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Materials and Methods 

Double quantum dot susceptibility at zero magnetic field 

Similarly to previous hybrid cavity– quantum dot experiments, two different 

physical quantities can be measured on the device. We can perform a DC transport 

measurement, acquiring the current flowing through the double quantum dot as a function 

of gate voltages. This allows us to obtain a conventional transport spectroscopy as shown 

in figure S1. We can simultaneously measure the phase and amplitude of the microwave 

field transmitted through the cavity, which is sensitive to the susceptibility of the double 

quantum dot transitions. Figure S1 shows such measurements in a gate region where the 

carbon nanotube device behaves as a double quantum dot. These color-scale plots outline 

the stability diagram of the device in this region, at zero external magnetic field. We label 

the charge occupation numbers of the dots by n and m. At the degeneracy between the 

dot’s left/right charge occupation states (n,m+1) and (n+1,m), we observe sign changes in 

the phase signal along two parallel lines indicating transitions in the double quantum dot 

that are resonant with the microwave cavity.  

 

 

Measurement techniques 

The microwave measurement techniques are essentially similar to those used in ref 

(26). We measure the amplitude and the phase of the transmitted microwave signal as a 

function of the various parameters of the system (frequency of drive, magnetic field or 

DC gate voltages) either using a heterodyne detection scheme or a Vector Network 

Analyzer (VNA).  

For every change in magnetic field, we first search and measure the bare cavity 

frequency 𝑓𝑐 by strongly detuning all the DQD transitions from the cavity (typically by 

going to ε > 1mV). We measure the cavity linewidth and the frequency dependence of the 

phase at maximum transmission (phase slope).  The latter gives the phase sensitivity to a 

resonant frequency change. We acquire precisely the bare (i.e. the reference) phase and 

amplitude, then we tune the double dot, going back to 𝜀 values given in the data and 

subsequently measure phase and amplitude shifts from their bare value, namely Δφ and 

ΔA/A. This allows us to compensate for the weak dependence of fc on magnetic field, and 

for the jumps associated to magnetic flux vortices penetrating the superconducting film 

(see ref 8). 

 

 

Fabrication method 

A 150nm thick Nb film is first evaporated on an RF Si substrate at rate of 1nm/s and 

a pressure of 10-9 mbar. The cavity is made subsequently using photolithography 

combined with reactive ion etching (SF6 process). Carbon nanotubes are grown with 

Chemical Vapor Deposition technique (CVD) at about 900°C using a methane process on 

a separate quartz substrate and stamped onto the device chip in the desired location inside 

the gap of the cavity (31). The nanotubes are then localized and contacted in two e-beam 

lithography steps with top gates and PdNi source and drain contacts, which carry DC 

signals, as shown in figure 1A and 1B. The top gates are a multilayer of 6nm of Al2O3 

covered with 50 nm of Al and 20nm of Pd. The Al2O3 is obtained in 3 steps by 
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evaporating 2nm of Al and oxidizing this layer by letting 1mbar of O2 for 10 min. The 

PdNi source drain electrodes are 30nm thick, 150nm wide Ni75Pd25 layers capped with a 

5nm Pd layer. 

 

 

Determination of decoherence and spin-photon coupling strength 

In order to derive the transmission coefficient of the cavity, we first consider one 

transition between energy levels i and j in the double dot, coupled to the cavity mode. 

From the traditional Jaynes-Cummings Hamiltonian, we write the conventional equations 

of motion : 
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where a  is the annihilation operator of the cavity field, )2(1),(outina are annihilation 

operators for fields propagating inwards (outwards) the cavity at port 1 (2), 

21int    is the total cavity decay given by the sum of internal loss and coupling 

to the two ports of the resonator. Above, ijg  is the coupling constant of the transition to 

the resonator, ij its total decoherence rate (relaxation + dephasing), ij  its relaxation 

rate, and ij  its detuning to the drive frequency. We introduce the Pauli operator z  

associated to the transition, and the lowering and raising operators   , . 

 

We now write the input-output relation in which we add a small correction arising 

from the direct parasitic (and weak) transmission channel in our sample holder : 

   +  e 1 +    2in,2

)(

in,1out,2 aaTaeTia ii    

 

Above, T and  account for the amplitude and phase of the direct parasitic (and weak) 

transmission channel in our sample holder and 2  is the coupling rate of the cavity to 

port 2. The    sign indicates that such an equation is only valid at lowest order in T and 

does not ensure unitarity of the scattering matrix for arbitrary values of T. 

In the semi-classical limit, we make use of the usual decoupling 





   *,, aaaaaa zz  and compute the transmission 

coefficient 1,2,21 / inout aaS  : 
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with )(2 ff ijij   , fij being the double quantum dot transition frequency, fcav being 

the resonance frequency of the cavity and  f  being the frequency of the cavity drive. The 

parameter 21   accounts for the coupling capacitance of the resonator and T and  

control the Fano line shape of our resonance, which is slightly visible in figure 3B. 

The above formula is the one used to fit the transmission of the cavity as shown in 

figure 3B in the main text. First, the cavity parameters (, , fcav, T, ) are extracted when 

the double dot is strongly detuned (all the ij=0). After determining the resonance point 

0 ij , we fit the data with two free parameters, gij and ij. This allows us to extract 

both the cooperativity and the dephasing rate of the transition ij. In addition, whereas the 

Fano line shape is important to obtain a quantitative fit of the resonances both tuned and 

detuned, letting T to zero does not give markedly different cooperativies and decoherence 

rates (in this case one has to correct for the background of the data). The amplitude A is 

defined as 21S  and the phase as )arg( 21S .  

It is important to stress that the cooperativity controls the maximum of the resonance 

whereas the decoherence rate controls the width. Hence, the cooperativity can also be 

directly extracted from the ratio of the transmission at resonance in the tuned and detuned 

condition. Indeed, one can show that the above formula leads to: 
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Applying this formula yields C=2.3, in very good agreement with the full fitting 

procedure for the data in figure 3B. The approximate equality stems from the slight Fano 

line shape and becomes exact if T=0. 

 

Theory of our experimental findings 

We further support our experimental findings by a microscopic modeling of our 

nanotube based spin/photon coupling scheme. The starting point is the full microscopic 

Hamiltonian of the carbon nanotube based double quantum dot with non-collinear 

ferromagnetic contacts, projected onto the (1,0)-(0,1) charge states, and coupled to a 

single mode of the cavity. Since the double quantum dot which we study is made out of a 

single wall carbon nanotube, we must include the K/K’ valley degree of freedom in the 

description (not represented in figure 2D for the sake of simplicity). The full Hamiltonian 

reads :  
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Here, 

ˆ  is the spin operator,  zyxii ,,,ˆ   are the Pauli matrices acting in the 

valley space and  zyxii ,,,ˆ   are the Pauli matrices acting in the L/R space of the 

double quantum dot. The unit vector in the direction )(zx  is denoted by )( zxu


. The 

vectors KL,


, ',KL


, KR,


, ',KR


are the valley/dot dependent effective magnetic fields 

induced by the ferromagnetic contacts. We define the detuning   and the hopping 

constant t  between  the left(L) and the right(R) dots. We use effective spin and orbital 

Landé factors 
)(RL

spin  and )(RL

orb . We assume that there can be a small disorder induced 

valley mixing which we include in the usual way with a phenomenological parameter

'KK . Finally, the interaction between the cavity photons and the double quantum dot is 

characterized by the coupling strength dg . The cavity frequency is cav . 

Since the measurements of Figures 2 and 3 are realized with a slowly varying 

magnetic field, they do not show the hysteretic behavior of Figure 4. Instead, the 

magnetizations are relaxed for each measurement point in equilibrium positions described 

by angles L  and R  which vary with 
extB . For simplicity we use: 

)exp(
0

0

)()( B
B

RLRL
ext  for 0extB  

)exp(
0

0

)()( B
B

RLRL
ext   for 0extB  

These equations take into account that the magnetizations and the external magnetic field 

tend to the same direction for high values of 
extB . They also take into account that for a 

vanishing
extB , the orientations of the magnetizations stick to the easy axis of the 

electrodes, but with a  -flip from 0extB  to 0extB , in order to minimize the angle 

with the magnetic field. This last feature is essential to reproduce the cusps occurring in 

the resonances of Fig. 2A and 2B for 0extB .  

 

 

The above Hamiltonian is a generalization of the Hamiltonian (1) of (15) in which 

the valley degree of freedom was omitted. The inhomogeneity in the direction of the 

effective fields ( RL   ) induces a mixing of the spin states and the L/R orbital states. 
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This is the main ingredient for our artificial spin orbit interaction.  Since the photons 

induce electron hopping between the left and the right dot, they can also induce spin flips.  

We determine from the Hamiltonian the transition energies Eij=h fij, and the 

couplings ijg . We also include in the model decoherence rates ij , which include 

relaxation and dephasing. For simplicity we use a small transition independent relaxation 

rate 1 . In our model, decoherence is dominated by charge noise treated semiclassically 

up to second order in order to describe properly sweet spots. Using the above equations 

and the transmission formula given in the previous section, we obtain the full colorscale 

plots of the amplitude and phase of the microwave signal as a function of the gate 

detuning  and the external magnetic field
extB  (see Figure S5). This allows us to account 

very well for the measurements presented in Figures 2A and 2B as well as the 

spectroscopic lines of Figure 3.  We use the following parameters : MHzcav 6735 , 

MHzt 2380 , MHzKL 3135,  , MHzKL 3095',  , MHzKR 3145,  , 

MHzKR 3100',  , TMHzB

K

spin /2700 , TMHzB

K

spin /1300'  , 

TMHzBorb /300 , MHzKK 28'  , MHzgd 45 , MHz11  , TB 5,10  , 

radL 17.00  , and 
4

00 
  LR

. We show in Figure S4 the DQD eigenenergies obtained 

from Hamiltonian dH  and the corresponding transitions energies Eij, versus 
extB . The 

number of eigenstates is twice larger than expected from figure 2D, due to the inclusion 

of the K/K' degree of freedom. The two lowest eigenstates 0 and 1 of dH  are only slightly 

split due to the slight asymmetry between the K and K’ valleys. With the above 

parameters and the
extB values of the experiment, this splitting is smaller than temperature. 

Therefore, we assume that these two states are equally populated. From Figure S4B, the 

transitions 04, 15 and 25 become resonant with the cavity. They reproduce well the 

transitions Spin, Spin’ and the third faint transition of the main text, respectively. 

With the above model, the doublets in figure S5C and D arise from the slight asymmetry 

between the K and K’ valleys. Note that the coupling between the two valleys remains 

very small here. With our parameters, the two strong resonances from the doublet (04 and 

15) are dominated by spin-flip and (to a weaker proportion) by L/R flips. These two 

transitions are mainly valley conserving. Their contrast is rather well reproduced by our 

simulation, which confirms that decoherence of our spin states is indeed to a great extent 

caused by charge noise, due to the spin/charge hybridization. In particular, we can 

reproduce the existence of a minimum of decoherence and a maximum in the spin-photon 

cooperativity near 0 . This behavior is due to the existence of a sweet spot with 

respect to charge noise, indicated by the green dotted line in Fig.S5C. In constrast, the 

third faint resonance (25) has a more important K/K' flip component. The contrast of this 

resonance is stronger in the calculation than in the data, which may be corrected by 

introducing a specific intrinsic K/K' relaxation rate. Indeed, the K/K' degree of freedom is 

expected to be intrinsically less coherent than the spin degree of freedom because it can 

be directly affected by spin-conserving decoherence sources such as phonons.  

Note that in our experiment, we could not determine the parity of the DQD states. We 

have chosen to use a one electron model because it reproduces well the data. It is 
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nevertheless important to point out that in principle, the parity of the electron states 

should affect only quantitatively the behavior of our device. Indeed, the concept of an 

artificial spin-orbit coupling induced by non-collinear ferromagnetic contacts remains 

valid for even occupation states. The robustness of this principle is a significant 

advantage of our scheme. 

 

 

Hysteresis measurements 

We use a standard definition of the magneto-conductance decr

DC

incr

DC

decr

DC

incr

DC

II

II




. 

Because the phase signal can have both sign, we normalize the phase variations slightly 

differently to avoid large divergences when transitions are resonant with the cavity. We 

define the magneto-phase as decrincr

decrincr








. 

 

It is important to check that the hysteresis we observe in the phase of the cavity is 

due to the susceptibility of the coupled spin transitions and does not arise from spurious 

hysteretic behavior of the bare cavity mode. Figure S6 shows the bare superconducting 

cavity characteristics for increasing and decreasing magnetic field, and their hysteresis in 

percent. The presented data are extracted during the same magnetic field cycle as in 

figure 4 of the main text. They are acquired for far detuned double quantum dot 

transitions, as explained above. In the main text, our purpose is to detect the phase 

variation caused by the DQD , which is given by Δφ ~ (phase slope)×Re(χij) at first order 

in the DQD/cavity coupling. In figure 4D of the main text, the observed hysteresis of the 

phase shift reaches more than 50% at small fields and up to 100% at DQD/cavity 

resonances. In contrast, the bare cavity parameters all show a small hysteresis, from less 

than 0.1% for the resonant frequency to few percent for cavity linewidth and phase slope 

at resonance, with qualitatively different variations from figure 4D. Therefore the data of 

the main text are not due to a simple hysteresis from the cavity. 
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Fig. S1. 

Stability Diagram. Double quantum dot transport spectroscopy showing the region on 

the stability diagram studied in the paper (Vgt = -1mV, Bext = 0mT). Left panel shows a 

color-scale plot of the DC current (VSD ≈ 20µV). Middle and right panels show phase and 

amplitude of the transmission coefficient S21, see SM text. Stable charges states are 

labeled by (n,m) with n and m occupation numbers in each dot. 
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Fig. S2 

Cavity transmission in absolute frequency. Measured transmission spectrum of the 

cavity as a function of Bext without post-treament. 
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Fig. S3 

Extracting the decoherence rate. Transmission of the cavity at -67 mT, when the spin 

transition is brought in resonance with the cavity (as described in the main text). The 

black curve is the best fit and the other curves correspond to different spin decoherence 

rates. 
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Fig. S4 

Spectrum obtained from the theoretical model. (A) and (B) Calculated DQD energy 

spectrum and transition energies Eij versus 
extB , for =0 and the parameters given in the 

section "Theory of our experimental findings". The energy levels are labelled with an 

index i. For the 
extB  values used experimentally, the transitions energies E04, E15, and 

E04 can become resonant with the cavity. We have only represented the transitions which 

are close to the cavity for the sake of clarity. 
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Fig. S5 

Electric and magnetic dependence of the transitions: experiment and 

theoretical model. (A) and (B) phase and amplitude measured as in the main text. (C) 

and (D) modelling of the phase and amplitude using the microscopic Hamiltonian 

described in the SM. The green dotted line in panel C corresponds to a sweet spot with 

respect to charge noise. 
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Fig. S6 

Hysteresis of the cavity properties. Bare superconducting resonator characteristics 

(double quantum dot transitions far detuned) as a function of magnetic field and magnetic 

field sweep direction. (A) Resonant frequency. (B) Cavity linewidth. (C) Phase slope at 

resonance. 

 


