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Coherent control of three-spin states in a triple

quantum dot
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Spin qubits involving individual spins in single quantum dots
or coupled spins in double quantum dots have emerged as
potential building blocks for quantum information processing
applications1–4. It has been suggested that triple quantum
dots may provide additional tools and functionalities. These
include encoding information either to obtain protection from
decoherence or to permit all-electrical operation5, efficient spin
busing across a quantum circuit6, and to enable quantum error
correction using the three-spin Greenberger-Horn-Zeilinger
quantum state. Towards these goals we demonstrate coherent
manipulation of two interacting three-spin states. We employ
the Landau–Zener–Stückelberg7,8 approach for creating and
manipulating coherent superpositions of quantum states9. We
confirm that we are able to maintain coherence when de-
creasing the exchange coupling of one spin with another while
simultaneously increasing its coupling with the third. Such con-
trol of pairwise exchange is a requirement of most spin qubit
architectures10, but has not been previously demonstrated.

Following the spin qubit proposal by Loss andDiVincenzo10 and
the electrostatic isolation of single spins in quantum dots (QDs)11

and double quantum dots (DQDs)12, coherent manipulation was
demonstrated in two-level systems based on single-spin up and
down states2 as well as two-spin singlet and triplet states1. Here
we demonstrate coherent manipulation of a two-level system based
on three-spin states. We employ the triple quantum dot (TQD)
device layout shown in Fig. 1a, consisting of multiple metallic
gates on a GaAs/AlGaAs heterostructure. The gates are used to
electrostatically define threeQDs in series within a two-dimensional
electron gas 110 nm below the surface. The QDs are surrounded by
two quantum point contact charge detectors (QPCs)13. The QPC
conductance identifies the number of electrons in each QD and its
derivative with respect to a relevant gate voltagemaps out the device
configuration stability diagram. We tune the device to the qubit
operating electronic configuration, (NL,NC,NR)= (1,1,1), between
two spin-to-charge conversion regimes (1,0,2) and (2,0,1), where
L, C and R refer to the left, centre and right QDs respectively. The
detuning, ε, controls the energy difference between configurations
(1,0,2), (1,1,1) and (2,0,1). The exchange coupling, J , depends on ε

and the tunnel couplings.
In this paper we concentrate on two scenarios. In the first

scenario, at each point in the stability diagram the exchange
coupling to the centre spin from one or both of the edge spins
is minimal (that is, one edge spin resembles a passive spectator).
This configuration is used as a control to confirm that our device
maps onto two-spin results in this limit9. In the second scenario a
true three-interacting-spin regime is achieved. (Results from a third
intermediate regime are shown in the Supplementary Information.)
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The energy level spectrum of a TQD (ref. 14) consists of
quadruplets Q with total spin S = 3/2 separated by the Zeeman
energy in a magnetic field and doublets1′ and1 with S= 1/2. The
two states of our qubit consist of one of the quadruplets, Q3/2, and
one of the doublets, 1′

1/2, where

|Q3/2〉 = | ↑↑↑〉

|1′
1/2〉 = (−JLC+JRC+Ω)|↑↑↓〉−(JRC+Ω)|↑↓↑〉+JLC|↓↑↑〉√

4Ω2+2Ω(2JRC−JLC)

with Ω =
√
J 2LC + J 2RC − JLCJRC, and where JLC (JRC) is the ex-

change coupling between the left (right) and centre spins. (Other
three-spin states are described in more detail in the Supple-
mentary Information.)

Figure 1b illustrates the three-spin energy spectrum as a function
of detuning (zero detuning is defined as the centre of the (1,1,1)
regime as shown). Experimentally we can tune the (1,1,1) region
size by using gate C primarily15. The eigenvalues of the four lowest
states relevant for our experiments are:

EQ1/2
= −EZ/2

E11/2
= −(JLC + JRC −Ω +EZ )/2

EQ3/2
= −3EZ/2

E1′
1/2

= −(JLC + JRC +Ω +EZ )/2

The hyperfine interaction16 couples the state 1′
1/2 to the state

Q3/2(Q1/2) at their anticrossing (asymptotic approach), see Fig. 1c.
(Q1/2 and11/2 are also hyperfine coupled.) Figure 1c also illustrates
the two types of experiment we describe in this paper. With the
single anticrossing (SA) pulse, based on the methodology in ref. 9,
the system starts in the 1′

1/2 state in the (2,0,1) (or (1,0,2)) regime
and then a pulse is applied to reach the (1,1,1) regime. The pulse rise
time (see Supplementary Information) ensures that Landau–Zener
(LZ) tunnelling creates a coherent superposition ofQ3/2 and1′

1/2 on
passage through the anticrossing. After a state evolution time, τ , the
pulse steps down, completing the spin interferometer on the return
passage through the anticrossing. The probability of the 1′

1/2 state
occupation, P1′

1/2
, is directly obtained by this projection back into

the (2,0,1) (or (1,0,2)) regime, where the required spin-to-charge
information conversion is achieved by the Pauli blockade17 of
the Q3/2 state. An experiment with a double anticrossing (DA)
pulse is also illustrated in Fig. 1c. The sequence is similar, with
the important distinction that a larger pulse enables LZ tunnelling
processes through both anticrossings before again projecting back
in the (2,0,1) regime having passed through both anticrossings
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Figure 1 |Device, three-spin states spectrum, and spin arch. a, Electron micrograph of a device identical to the one measured. Gates 1 and 2 are connected

to high-frequency lines for the application of fast voltage pulses (δV1, δV2) in addition to d.c. voltages (V1, V2). Gate C tunes the (1,1,1) region size by

shifting the centre dot addition line. b, Calculated energies versus detuning ε for the three-spin states for a 22-mV-wide (1,1,1) region (that is,

|ε+ −ε−| = 22mV), neglecting the hyperfine interaction. The Zeeman splitting, Ez, originates from an applied 60mT field. The detuning line is describing a

−45◦ angle with respect to the V1 axis in the V1−V2 plane. The states shown in grey are split by the tunnel couplings TRC and TLC (not drawn to scale)

from the 1′ states. The 1′
1/2 state is also drawn for a midsized (1,1,1) region (green dash–dotted line) and for a narrow (1,1,1) region (green dotted curve).

c, Calculated energy diagram including the effect of hyperfine interaction resulting from the proximity of the four lowest energy three-spin states with

Sz >0 (states with Sz <0 are excluded for simplicity). Dotted red circles indicate pairs of states coupled by the hyperfine interaction. The dotted red circle

at ε =0 represents the hyperfine interaction between 1′
1/2 and Q1/2 (the meaning of the remaining dotted red circles is clear). The single 1′

1/2−Q3/2

anticrossing (SA) and double 1′
1/2−Q3/2 anticrossing (DA) pulses are drawn. d, Numerical derivative of the left QPC conductance with respect to V2 in

the presence of a pulse across the charge transfer line between (2,0,1) and (1,1,1) for a 9-mV-wide (1,1,1) region . The extent of the (1,1,1) region along the

detuning line (approximately joining the centres of the two charge transfer lines) is measured by a projection onto the gate voltage axis that is on the same

side as the QPC detector used in the measurement. It is the resulting gate voltage range that is set equal to |ε+ −ε−|, and this is used for comparison

between regimes of (1,1,1) regions with different widths. Black is low, orange is medium and yellow is high. The pulse shape is in the Supplementary

Information. The detuning line makes a −51.3◦ angle with respect to the V1 axis in the V1−V2 plane, permitting both sides of the spin arch to be observed.

The dashed line is the theoretical fit (with detuning-dependent interdot couplings included).

twice. Important calibration information is obtained if the pulse
time is longer than the coherence time (that is, τ > T ∗

2 ) where the
mixing at the 1′

1/2 −Q3/2 anticrossing is detected independently of
coherence effects. Figure 1d plots this against magnetic field for a
9-mV-wide (1,1,1) regime midway between the narrow and wide
(1,1,1) regimes. The two anticrossings form a ‘spin arch’ which is
used to extract the coupling parameters for themodel.

The distinction between our two regimes is now clear. In the
case of a wide (1,1,1) region, close to zero detuning, both JLC and
JRC ∼ 0, so E1′

1/2
≈ E11/2

≈ EQ1/2
. Away from zero detuning only

two of the spins are coupled: right–centre (left–centre) at negative
(positive) detuning. Experiments using DA pulses in this regime
involve coupling to not only Q3/2 but also to Q1/2. Thus this regime
is not suitable for a two-level system involving three interacting
spins. As a control experiment, however, in Fig. 2 we plot the
coherent Landau–Zener–Stückelberg (LZS) oscillations obtained
in this regime for both positive and negative detuning with a SA
pulse. These compare to the first LZS experimental results with
DQDs from ref. 9, later described theoretically in refs 18,19. The

degree of LZ tunnelling, that is, the relative size of A and B in
the coherent A|1′

1/2〉 + Beiφ(t )|Q3/2〉 state, depends on the speed,
v , through the anticrossing: PLZ = e−(2π12/h̄v), where 21 is the
energy splitting at the anticrossing. The visibility of the oscillations
is a balance between this speed and T ∗

2 . For an infinite T ∗
2 , a

rise time ∼0.2 µs would produce a 50/50 superposition (see also
ref. 9). Experimentally it is found that a 6.6 ns pulse rise time (or
3.3 ns Gaussian time constant) leads to oscillations with the highest
visibility. The value of T ∗

2 , obtained from a single parameter fit to
the data, ranges from 5 to 18 ns, consistent with previous DQD
experiments where T ∗

2 was limited by fluctuations in the nuclear
field environment1.

In Figs 3 and 4we show results for experiments withDApulses in
a narrow (1,1,1) regime, where JLC and JRC are finite throughout and
two well-defined qubit states exist between the two anticrossings
(that is, simulations based on experimentally extracted parameters
confirm that 1′

1/2 has moved far enough below the Q1/2 state such
that no experimental features are related to interactions with the
Q1/2 state). The energy level diagrams for this regime are shown
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Figure 2 | LZS oscillations from the two 1′
1/2

−Q3/2 qubits for a wide (1,1,1) region. a,b, Numerical derivative of the conductance with respect to

detuning showing LZS oscillations versus pulse duration τ . Black is low, red is medium and yellow is high. Panel a shows measurements with the right QPC

for |ε+ −ε−| = 27mV along V1; the pulse goes across the (1,0,2) to (1,1,1) charge transfer line at B=60mT. Both V2 and V1 are swept to detune parallel to

the pulse direction in the V1−V2 plane. Panel b shows measurements with the left QPC for |ε+ −ε−| =41.5mV along V2; the pulse goes across the (2,0,1)

to (1,1,1) charge transfer line at B=60mT. c,d, Probability of ending in the 1′
1/2 state as a function of τ with fits for T∗

2 . For the right QPC (c) the pulse goes

from (1,0,2) to (1,1,1) and |ε+ −ε−| ∼ 50mV along V1. For the left QPC (d) the pulse goes from (2,0,1) to (1,1,1) and |ε+ −ε−| = 27mV along V2. The

experimental data are shown as points, whereas the theoretical fits are shown as red lines. The values of T∗
2 extracted from the single parameter fit to

the LZS model are indicated.
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Figure 3 | Coherent three-spin state manipulation with a narrow (1,1,1) region a, Stability diagram in the presence of a pulse (drawn as a white line for a

given (V1, V2)), showing coherent LZS oscillations in the (2,0,1) region with features parallel to both charge transfer lines. The colour map (black is low, red

is medium and yellow is high) corresponds to the numerical derivative of the left QPC conductance with respect to V2 in the presence of a pulse across the

charge transfer line between (2,0,1) and (1,1,1). The (1,1,1) region is tuned to a width of ∼5mV with gate C. B= 25mT. The stability diagram also shows LZS

oscillations involving (2,0,2) and (1,1,2). b, Calculated dP1′
1/2

/dV2 map zooming mainly into the (2,0,1) region of the stability diagram from a. The dashed

line shows where the addition line is expected, although it is not part of the calculation. B=40mT. c,d, Traces of dP1′
1/2

/dV2 versus τ . For c the data points

are extracted from Fig. 4b (40mT, white line) at V2 = −1.0,751V. For d the data points are extracted from Fig. 4b (40mT, blue line) at V2 = −1.074V. The

fits (red lines) use B=60mT. The values of T∗
2 extracted from the fits are indicated.

56 NATURE PHYSICS | VOL 8 | JANUARY 2012 | www.nature.com/naturephysics

© 2012 M acmillan Publishers Limited.  All rights reserved. 

http://www.nature.com/doifinder/10.1038/nphys2149
http://www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS2149 LETTERS

V
2

 (
V

)

 (ns)τ

B = 5 mT B = 25 mT B = 40 mT B = 60 mT

B = 5 mT B = 25 mT B = 40 mT B = 60 mT

(mV)ε

E
n

e
rg

y
 (

µ
e

V
)

a

b

c

4

2

0

¬2

¬4
¬5 0 5

(mV)ε

¬5 0 5

(mV)ε

¬5 0 5

(mV)ε

¬5 0 5

¬1.070

¬1.078

2520151050

 (ns)τ

2520151050

 (ns)τ

2520151050

 (ns)τ

2520151050

 (ns)τ

2520151050

 (ns)τ

2520151050

 (ns)τ

2520151050

 (ns)τ

2520151050

(m
V

)
ε

8

2

Figure 4 |Magnetic field dependence of coherent three-spin state manipulation with a narrow (1,1,1) region. a, Energy spectra for the three-spin states

for different magnetic fields. The colour code for the states is the same as in Fig. 1b. From left to right we have: B= 5mT and |ε+ −ε−| = 3.9mV; B= 25mT

and |ε+ −ε−| = 5.1mV; B=40mT and |ε+ −ε−| = 5.6mV; and B=60mT and |ε+ −ε−| =4.6mV. b, Coherent oscillations shown in the τ −V2 plane as

the numerical derivative of the left QPC conductance with respect to V2 (black is low, red is medium and yellow is high) in the presence of a pulse across

the charge transfer line between (2,0,1) and (1,1,1). The (1,1,1) region is tuned to a width of ∼5mV with gate C. V1 is swept proportionally to V2 to detune

parallel to the pulse direction. The magnetic field and (1,1,1) region sizes from left to right are as in a. The white dot in the B=40mT map indicates a

coherent oscillation resulting from a DA pulse reaching past the far 1′
1/2−Q3/2 anticrossing. c, Calculated dP1′

1/2
/dV2 maps (black is low, red is medium

and yellow is high) in the τ −ε plane for the same experimental settings as for b. The magnetic field and (1,1,1) region sizes from left to right are as in a. To

keep the fringes clearer, dephasing is not included. The very rapid oscillations in the upper right corner of the figures are an artefact due to the large

exchange energy past the far 1′
1/2−Q3/2 anticrossing. At B= 5mT, the anticrossings have merged, so there is only one boundary in the diagram (white

dashed line). At B=60mT, two 1′
1/2−Q3/2 anticrossings are recovered (see the two white dashed lines). At B= 25mT, for both theory and experiment,

dotted white curves are drawn as a guide to the eye for the peak of an oscillation in between the two 1′
1/2−Q3/2 anticrossings. We note that a small DNP

effect20 is present which depends on the size of the (1,1,1) region, details of pulse shape and pulse orientation. In b,c (25 and 40mT), it is found that a DNP

∼20mT is required to properly describe the period of oscillations. This is why the stability diagram in Fig. 3b is calculated at 40mT rather than 25mT, and

why the fits in Fig. 3c,d are calculated at 60mT instead of 40mT.

in Fig. 4a. The stability diagram, measured in the presence of
a fixed amplitude DA pulse at 25mT, is shown in Fig. 3a. The
results reveal LZS resonances parallel to both charge transfer lines,
consistent with theoretical simulations (Fig. 3b) and confirming
that coherence is maintained as the 1′

1/2 state is transformed from
one dominated by coupling between left and centre spins to one
dominated by right and centre spins, effectively demonstrating
coherent pairwise exchange control.

To gain further insight, Fig. 4b and c show experimental
and theoretical plots of the pulse duration dependence of LZS
oscillations at different magnetic fields. Two boundaries, marked
with horizontal white dashed lines, can be observed at fields
above 25mT. The region between the boundaries corresponds to
the regime between the two anticrossings, while the resonances
correspond to LZS oscillations. It can be seen (for example, curved
dotted lines) that the resonances double back on themselves. This is
a direct observation of tracking the resonance across the maximum

in the1′
1/2 versus detuning curve (see Figs 4a and 1b).We speculate

that operating at this spotmay providemore protection fromcharge
noise, as the energy levels become locally flat versus detuning.

Although the frequency of coherent oscillations grows with field,
owing to the increased spacing between the two qubit levels, it seems
as if the experiment and theory differ by 20mT for experimental
data at 40mT and by 15mT for data at 25mT. We attribute this
to a dynamic nuclear polarization effect (DNP; ref. 20). To make
this quantitative we extract horizontal slices in Fig. 4b at 40mT
(blue and white lines) and fit them to obtain T ∗

2 . The data are
consistent with a 20mT DNP effect. It is found experimentally
that the values of T ∗

2 for the three-spin qubit experiments in
Fig. 3c,d (8–15 ns) are within error identical to the values from
the two-spin qubit experiments. This is consistent with T ∗

2 being
dominated by local uncorrelated nuclear field fluctuations as both
sets of qubit states differ by the same total spin21. Finally, we note
that we also observe a resonance beyond the second anticrossing,
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marked with a white spot in Fig. 4b. This is a non-trivial feature
corresponding to a resonance condition of two interacting spin
interferometers, one between the two anticrossings and a second,
beyond the second anticrossing.

In conclusion, we have demonstrated coherent control of a qubit
based on three-interacting-spin states. We have confirmed that
there is no detectable change in the coherence time in the three-spin
experiments compared with the two-spin experiments. We have
realized the pairwise control of exchange for a three-spin system by
pulsing the detuning energy of a triple quantumdot. The same tech-
nique should carry over when more quantum dots are added in se-
ries to increase the number of qubits. Pairwise control of exchange,
as demonstrated here, will then be useful for building complex
quantumalgorithms based on electron spin qubits in quantumdots.
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