Example 2] Consider a distributed knowledge-base with rela-
tions of the form supply(supplier,department,item) and class(item,type).
Let

KB1 = ({supply(c1,di,i1), class(iy,t1)}, ZC), and

KBy = ({supply(ca,da,is), class(iz, t1)}, ), where

IC = {VXVYVZ (supply(X,Y, Z) AN class(Z,t1) - X =¢1) }

states that only supplier ¢; can supply items of type t;.
KB1UKB; is inconsistent and has two preferred repairs: (B, {supply(cs, da,i2)})
and (0, {class(is,t1)}). Hence, there are two ways to repair it:

R1 = ({supply(ci,di,i1), class(ii, t1), class(ia, t1)}, ZC),
= ({supply(c1,dy,i1), supply(ca,da,iz), class(i,t1)}, ZC).
Ezample 3. [14, Example 4] Let Dy = {p(a), p(b)}, D2 ={q(a), q(c)}, and ZC =
{VX (p(X)—q(X))}. Again, (D1, 0)U(D2,ZC) is inconsistent. The corresponding

preferred repairs are ({g(b)}, @) and (0, {p(b)}). The repaired knowledge-bases
are therefore the following;:

Ri = ({p(a), p(b), q(a), q(b), q(c)}, IC),
Ra = ({p(a), q(a), ¢(0)}, IC).

3 Knowledge integration through abduction

In this section we introduce an abductive method for a coherent integration of
knowledge-bases. Our framework is composed of a language for describing the

* Generally, in what follows we shall fix a preference criterion for choosing the “best”
repairs and omit its notation whenever possible.



problem domain (ID-logic, [9]), an abductive solver that is based on an abductive
refutation procedure (SLDNFA, [10]), and a computational model for controlling
the search (A-system [18]).

3.1 ID-logic and abductive logic programming

ID-logic [9] is a framework for declarative knowledge representation that extends
classical logic with inductive definitions. This logic incorporates two types of
knowledge: definitional and assertional. Assertional knowledge is a set of first
order statements, representing a general truth about the domain of discourse.
Definitional knowledge is a set of rules of the form p<« B, in which the head p is
a predicate and the body B is a first order formula. A predicate that does not
occur in any head is called open (sometimes called abducible).

Below we present an ID-logic meta-theory describing the composition of data-
bases in terms of open predicates insert and retract. The key property of this
theory is that its abductive solutions describe the coherent compositions. Ab-
ductive reasoning on an ID-logic theory can be performed by mapping it into
an abductive logic program [8] under the extended well-founded semantics [24]

and applying an abductive inference procedure to it. An abductive logic program
(ALP)) is a triple 7 =(P, A,ZC), such that

— P is a logic program, the clauses of which are interpreted as definitions for
the predicates in their head,

— A is a set of predicates, none of which occurs in the head of a clause in P.
The elements in A are called the abducible predicates.

— 7C is a set of first-order formulae, called the integrity constraints.

Constants, functors and predicate symbols are defined as usual in logic programs.

Definition 10. An (abductive) solution for a theory (P, A,ZC) and a query
Q is a set A of ground abducible atoms, all having a predicate symbols in A,
together with an answer substitution 6, such that: (a) P U A is consistent, (b)
PUAEIC, and (c) PUA =VO86.

In what follows we use ID-logic to specify the knowledge integration, and
implement the reasoning process by an abductive refutation procedure. For this
we represent any data in some distributed database by a predicate db, and
denote the elements in the composed database by the predicate fact. The latter
predicate is defined as follows:

fact(X) :- db(X), not retract(X).
fact(X) :- insert(X).

In particular, in order to restore consistency, some facts may be removed
and some other facts may be introduced. These facts are represented by the
(abducible) predicates retract and insert, respectively. To assure proper com-
putations of the solutions, the following integrity constraints are also specified:?

5 In what follows we use the notation “ic :- B” to denote the denial “false «+ B”.



— An element cannot be retracted and inserted at the same time:
ic :- insert(X), retract(X).

— An inserted element should not belong to a given database:
ic :- insert(X), db(X).

Assuming that all the integrity constraints of the distributed knowledge-
bases are compatible and that no distinctions are made among the origins of the
composed facts, the following steps are performed:

1. Each database fact X is represented by an atom db(X).

2. Every occurrence of an atom P in some integrity constraint is replaced by
fact(P). This is done in order to assure that every integrity constraint would
hold for the composed data as well.

3. A solution is computed in terms of the abducible predicates insert and
retract.

3.2 The A-system

The reasoning process of our revision system is performed by the A-system,
introduced in [18]. The basic idea of this system is a reduction of a high level
specification into a lower level constraint store, which is managed by a constraint
solver. The system is a synthesis of the refutation procedures SLDNFA [10] and
ACLP [17], together with an improved control strategy. The latest version of the
system can be obtained from http://www.cs.kuleuven.ac.be/~dtai/kt/. It
runs on top of Sicstus Prolog 3.8.5. Below we sketch the theoretical background as
well as some practical considerations behind this system. For more information,
see [10] and [18].

Abductive inferences Given an abductive theory (P, A, ZC) as defined above,
the logical reduction of a query Q can be described as a derivation for @ through
arewriting state process. A state S consists of two types of elements: a set Pos(S)
of literals (possibly with free variables), called positive goals, and a set Neg(S)
of denials, called negative goals. The set A(S) denotes the abducible atoms in
S, i.e. positive goal atoms whose predicate is an abducible. C(S) denotes the set
of constraint atoms in S.

A rewriting derivation proceeds from state S; by selecting a literal of S; and
applying a suitable inference rule, yielding a new state S;1. The main inference
rules are given by the following rewrite rules. In the list below we denote by
A and B some literals, and by C' a constraint literal. P denotes the theory
under consideration. For readability, we do not mention cases in which Pos(S)
or Neg(S) is the same in states number ¢ and ¢ + 1.

— Rules for defined predicates:
o if A(X) « B;[X] € P and A(f) € Pos(S;), then Pos(S;+1) = Pos(S;) \
{A(®)} U {B;[f]}. _
o if « A(%),Q € Neg(S;), then Neg(Si+1) = Neg(Si) \ {«+ A(1),Q} U,
where U = {« B,[t],Q | A(t) «+ B,[t] € P}.



— Rules for open predicates:
o if « A(%),Q € Neg(S;) and p(5) € A(S;) then Neg(S;1+1) = Neg(S;) \ {+
At),QYU{UYU{R}, where U =+t =75,Q, and R =« A(t),t #5,Q.
— Rules for negations: Assume that A is not a constraint literal.
o if =4 € Pos(S;) then Pos(S;y1) = Pos(S;) \ {—A} and Neg(S;11) =
Neg(S;) U {« A}.
o if «+ A, Q € Neg(S;) then one of the following branches is taken:
1. Pos(S;+1) = Pos(S;) U {A} and Neg(S;+1) = Neg(S;) \ {+ —4,Q}.
2. Neg(Sit+1) =Neg(S;) \ {+ —4,Q}U{« A, « Q}.
— Rules for constraint literals:
o if «— C,Q € Neg(S;) then one of the following branches is taken:

1. Pos(Si+1) = Pos(S;) U{—=C}, Neg(Si+1) = Neg(S;) \ {<C,Q}.

2. Pos(S;+1) = Pos(S;)U{C}, Neg(Sit1) = Neg(S)\{+<C, QIu{«<Q}.
Remark: Tt is important here to assume that the underlying constraint
solver is capable of handling negated constraint literals. This is indeed
the case with the constraint solver used by our system (Sicstus).

The initial state So for a theory P and a query Q consists of the query Q
as a positive goal and the set of all denials in P as negative goals. A successful
state S fulfills the following conditions:

1. S contains positive goals only of the form of abducible atoms or constraint
atoms,

2. negative goals in S are denials containing some open atom p(f) which has
already been selected and resolved with each abduced atom p(3) € S, and

3. the constraint store C(S) of S is satisfiable.

Definition 11. A successful abductive derivation of a query Q w.r.t. P is a
sequence of states Sp, Si, ..., Sp, where: (a) Sp is an initial state for P and
Q, (b) For every 0<i<n—1, ;41 is obtained from S; by applying one of the
transition rules, and (c¢) Sy, is a successful state.

Whenever false is derived (in one of the constraint domains) the derivation
backtracks. A derivation flounders when universally quantified variables appear
in a selected negated literal in a denial.

Let S,, be a final state of a successful derivation. Then any substitution 6
that assigns a ground term to each free variable of S,, and which satisfies the
constraint store C(S,,) is called a solution substitution of S,,. Such a substitution
always exists since C(S,,) is satisfiable for a successful derivation.

Theorem 1. [18] Let T = (P, A,ZC) be an abductive theory s.t. P = IC, Q
a query, S the final state of a successful derivation for Q, and 6 a solution
substitution of S. Then the pair 0(A(S)) and 0 is an abductive solution for T
and Q.



Control strategy The selection strategy applied during the derivation process
is crucial. A Prolog-like selection strategy (left first, depth first) often leads to
trashing, because it is blind to other choices and it does not result in a global
overview of the current state of the computation. In the development of the
A-system the main focus was on the improvement of the control strategy. The
idea is to apply first those rules that have a deterministic change of the state, and
so information is propagated. If none of such rules are applicable, then one of the
left over choices is selected and a choice is made. This resembles a CLP-solver, in
which the constraints propagate their information as soon a choice is made. This
propagation yields less amount of choices and thus often dramatically increases
the performance.

3.3 Implementation and experiments

In this section we present the structure of our system, discuss a few implement-
ation issues, and give some experimental results.

The structure of the system Figure 1 shows a layered description of the
implemented system. The upper most level consists of the data to be integrated,
i.e., the database information and the integrity constrains. This layer together
with the composer form an ID-Logic theory that is processed by the A-system.

The composer consists of the meta-theory for integrating the distributed data
in a coherent way. It is interpreted here as an abductive theory, in which the
abducible predicates provide the information on how to restore the consistency
of the amalgamated data.

The abductive system (enclosed by dotted lines in Figure 1) consists of three
main components: A finite domain constraint solver (the one of Sicstus Prolog),
an abductive meta-interpreter (described above), and an optimizer.

The optimizer is a component that, given a preference criterion on the space
of the solutions, computes only the most-preferred (abductive) solutions. Given
such a preference criterion, this component prunes “on the fly” those branches of
the search tree that lead to worse solutions than what we have already computed.
This is actually a branch and bound “filter” on the solutions space that speeds-
up execution and makes sure that only the desired solutions will be obtained. If
the preference criterion is monotonic (in the sense that from a partial solution
it can be determined whether it potentially leads to a solution that is not worse
than a current one), then the optimizer is complete, that is, it can compute all
the optimal solutions (see also Section 3.4).

Note that the optimizer is a general component added to the A-system. Not
only this domain benefits, but it is useable in other application domains like e.g.
planning.

Experimental study Figure 2 contains the code (data section + composer) for
implementing Example 1 (The codes for Examples 2 and 3 are similar). We have
executed this code as well as other examples from the literature in our system.
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Fig. 1. A schematic view of the system components.

As Theorem 3 below guarantees, the output in each case was the set of the most
preferred solutions of the corresponding problem.

3.4 Soundness and completeness

In this section we give some soundness and completeness results for our system.
In what follows we denote by 7 an abductive theory in ID-logic, constructed
as describe above for composing n given knowledge-bases KBy, ...,KB,. Also,
Procp denotes some sound abductive proof procedure (e.g., SLDNFA [10]).

Proposition 1. Fvery abductive solution that is obtained by Procyp for a the-
ory T is a repair of UKB.

Proof: By the construction of 7 it is easy to see that all the conditions specified
in Definition 4 are met: the first two conditions are assured by the integrity
constraints of the composer. The third condition immediately follows from the
composer’s rules. The last condition is satisfied since by the soundness of Procyp
it produces abductive solutions A; for 7', thus by the second property in Defini-
tion 10, for every such solution A; = (Insert;, Retract;) we have that PUA; |= ZC.
Since P contains a data section with all the facts, it follows that DU A; = ZC,
i.e. every integrity constraints follows from D U Insert; \ Retract;. a

Theorem 2. (Soundness) Every output that is obtained by running T in the
A-system together with a <.-optimizer [respectively, together with an <;-optimizer]
is a <.-preferred repair [respectively, an <;-preferred repair] of UKB.

Proof: Follows from Proposition 1 (since the 4-system is based on SLDNFA that
is a sound abductive proof procedure), and the fact that the <.-optimizer prunes



/¥ ——————- Composer: -------
:— dynamic ic/0, fact/1, db/1.

abducible(insert(_)).
abducible(retract(_)).

fact(X) :- db(X), not(retract(X)).

fact(X) :- insert(X).

ic :- imsert(X), db(X).

ic :- insert(X), retract(X).

/¥ ———=—== Example 1: --—--—---

db(teaches(1,1)). db(teaches(2,2)). % D1
db(teaches(2,3)). % D2
ic :- fact(teaches(X,Y)), fact(teaches(X,Z)), Y\=Z. % IC

Fig. 2. Code for Example 1

paths that lead to solutions which are not <.-preferable. Similar arguments hold
for systems with an <;-optimizer. |

Proposition 2. Suppose that the query “— true’ has a finite SLDNFA-tree
w.r.t. T. Then every <.-preferred repair and every <;-preferred repair of UKB
is obtained by running T in the A-system.

Outline of proof: The proof that all the abductive solutions with minimal car-
dinality are obtained by the system is based on [10, Theorem 10.1], where it is
shown that SLDNFA°, which is an extension of SLDNFA, aimed for comput-
ing solutions with minimal cardinality, is complete (see [10, Section 10.1] for
further details). Similarly, the proof that all the abductive solutions which are
minimal w.r.t. set inclusion are obtained by the system is based on [10, Theorem
10.2] that shows that SLDNFA ;, which is another extension of SLDNFA, aimed
for computing minimal solutions w.r.t. set inclusion, is also complete (see [10,
Section 10.2] for further details).

Now, A-system is based on the combination of SLDNFA? and SLDNFA, .
Moreover, as this system does not change the refutation tree (but only controls
the way rules are selected), Theorems 10.1 and 10.2 in [10] are applicable in our
case as well. Thus, all the <.- and the <;-minimal solutions are produced. This
in particular means that every <.-preferred repair as well as every <;-preferred
repair of UKB is produced by our system. a

Theorem 3. (Completeness) In the notations of Proposition 2 and under its
assumptions, the output of the execution of T in the A-system together with a
<.-optimizer [respectively, together with an <;-optimizer] is exactly (UKB, <.)
[respectively, (UKB, <;)].

Proof: We shall show the claim for the case of <,; the proof w.r.t. <; is similar.



Let (Insert, Retract) € (UKB, <.). By Proposition 2, A = (Insert, Retract)
is one of the solutions produced by the A-system for 7. Now, during the ex-
ecution of our system together with the <.-optimizer, the path that corres-
ponds to A cannot be pruned from the refutation tree, since by our assump-
tion (Insert, Retract) has a minimal cardinality among the possible solutions,
so the pruning condition is not satisfied. Thus A will be produced by the <.-
optimized system. For the converse, suppose that (Insert, Retract) is some repair
of UKB that is produced by the <.-optimized system. Suppose for a contradic-
tion that (Insert, Retract) & (UKB,<.). By the proof of Proposition 2, there is
some A’ = (Insert’, Retract’) € (UKB, <.) that is constructed by the A-system
for 7, and (Insert’, Retract’) <. (Insert, Retract). But |A’| < |4|, and so the <,-
optimizer would prone the path of the A solution once its cardinality becomes
bigger than |A’|. This contradicts our assumption that (Insert, Retract) is pro-
duced by the <.-optimized system. O

4 Handling specialized information

4.1 Timestamped information

Many database applications contain temporal information. This kind of data
may be divided to two types: time information that is part of the data itself, and
time information that is related to database operations (e.g., records on when the
database was updated). Consider, for instance, birth_day(John, 15/05/2001) 16 /05 /2001 -
Here, John’s date of birth is an instance of the former type of time information,
and the subscripted data that describes the time in which this fact was added

to the database, is an instance of the latter type of time information.

In our approach, timestamp information can be integrated by adding a tem-
poral theory describing the state of the database at any particular time point.
One way of doing so is by using situation calculus. In this approach a database
is described by initial information and a history of events performed during the
database lifetime (see [25]). Here we use a different approach, which is based on
event calculus. The idea is to make a distinction between two kinds of events:
add_db and del_db that describe the database modifications, and the composer-
driven events insert and retract that are used for constructing database re-
pairs. In this view, the extended composer has the following form:

holds_at(P,T) :- initially(P), not clipped(0,P,T).
holds_at(P,T) :- add(P,E), E<T, not clipped(E,P,T).
clipped(E,P,T) :- del(P,C), ELC, C<T.

add(P,T) :- add_db(P,T). add(P,T) :- insert(P,T).
del(P,T) :- del_db(P,T). del(P,T) :- retract(P,T).
ic :- insert(P,T), retract(P,T).

ic :- insert(P,T), add_db(P,T).

ic :- retract(P,T), del_db(P,T).



In this extended context the integrity constrains must be carefully specified.
Consider, e.g. the statement that a person can be born only on one date:

ic :- holds_at(birth day(P,D1),T), holds_at(birth day(P,D2),T), D1#D2.

The problem here is that to ensure consistency this constraint must be checked
at every point in time. This may be avoided by a simple rewriting that ensures
that the constraint will be verified only when an event occurs:

ic(birth,T) :- holds_at(birth_day(P,D1),T),
holds_at(birth_day(P,D2),T), D1\=D2.

ic :- add_db(birth_day(_,_),T), NT = T+1, ic(birth,NT).

ic :- del_db(birth_day(_,_),T), NT = T+1, ic(birth,NT).

4.2 Keeping track of source identities

There are cases in which it is important to preserve the identity of the database
from which a specific piece of information was originated. This is useful, for
instance, when one wants to make preferences among different sources, or when
some specific source should be filtered out (e.g, when the corresponding database
is not available or becomes unreliable). This kind of information may be decoded
by adding another argument to every fact, which denotes the identity of its origin.
This requires minor modifications in the basic composer, since the composer
controls the way in which the data is integrated. As such, it is the only component
that can keep track to the source of the information.

Suppose, then, that for every database fact we add another argument that
identifies its source. L.e., db(X,S) denotes that X is a fact originated from a data-
base S. The composer then has the following form:

fact(X,S) :- db(X,S), not retract(X)

fact (X,composer) :- insert(X)
ic :- imsert(X), db(X,S)
ic :- insert(X), retract(X)

Note that the composer considers itself as an extra source that inserts brand
new data facts. Now it is possible, e.g., to trace information that comes from
a specific source, make preferences among different sources (by specifying ap-
propriate integrity constraints), and filter data that comes from certain sources.
The last property is demonstrated by the following rule:

validFact(X) :- fact(X,S), trusted_source(S)

where trusted_source enumerates all reliable sources of the data.

4.3 Handling quantitative information

Next we consider a potential way of decoding in the integrated data some quant-
itative information, such as certainty factors or probabilities.

Suppose that db(X,1) denotes that fact X holds with probability i. One can
define a strategy on how to reason with this kind of information, and decode



it in the composer. For instance, the composer below uses a conservative policy
that takes for each fact its lowest probability:

fact(X,i) :- db(X,.), not retract(X), i = min{j | db(X,j)}
fact(X,1) :- insert(X,1)

ic :- imsert(X,1), db(X,.)

ic :- insert(X,1), retract(X)

For implementing this kind of program the underlying system should be able to
compute aggregations (possibly together with recursion). Adding this capability
to our system is one of the subjects for a future work.

5 Conclusion and further work

In this paper we have developed a formal declarative foundation for rendering
coherent data, provided by different knowledge-bases, and presented an applica-
tion that implements this approach. Like other systems (e.g., [6, 14,20, 29]), our
system mediates among the sources of information and between the reasoner
and the underlying data.

Composing distributed data by a meta-theory in ID-logic yields a robust
and easily extendable system. Extra meta information about the data facts,
such as time stamps and source, are easily dealt with by extending the meta-
theory properly. Due the inherent modularity of the chosen approach, each part
is independent and can be adapted according to the needs.

It is important to note that our composing system inherits the functionality
of the underlying solver. This implies, in particular, flexibility, modularity, easy
interaction with different sources of information, and the ability to reason with
any set of first order integrity constraints.® As such, our system may be easily
modified and extended with addition background knowledge.

Among the directions for further exploration are dealing with more general
forms of databases, in which views (or rules) are allowed, and lifting the condi-
tion that all the integrity constraints are compatible with each other. Another
important challenge is to extend the capabilities of the abductive system with
aggregation. This would allow us to integrate different types of databases, and
would provide means of solving new kinds of problems.
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