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COHERENT DISPERSION CRITERIA FOR OPTIMAL
EXPERIMENTAL DESIGN

By A. Philip Dawid and Paola Sebastiani1

University College London and The Open University

We characterize those coherent design criteria which depend only on
the dispersion matrix (assumed proper and nonsingular) of the “state of
nature,” which may be a parameter-vector or a set of future observables,
and describe the associated decision problems. Connections are established
with the classical approach to optimal design theory for the normal linear
model, based on concave functions of the information matrix. Implications
of the theory for more general models are also considered.

1. Introduction. There are two distinct statistical approaches to the
problem of optimal experimental design. Criterion-based design [Kiefer (1959)]
focuses on finding designs to optimize some appealling optimality criterion,
usually defined as a suitable function of the Fisher information matrix of
the design. In the context of linear models, the Fisher information matrix is
proportional to the inverse of the dispersion matrix of the least squares esti-
mators of the parameters. Bayesian criterion-based methods have also been
developed, in which the information matrix is replaced by the inverse of the
posterior dispersion matrix of the parameters [Pilz (1991)]. Particular atten-
tion is often given to design criteria which are concave nondecreasing functions
of the information matrix. Nondecreasingness is fundamental, since we wish
to maximize “information”; concavity is less fundamental, but is usually im-
posed in order that the criterion be amenable to convex optimization methods
[Kiefer (1974)].

An alternative approach, decision-based design, builds on the general prin-
ciples of Bayesian decision theory [see, e.g., Raiffa and Schlaifer (1961)]. For
this, we need to set up a decision problem requiring us to choose an act af-
ter seeing the data of our experiment, and then delivering a loss which is
specified as a function of the act chosen and the unknown state of nature.
Given a full Bayesian specification of the problem, the general principle of
acting so as to minimize the overall expected loss can then be applied to
determine the optimal experiment (as well as the optimal act to take after
seeing any data). In such decision problems, the “state of nature” is usually
identified with the parameter-vector. In this case, we may speak of an estima-
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tive decision problem. However, it is more relevant to real world problems to
consider instead the unknown value(s) of some future observation(s) on the
process as determining the loss. In this case we have a predictive decision
problem.

Decision-theoretic justifications of some classical and Bayesian optimality
criteria are well known [Chaloner and Verdinelli (1995)]. However, there is
currently no general theory which allows us to associate directly a criterion-
based design problem with a decision problem. The purpose of this paper is to
formalize the connections between the two approaches to experimental design,
under the constraint that attention is confined to properties of the (estimative
or predictive) dispersion matrix. (The possibility of designs having singular
information matrix is allowed and causes no problems so long as we deal with
Bayesian design based on a proper prior distribution; otherwise, it may be
necessary to restrict attention to designs under which the quantities of inter-
est are estimable.) In particular, we aim to identify when a dispersion-based
optimality criterion is (dispersion-)coherent, in that optimizing it is equiva-
lent to solving some Bayesian decision problem. Conversely, we shall give
conditions for such a Bayesian decision problem to be soluble by means of
criterion-based convex optimization methods. Of particular importance are cri-
teria which can be simultaneously justified from both points of view and which
we here characterize. In particular, while there are decision-theoretic justifi-
cations for the familiar optimality criteria of D-optimality and A-optimality,
we show that (under the constraints we impose) there is none such for E-
optimality.

Section 2 reviews the criterion-based approach, and its Bayesian analogue,
as well as extensions to problems of prediction. In Section 3 we describe the
general decision-based approach, leading to the choice of design being based
on a “standard” constructed from a function describing the “uncertainty” in
the relevant posterior or predictive distribution. As a first step in relating this
to the criterion-based approach, with its emphasis on the information matrix,
in Section 4 we characterize those coherent uncertainty functions which de-
pend only on the dispersion matrix. Section 5 considers the corresponding
“coherent dispersion standards” in the context of the normal linear model and
their relationship with optimality criteria. In particular, we show that suitable
criterion functions, whether applied to the classical information matrix, to its
Bayesian counterpart, or to the analogous matrix for prediction problems, lead
to design strategies which, simultaneously, are amenable to convex optimiza-
tion, and correspond to the solution of a Bayesian decision problem. Finally,
in Section 6 we give an asymptotic extension of the theory developed here to
design criteria in more general models, and offer some concluding comments
in Section 7.

2. Criterion-based optimal experimental design. In this section we
consider classical and Bayesian criterion-based approaches to optimal design
for the linear model.
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2.1. Classical optimal design. We shall assume a linear model for the data
Y given the vector of parameters θ in �q, and the design matrix X,

E�Y � θ� =Xθ and Var�Y � θ� = σ2In�(1)

where Var denotes dispersion matrix. A typical row of X will be a vector of
the form f�x� = �f1�x�� � � � � fq�x��, x ∈ � ⊂ �k, where the fi are known
functions. The information matrix of the design is M0 �=XTX/σ2. When M0
is nonsingular, the dispersion matrix of the least squares estimator θ̂ of θ is
V0 =M−1

0 , the classical estimative dispersion.
A design ξ is a finite collection of design points xi with multiplicities ni.

Then X�M0�V0 are functions of ξ. We wish to choose ξ from some set �
(typically having fixed

∑
i ni) to maximize ��ξ�, where �� � → � is a suit-

able optimality criterion. Let �q denote the set of q × q non-negative defi-
nite symmetric matrices and � +

q its subset of positive definite matrices. The
classical approach to optimal design [Kiefer (1974)] involves optimality crite-
ria which depend on the design ξ only through its information matrix M0,
so that � ≡ �0�M0� (i.e., ��ξ� ≡ �0�M0�ξ��), where �0� � → � may be
termed the criterion function. We assume that the domain � of �0 satisfies
� +
q ⊆ � ⊆ �q, so that �0 is defined for all nonsingular matrices, at least;

see Section 2.1.1 below. The problem is then to maximize � over some set
� of designs having information matrix in � . Since smaller V0, and thus
larger M0, is more desirable, attention is usually restricted to criterion func-
tions that are nondecreasing in the Loewner ordering: if M0 −M1 ∈ �q, then
�0�M0�−�0�M1� ≥ 0. Simplification of the computational optimization prob-
lem can often be achieved by limiting attention to concave criterion functions
[Kiefer (1974)].

Definition 1. An optimality criterion � will be called regular if � can be
expressed as �0�M0�, where �0 is concave and nondecreasing.

Lemma 1. If � is regular, then so is �∗ = g��� for any concave nonde-
creasing real function g�·�.

Proof. The composition of concave nondecreasing functions is concave
nondecreasing. ✷

An important one-parameter class of optimality criteria is �̃s, s ∈ �, given
by �̃s = �s�M0�, where �s is the matrix power mean function [Chaloner and
Verdinelli (1995); Kiefer (1974)] defined, for C ∈ � +

q , by

�s�C� =




{
1
q

tr�Cs�
}1/s

� s �= 0�

det�C�1/q� s = 0�

(2)

We note for future reference the identity

�s�C−1� ≡ ��−s�C��−1�(3)
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We further introduce criteria �̃l = �l�M0�, �̃0� α = �0� α�M0� (α �= 0), where
the functions �l, �0� α on � +

q are defined by

�l�C� ≡ log det�C��(4)

�0� α�C� ≡ sign�α��detC�α�(5)

Some popular optimality criteria may be expressed in terms of those intro-
duced above:

1. A-optimality (minimize trV0): �̃−1;
2. D-optimality (maximize det M0): �̃0, �̃l or �̃0� α;
3. E-optimality (maximize the minimum eigenvalue of M0): �̃−∞.

Regularity of the optimality criterion �̃s for s ≤ 1 (and thus, in particu-
lar, of A-, D- and E-optimality) is a consequence of the following theorem
[Pukelsheim, (1993), page 151].

Theorem 1. For q > 1 the function �s, defined on � +
q by (2), is strictly

concave if s < 1, linear for s = 1 and strictly convex for s > 1. Furthermore, �s
is nondecreasing, nonnegative and homogeneous of degree 1.

Regularity of �̃l, and of �̃0� α for α ≤ 1/q, follows from Lemma 1.
2.1.1. Singular designs. In some cases (e.g., if �0 ≡ �s, s ≥ 0) it is possible

to extend the domain � of the criterion function �0 beyond � +
q and so allow

an optimal design which might be singular. In particular, suppose attention
focuses on some linear function β = Aθ, where A is k × q of rank k; then
there is no reason to avoid a singular design, so long as it makes β estimable
(which will hold if the null space of M0 is contained in that of A). In this case
the least squares estimator β̂ is well defined and has nonsingular dispersion
matrix V′

0 = AM−
0A

T, where M−
0 is any g-inverse of M0. Any optimality

criterion of the form �′
0�M′

0�, where �′
0 is a criterion function defined on � +

k

(at least), and M′
0 = V′

0
−1, will then allow inclusion of such singular designs.

Possible optimality criteria are �̃′
s ≡ �s�M′

0�, for any s. For s = −1 this yields
L-optimality, or c-optimality when A = cT, c ∈ �q; likewise, DA- and DS-
optimality [Silvey (1980)] are special cases for s = 0.

2.2. Bayesian optimal design. The approach described in Section 2.1 can
be given an “improper Bayesian” interpretation if we further assume a normal
sampling distribution for Y: Y � θ ∼N�Xθ�σ2In� (σ2 known); and regard θ as
the value of a random quantity & with an improper uniform prior distribution.
Then, whenM0 is nonsingular,V0 =M−1

0 can be reinterpreted as the posterior
dispersion of &.

For a simple proper Bayesian approach, we consider a normal prior dis-
tribution for &. We can suppose that this has nonsingular dispersion, since
otherwise & is essentially confined to a subspace, which we can then take as
our (redefined) parameter-space. Thus we take & ∼ N�θ0�R

−1� with θ0 and
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R ∈ � +
q known. Then the posterior distribution of & given Y = y is normal,

with dispersion

Ve �= �R+M0�−1(6)

and expectation Ve�Rθ0+XTy/σ2�. In particular, the posterior distribution is
always proper, and its dispersion V0 nonsingular, even when the information
M0 is singular. We term Ve the (posterior) estimative dispersion and Me =
V−1
e = R +M0 the (posterior) estimative information. Note that Ve and Me

are functions of the design ξ, through M0.
The proper Bayesian criterion-based approach [Pilz (1991)] parallels the

classical one: given a criterion function �e� � +
q → �, a design ξ∗ is sought

to maximize � ≡ ��ξ� = �e�Me�. We can then reexpress � as �0�M0�, where
�0� �q → � is defined by �0�C� ≡ �e�R+C�. Note that the domain of �0 is
the whole of �q, so that in the proper Bayesian approach there is no problem
in admitting singular M0, which we shall do in this context throughout this
paper. If �e is concave nondecreasing, so too is �0, and thus � will be regular
[Kiefer (1974)]. Common Bayesian optimality criteria are again specializa-
tions, or monotone transformations, of the matrix power mean, now applied
to Me; for example, Bayes D-optimality corresponds to s = 0 and Bayes A-
optimality to s = −1 [Chaloner and Verdinelli (1995); Pilz (1991)].

2.3. Predictive design. We now consider the formulation of the design
problem when the aim of the experiment is prediction of a future observation
Z ∈ �m and give a sufficient condition for a predictive optimality criterion to
be regular. We suppose that, given θ, Z is independent of the experiment ξ
and its data Y, with E�Z�θ� = Tθ and Var�Z�θ� = ,Z. So long as we use a
design which makes Tθ estimable, the least squares predictor of Z based on
Y is Tθ̂, where θ̂ denotes any solution to the normal equations; and the clas-
sical predictive dispersion, Var�Z−Tθ̂�, is Vc = ,Z +TV0T

T, where V0 now
denotes any generalized inverse of M0. This is also the Bayesian predictive
dispersion of Z given Y when the prior for & is improper uniform. A design to
optimize prediction could be found by minimizing some nondecreasing func-
tion of Ve [Bates, Buck, Riccomagno and Wynn (1996); Sacks, Welch, Mitchell
and Wynn (1989)], or equivalently by maximizing a nondecreasing function of
the classical predictive information, Mc = V−1

c .
In a proper Bayesian approach, we again assume & ∼N�θ0�R

−1�, Y � & =
θ ∼N�Xθ�σ2In� with θ0, R and σ2 known, and Z�& = θ ∼N�Tθ�,Z�. Then
the Bayesian predictive dispersion, Var�Z � Y�, is Vp = ,Z + TVeT

T, with
associated Bayesian predictive information Mp = V−1

p . Again, Vp and Mp are
functions of the design ξ through M0.

Consider now an optimality criterion of the form � ≡ �p�Mp�, where
�p� � +

m → � is a nondecreasing function. Then � is also expressible as
�e�Me�, with �e = �p ◦ γ,Z�T where, for given B and nonnegative definite A,
γA�B is defined by

γA�B�C� ≡
(
A+BC−1BT

)−1
�(7)
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This in turn allows reexpression of � as �0�M0�, where �0�C� ≡ �e�R + C�
(again �0 is defined on the whole of �q). Although the optimality criterion �
is initially specified using the predictive criterion function �p, its regularity
depends on the concavity of the function �0 relating � to M0. The following
result establishes a sufficient condition for this.

Theorem 2. If �p is concave and nondecreasing, then so too are �e and
�0, and hence � ≡ �p�Mp� is regular.

The proof follows from concavity and nondecreasingness of the function γA�B
[Eaton, Giovagnoli and Sebastiani (1994)], and the fact that the composition
of concave nondecreasing functions is concave nondecreasing.

A corresponding property holds for the limiting improper uniform case
R = 0; thus any concave nondecreasing function of the classical predictive
information Mc will yield a regular optimality criterion (over designs making
Tθ estimable).

3. Decision-based optimal experimental design. The above classical
and Bayesian approaches to choice of experiment for the linear model give
no guidance for choosing the optimality criterion. Bayesian decision theory
addresses this issue. The formulation of the choice of experiment as a decision
theory problem has a long tradition [Savage (1972); Lindley (1956, 1972)].
Bernardo and Smith (1994), and the recent review in Chaloner and Verdinelli
(1995), also consider predictive decision problems. In this section we describe
the approach in very general terms, following Dawid (1994). We return to the
normal linear model in Section 5.

Consider a “terminal decision problem” with loss L�z� a� depending on the
value z of a quantity Z ∈ � and on the action a ∈ � taken. Let P ∈ � , a
convex family of proper distributions for Z, and write L�P�a� for the expected
loss EZ∼P�L�Z�a��. Suppose that, for each P ∈ � , inf a L�P�a� is finite and
is achieved at a unique value, a�P� say. Then a�P� is the Bayes act when Z is
assigned the distribution P, and H�P� �= L�P�a�P�� is the associated Bayes
loss, or uncertainty. The function H� � → � is the coherent uncertainty func-
tion associated with the decision problem. An important property [DeGroot
(1970), page 125] is that H is a concave function on � .

Consider now the formulation of the choice of experiment as a decision
problem [Lindley (1972)]. Let � denote the class of possible experiments. If
ξ ∈ � is chosen, then observation will be made of a quantity Y ≡ Yξ, with
distributionPYθ�ξ over a sample space �ξ when& = θ. AfterYξ = y is observed,
an action a ∈ � is chosen; then the quantity of interest, Z, is observed, and
the loss suffered if Z = z is L�z� a�. We assume that Z has distribution PZθ ,
conditional on the value & = θ, independently of ξ� y and a. Note particularly
that this formulation includes the case of estimation, on taking Z ≡ &, in
which case PZθ is δθ, the point mass at θ [Eaton, Giovagnoli and Sebastiani
(1996)]. We further assign to & a prior distribution, independent of ξ. We wish
to choose ξ, and then, after observing Yξ, to take an optimal action a, so as to
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minimize the overall expected loss. Let PZξ�y denote the predictive distribution
for Z after conducting ξ and observing Yξ = y. The principle of minimizing
expected loss then entails that the optimal choice for ξ is that which minimizes
the expected Bayes risk

U�ξ� = E{
H�PZξ�Yξ�

}
�(8)

where H is the coherent uncertainty function corresponding to the loss func-
tion L, and the expectation is over the marginal distribution of Yξ in ξ. We
shall call a function U� �→ � of the form (8), for some coherent uncertainty
function H, a (design) standard. The minimization of such a standard thus
provides the general coherent prescription for choice of experiment. Decision-
theoretic justifications for certain Bayesian optimality criteria, such as A- or
D-optimality, are well known; see Chaloner and Verdinelli (1995) for a recent
overview. However, there is as yet no general theory which allows us to asso-
ciate directly an optimality criterion and a design standard. A major purpose
of this paper is to fill this gap.

4. Coherent uncertainty functions and dispersion. We wish to re-
late the two approaches to optimal design, based on optimality criteria and on
uncertainty functions, respectively. With some exceptions (e.g., nonlinear esti-
mation problems), popular optimality criteria depend only on the information
matrix of the design, or, equivalently, on the associated classical estimative
dispersion. Hence, for purposes of comparison, in this paper we shall focus
attention on uncertainty functions which depend on a distribution (for the
parameter or for a future observable) only through its dispersion. That is to
say, if two different distributions have the same dispersion matrix, we shall
want the uncertainty function to assign them the same value. This is a “non-
parametric” condition, in that, for example, we are not confining attention to
normal distributions, but requiring the uncertainty function to be defined for
essentially all possible distributions. Thus we are here excluding, for exam-
ple, the use of the entropy uncertainty function [Good (1952); Lindley (1956);
Stone (1959)], since, although for normal distributions it depends only on the
dispersion, this property fails as soon as we move outside the normal fam-
ily. Note also that our restriction to dependence on the dispersion excludes
many interesting decision problems, for example, those in which one wishes
to optimize an outcome [Verdinelli and Kadane (1992)].

Clearly the dispersion-based uncertainty condition will put constraints on
the form of the uncertainty function. In this section we shall identify necessary
and sufficient conditions for it to have this property, and, when it does, display
a loss function which gives rise to it. To avoid misunderstandings, note that we
are not requiring that the underlying loss function—when this is expressible
in terms of an assessed distribution—should only depend on the dispersion of
that distribution, and indeed we shall see from the proof of Theorem 4 below
that this is not the case.
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Let µP and VP denote, respectively, the mean vector and dispersion matrix
of a distribution P over �m. We shall restrict attention to �m = �P� VP exists
and is in � +

m �. Then �m is convex.

Definition 2. A function K� � +
m → � is called a coherent dispersion

function, or dispersion-coherent, if H� �m → �, defined by H�P� ≡K�VP�, is
a coherent uncertainty function (hence concave) on �m. In this case we may
also term H a dispersion-coherent uncertainty function.

Theorem 3. If K is a coherent dispersion function, then K is concave and
nondecreasing on � +

m .

Proof. Suppose that H�P� ≡K�VP� defines a dispersion-coherent uncer-
tainty function. ThenHmust be a concave function on �m. GivenV,W ∈ � +

m ,
we can find P, Q ∈ �m, with VP = V, VQ =W and µP = µQ = µ, say. Then
defining R = αP + �1 − α�Q for α ∈ �0�1�, we have R ∈ �m, and VR =
αV+ �1−α�W. Hence K�αV+ �1−α�W� =H�R� ≥ αH�P� + �1−α�H�Q� =
αK�V� + �1 − α�K�W�. Thus K is concave.

Now let V ∈ � +
m , W ∈ �m, and take P and Q such that VP = V, VQ =W.

Let R be the convolution P ∗ Q. Then R ∈ �m, and VR = V +W. We can
express R = E�PY�, where Py = P ∗ δy, δy being the point mass at y, and
Y ∼ Q. So K�V+W� =H�R� =H�E�PY�� ≥ E�H�PY�� =K�V�. Hence K
is nondecreasing. ✷

Corollary 1. If K is a coherent dispersion function, then, for any fixed
V, K�λV� is a concave nondecreasing function of λ.

We shall now show the converse of Theorem 3 constructively. Let K� � +
m →

� be concave and nondecreasing. Regarding � +
m as an open subset of

�m�m+1�/2, it follows from concavity [Rockafellar (1970), page 217] that K
has a “supergradient” ;W at each W ∈ � +

m . That is, ;W is a symmetric matrix
such that

K�V� ≤K�W� + tr�;W�V−W�� all V ∈ � +
m �(9)

Since K is nondecreasing, ;W ∈ �m. If K is differentiable at W, then ;W is
just the derivative dK�W�/dW ofK atW, that is, the matrix with diagonal el-
ements ∂K�W�/∂wii and off-diagonal elements �1/2�∂K�W�/∂wij. Otherwise,
;W may not be unique, but we suppose that a specific choice is made at each
W ∈ � +

m .

Theorem 4. If K is concave and nondecreasing in � +
m , then K is a coher-

ent dispersion function.

Proof. Consider the decision problem with observation space �m, action
space � = �m, and loss function given by

L�z�Q� = �z− µQ�T;Q�z− µQ� +K�VQ� − tr�VQ;Q��(10)
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where we have now written ;Q for ;VQ . Then L�P�Q� exists for P ∈ �m, and

L�P�Q� =K�VQ� + �µP − µQ�T;Q�µP − µQ� + tr��VP −VQ�;Q��(11)

In particular, L�P�P� =K�VP�, and it is easy to show using ;W ∈ �m and
(9) that L�P�Q� ≥ L�P�P�. Hence the optimal act when Z ∼ P is just P itself
[i.e., (10) defines a proper scoring rule], and the associated Bayes loss H�P�
is K�VP�. ✷

Corollary 2. Form > 1, the matrix power mean function �s is a coherent
dispersion function if and only if s ≤ 1.

The proof is from Theorems 1, 3 and 4.
We now consider the effect of applying a concave nondecreasing transfor-

mation to a coherent dispersion function K. Define k0 = inf�K�V�� V ∈ � +
m �.

The range of K is contained in 	 = �k0�+∞�. Let g� 	 → � be concave and
nondecreasing, and define K∗�V� ≡ g�K�V��. Theorems 3 and 4, together
with the proof of Lemma 1, imply the following lemma.

Lemma 2. If K is a coherent dispersion function, then so is K∗ = g�K� for
any concave nondecreasing real function g�·�.

We can relate the proper scoring rules, say L and L∗, associated with H
and H∗ as in (10), as follows. Since g is finite, concave and nondecreasing, at
each y ∈ 	 there exists a nonnegative supergradient for g, that is, a scalar
ψy ≥ 0 such that

g�x� ≤ g�y� + ψy�x− y� all x ∈ 	 �(12)

Now from (9), if V�W ∈ � +
m , then K�W�+ tr�;W�V−W�� ∈ 	 , and K∗�V� =

g�K�V�� ≤ g�K�W� + tr�;W�V−W���, and thus, by (12), K∗�V� ≤K∗�W� +
ψK�W� tr�;W�V −W��. It follows that ;∗W = ψK�W�;W is a supergradient of
K∗ at W, and hence, from (10), that we can take L∗�z�Q� ≡ K∗�VQ� +
ψK�VQ��L�z�Q� −K�VQ��.

Theorem 5. Let K0 be a homogeneous coherent dispersion function, that
is, K0�λV� ≡ λK0�V�, �λ > 0�. Then K�V� ≡ g�K0�V�� defines a coherent
dispersion function K if and only if g� � → � is concave and nondecreasing.

Proof. “If” follows from Lemma 2. Now suppose K is dispersion-coherent
and fix V0 with K0�V0� = 1. Then g�λ� ≡ g�λK0�V0�� ≡ g�K0�λV0�� ≡
K�λV0�. Now apply Corollary 1. ✷

From Theorem 1, Theorem 5 applies when K�·� is the matrix power mean
function �s�·� (s ≤ 1). In particular, a dispersion function depending only
on detV is dispersion-coherent if and only if it is of the form g�detV1/m�
with g concave and nondecreasing. Thus log detV is a coherent dispersion
function (and may be so used whether or not the distribution is normal).
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Table 1
Some coherent dispersion functions and their associated loss functions

H�P� ≡ K�VP� L�z�Q�

�s�VP� �s �= 0� s ≤ 1�
(

1
m

)1/s

�tr�VQs���1/s�−1�z− µQ�TVQs−1�z− µQ�

�0�VP�
1
m

det�VQ�1/m�z− µQ�TVQ−1�z− µQ�

�l�VP� log detVQ + �z− µQ�TVQ−1�z− µQ�
�0� α�V� �α ≤ 1/m� sign�α��detVQ�α

{
α�z− µQ�TVQ−1�z− µQ� + 1 −mα

}

Some examples of uncertainties based on coherent dispersion functions, with
their associated loss functions, are given in Table 1 (where, in the defini-
tions of �s etc. we take q = m). All functions are differentiable in � +

m ,
so that we can take the associated decision problem to have action space
�m and loss function given by (10), with ;W = dK�V�/dW. In computing
the loss function associated with H�P� ≡ �s�VP�, we have used the matrix
derivative d tr�Vs�/dV = sVs−1 [Sebastiani (1996b)]. Note further that if K
is a coherent dispersion function on � +

M , then so is KA on � +
m , defined by

KA�V� ≡ cK�AVAT�, for fixed positive constant c and m×m matrix A. This
arises from an associated decision problem with loss function involving AZ
in place of Z. In this way we obtain further coherent dispersion functions
from Table 1. In particular, �1�A�V� ≡ �1/m� tr�VC�, where C = ATA, de-
fines the coherent dispersion function corresponding to the proper scoring rule
S�z�Q� ≡ �1/m��z − µQ�TC�z − µQ�, or equivalently to the simple quadratic
loss function L�z� a� = �1/m��z−a�TC�z−a� with a ∈ � = �m; see Chaloner
(1984) for applications to normal linear regression models.

5. Coherent dispersion standards for the normal linear model. In
this section, we apply the above considerations to the choice of experiment in
the specific case of a normal regression model with conjugate prior distribu-
tion. As in Section 2.2, we shall assume that Y � θ ∼ N�Xθ�σ2In�, θ ∈ �p,
X a n × q matrix determined by the experiment ξ and & ∼ N�θ0�R

−1� with
θ0 and R known. Without loss of generality we suppose σ2 known; Verdinelli
(1996) has shown that when the variance is unknown the design problem
is essentially independent of σ2. Then & �Y has a normal distribution, with
dispersion matrix Ve =M−1

e = �R+M0�−1.

5.1. Coherent dispersion standards. LetKe�� +
q → � be concave and non-

decreasing. Thus, with P ∈ �q a distribution for &, H�P� ≡ Ke�VP� defines
a coherent uncertainty function corresponding to an estimative decision prob-
lem. If we use this uncertainty function in the Bayesian normal linear model,
the coherent solution (8) reduces to minimizing U ≡ U�ξ� = Ke�Ve�, where
Ve is given by (6). Note that, since Ve is independent of the data Yξ observed
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in ξ, the expectation in (8) is not required. We shall call U ≡Ke�Ve�, with Ke

concave and nondecreasing (and Ve regarded as a function of the experiment
ξ), an estimative coherent dispersion standard.

In particular, when M0 is nonsingular, the classical estimative variance
V0 = M−1

0 is the formal posterior variance of & �Y for the limiting case
R → 0, when the prior for & is the (improper) uniform distribution. Thus if
K0� � +

q → � is concave and nondecreasing, then we can regard U ≡K0�V0�
as the relevant quantity to minimize, to solve some formal Bayesian estimative
decision problem, based on an improper uniform prior (and restricting atten-
tion to experiments yielding a proper posterior). We may call U ≡ K0�V0�
a formally coherent dispersion standard. (Specific choices for K0 may admit
extension of its domain so that U remains defined for some or all singular M0.
For example, if, as in Section 2.1.1, attention focuses on β = Aθ, we might
define U = K′

0�V′
0�, with K′

0� � +
k → � concave and nondecreasing, and K0

reexpressing U as a function of V0.)
Suppose now that U ≡Ke�Ve� is a (proper) estimative coherent dispersion

standard, and define K0� � +
q → � by K0 = Ke ◦ γR�Iq , with γA�B given by

(7). Since γR�Iq�V0� = Ve, we have U ≡ K0�V0�. Thus K0 is concave and
nondecreasing, so that the estimative coherent dispersion standard U is also
a formally coherent dispersion standard. (Note, moreover, thatU remains well
defined for all singular M0).

For a predictive decision problem, we would consider standards of the form
U ≡Kp�Vp� with Kp concave and nondecreasing. But then also U ≡Ke�Ve�,
with Ke� � +

q → � defined by Ke�C� ≡ Kp�,Z + TCTT�. When Kp is con-
cave and nondecreasing, so is Ke. Hence any predictive coherent dispersion
standard is also an estimative coherent dispersion standard. This is a special
case of a well-known result [Aitchison and Dunsmore (1975), page 64]; a pre-
dictive decision problem can always be reformulated as an estimative decision
problem. Finally, as shown above, we can further reexpress U ≡Ke�Ve� as a
formally coherent dispersion standard K0�V0�. Thus we may speak of a stan-
dard U, whether initially defined as a concave nondecreasing function of V0,
of Ve or of Vp, as, simply, a (coherent) dispersion standard.

5.2. Regular-coherent optimality criteria and dispersion standards. We
now consider the relationship between an optimality criterion � and a disper-
sion standard U. Suppose there exists a decreasing function g� � → � such
that � ≡ g�U�, or equivalently U ≡ h���, with h the inverse function of g.
Then maximizing � is equivalent to minimizing U. In particular, if we have,
simultaneously, both coherence of U and regularity of �, then the problem is
both based on a genuine decision problem, and amenable to solution by convex
optimization methods. In this case we shall call the design problem regular-
coherent, � a regular-coherent optimality criterion, and U a regular-coherent
dispersion standard.

For instance, if we only consider designs with a nonsingular information
matrix, regular-coherence is obtained when � and U are expressible as � ≡
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�0�M0�, U ≡ K0�V0�, respectively, with both �0 and K0 concave and non-
decreasing in � +

q , and � ≡ g�U� or U ≡ h���, with the mutually inverse
functions g and h decreasing. Given only K0, or only �0, regular-coherence
requires the existence of the other, satisfying the above conditions. This is ex-
pressible as either (and then both) of the functions�0 andK0 being associable,
as given by the following definition.

Definition 3. A function F� � +
q → � is associable if:

(i) F is concave and nondecreasing.
(ii) There exist a decreasing function h� � → � and a concave nonde-

creasing function G� � +
q → � such that

F�C� ≡ h{G�C−1�}�(13)

In this case G is also associable, and we call F and G associated functions.

Lemma 3. If F is associable, and F∗�C� ≡ k�F�C�� with k concave and
nondecreasing, then F∗ is associable.

The proof follows easily from Lemma 2.

Theorem 6. If q > 1, the power mean function �s� � +
q → �, given by (2),

is associable if and only if −1 ≤ s ≤ 1.

Proof. From Theorem 1, (i) of Definition 3 holds for F ≡ �s if and only
if s ≤ 1. We shall show that (ii) of Definition 3 holds if and only if s ≥ −1.
Suppose first that s ≥ −1 and define G�C� ≡ �−s�C�. Then G is concave and
nondecreasing. Then, using (3), �s�C� ≡ ��−s�C−1��−1 ≡ �G�C−1��−1, so that
(ii) holds with h�x� ≡ x−1. Suppose now s < −1 and �s�C� = h�G�C−1�� for
some decreasing function h. Then �s�C−1� = h�G�C��. From (3), �s�C−1� ≡
��−s�C��−1. So G�C� ≡ h−1���−s�C���−1 is an increasing function of �−s�C�,
which, by Theorem 1, is strictly convex. So G cannot be concave, and (ii)
fails. ✷

Thus, for �s� ≤ 1, we have regular-coherence for the design strategies based
on the optimality criterion �̃s ≡ �s�M0�, as well as on the (formally coherent)
dispersion standard �s�V0� and likewise for �̃l ≡ �l�M0� or its associated
dispersion standard �l�V0�. In particular, we obtain regular-coherence of A-
optimality (�̃−1) and D-optimality (�̃0 or �̃l). However, E-optimality (�̃−∞),
while regular, is not associated with a coherent dispersion standard, and thus
cannot arise from solving any decision problem with a dispersion-based un-
certainty function. This goes some way towards confirming a conjecture of
Chaloner and Verdinelli (1995). Note, however, that we have not shown that
E-optimality, as a normal-theory design criterion, could not arise as the solu-
tion of any decision problem. This stronger conclusion would follow if a gen-
eral uncertainty function which, when confined to the normal distributions,
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depended only on the dispersion, would then have to be concave and nonde-
creasing in that normal dispersion. Although we are not aware of any counter
examples, we have not been able to show this.

5.2.1. Estimation and prediction. Suppose we start with an estimative
Bayesian optimality criterion expressed as � ≡ �e�Me�, where the function
�e is associable. Then, as shown in Section 2.2, � is regular. Let Ke be an
associated function of �e. Then maximizing � is equivalent to minimizing
the coherent dispersion standard U �=Ke�Ve�. Hence this proper Bayes esti-
mation problem is regular-coherent. Conversely, we obtain a regular-coherent
problem if we start from an estimative dispersion standard U ≡Ke�Ve�, with
Ke associable. Similarly, applying Section 2.3, we could start with a predictive
optimality criterion � ≡ �p�Mp�, which will be regular and be associated with
a coherent predictive dispersion standardU �=Kp�Vp�, or, alternatively, start
with such a U and construct �. Again, we have a regular-coherent problem.
We note particularly that, for these proper Bayes estimation and prediction
problems, there is no need to require M0 to be nonsingular.

We thus see that we can produce a regular-coherent problem by using an
associable function, no matter whether we apply it to M0, to V0, to Me, to Ve,
toMp or toVp. In all cases, the problem will correspond to a genuine Bayesian
decision problem and will be amenable to convex optimization techniques.

6. More general models. Although we have so far mostly limited con-
sideration to the normal linear model, the approach described extends, in
principle, to situations involving more general assumptions on the model con-
stituents Y�x� θ and Z�θ, and on the prior density π�θ�. In this section, we
conduct an asymptotic analysis of such more general problems. It is only as-
sumed that the model constituents are suitably well behaved, and that π�·� is
continuous and everywhere positive. We continue to suppose that distinct ob-
servations are independent, so that a design may be identified with its design
measure ξ [Chaloner and Verdinelli (1995)].

6.1. Optimality criteria. One might introduce an optimality criterion � ≡
��ξ�, and seek the allowable design ξ which maximizes it. Concavity of ��ξ�
on the space � of design measures ξ will assist optimization by allowing ap-
plication of the general equivalence theorem [Whittle (1973)]. Commonly used
optimality criteria have the general form

� ≡ ��ξ� ≡
∫
�0�Iξ�θ��π�θ�dθ�(14)

where Iξ�θ� is the expected Fisher information matrix at θ in experiment
ξ, and �0� �m → � is an appropriate criterion function: see Chaloner and
Verdinelli (1995) for a detailed discussion. Typically the function �0 is con-
cave and nondecreasing, and then the optimality criterion � defined by (14)
will be concave on �, as desired. We can further transform such a � by a con-
cave, nondecreasing real function, to obtain an equivalent concave optimality
criterion.
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6.2. Decision-based approach. In full generality, minimizing a design stan-
dard U�ξ� as given by (8) supplies the coherent solution to optimal choice of
experiment. However, the computational problems involved in applying this
coherent design strategy can be daunting. Here we investigate solutions based
on asymptotic approximations. Since a predictive decision problem can always
be reformulated as one of estimation, we shall confine attention to the poste-
rior distribution of &. We shall again restrict ourselves to decision problems
for which the uncertainty in a distribution P for & depends only on its dis-
persion matrix VP; that is, H�P� ≡ K0�VP�, with K0 a coherent (so concave
and nondecreasing) dispersion function. Assuming that the usual asymptotic
normal approximation to the posterior distribution applies, U�ξ� can then be
approximated as

U�ξ� �=
∫
K0�Iξ�θ�−1�π�θ�dθ(15)

[Chaloner and Verdinelli (1995)]. Thus, we may call an optimality criterion �
dispersion-coherent if it can be expressed as a decreasing function of a quan-
tity U, of the form of the right-hand side of (15), for some coherent dispersion
function K0. Then maximizing � will deliver, asymptotically at least, the so-
lution to a decision problem. An example of a dispersion-coherent optimality
criterion is

g
(
E�f�det Iξ�&�−1/q��)�(16)

with f concave and nondecreasing and g decreasing, the expectation being
over the prior distribution of &. It follows from Section 4 that any dispersion-
coherent optimality criterion depending only on the determinant of the ex-
pected information matrix must be of the form (16), thus answering the
question raised by Atkinson and Donev [(1992), pages 213 and 214] as to
the appropriate way to generalize the criterion of D-optimality to nonlinear
nonnormal problems. They considered criteria equivalent to:

1. E�log det�Iξ�&����
2. − logE�det�Iξ�&�−1���
3. − log detE�Iξ�&�−1��
4. logE�det Iξ�&�� [Zacks (1977); Pronzato and Walter (1985)];
5. log det�E�Iξ�&���.
Of these, only 1 and 4 are of the form (16), with, respectively, f�x� ≡ q log x,
g�x� ≡ −x and f�x� ≡ −x−q, g�x� ≡ log�−x�. These findings help to address
the concerns of Firth (1996) as to the “naturalness” of these several variant
forms.

Other dispersion-coherent optimality criteria are g�E��s�Iξ�&�−1���, for s≤
1 and g decreasing, or, equivalently (on putting t = −s) g�E���t�Iξ�&���−1��,
for t ≥ −1; and, again with g decreasing,

g
(
E��0� α�Iξ�&�−1��) = g[E�sign�α�det Iξ�&�−α�

]
�
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for α ≤ 1/q, being of the form (16) with f�x� ≡ sign�α�xαq. So, for example, the
optimality criterion E�det Iξ�&�1/2�, which has been proposed as a criterion
invariant to reparametrization when using a uniform prior [Firth and Hinde
(1997b)], is dispersion-coherent.

6.3. Regular-coherence. As in the normal linear model, we wish to relate
the two approaches: the criterion-based approach, which seeks to maximize
(14), where �0 is concave and nondecreasing and the (approximate) decision-
theoretic approach, which seeks to minimize (15), withK0 concave and nonde-
creasing. In particular, we are interested in criteria which are regular-coherent,
being simultaneously interpretable in both these ways.

We now describe a sufficient condition on the dispersion function K0 under
which the criterion ��ξ� �= −U�ξ�, as given by (15), will be regular-coherent
for any model in the general regression class considered, and any prior distri-
bution. This result extends a remark of Chaloner and Verdinelli (1995).

Definition 4. A dispersion function K0 will be termed strongly regular
if the function M �→ −K0�M−1� is concave and nondecreasing.

Note that an associable functionF, if used as a coherent dispersion function,
will be strongly regular whenever the function h appearing in (ii) of Defini-
tion 3 can be taken as convex—in which case we may always take h�x� ≡ −x.

The importance of strong regularity is captured by the following result,
which follows easily from the definitions.

Theorem 7. Suppose thatK0 is a strongly regular and coherent dispersion
function. Then the optimality criterion

��ξ� �= −U�ξ� = −
∫
K0�Iξ�θ�−1�π�θ�dθ(17)

is regular-coherent.

Lemma 4. The power mean function �s is strongly regular for s ≥ −1.

Proof. From (3), we can write −�s�M−1� as g��−s�M��, where g�x� ≡
−x−1 is a concave nondecreasing function of x, and �−s�M� a concave non-
decreasing function of M. ✷

Similar arguments show the strong regularity of �∗
s, defined by �∗

s�V� ≡
−�s�V�−1 ≡ −�−s�V−1� for s ≥ −1, of �−1�A, of �0� α for α ≥ −1/q [leading to
concavity properties for the corresponding �, given by (17), related to those of
Firth and Hinde (1997a)] and of �l�V� ≡ log det�V�.

It follows from Corollary 2 and Lemma 4 that the optimality criterion

−E(��s�Iξ�&���−1)
is regular-coherent for −1 ≤ s ≤ 1. Likewise regular-coherent are the optimal-
ity criteria E���s�Iξ�&���� obtained from the strongly regular and coherent
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dispersion function K�V� ≡ �∗
−s�V� (−1 ≤ s ≤ 1). Taking K�V� ≡ �0� α�V� ≡

sign�α�detVα, the optimality criterion −E��0� α�Iξ�&�−1�� = E��0�−α�Iξ�&���
will be regular-coherent for −1/q ≤ α ≤ 1/q. In particular, −E�det�Iξ�&�−1��
is regular but not dispersion-coherent, having the form (16) with f�x� ≡ xq,
which is convex for q > 1; while E�det Iξ�&�� is dispersion-coherent, but not
regular.

7. Conclusion. In this paper we have attempted to tie together the two
main approaches to optimal experimental design, criterion-based and decision-
based. We have confined attention to measures of performance determined by
an appropriate dispersion matrix, and, under this restriction, have developed
conditions under which optimal design for a normal linear model may be si-
multaneously justified from either point of view. For more general problems,
we have extended the approach to criteria based on asymptotic approximation
of the posterior distribution. In fact, even for small sample problems, the use
of design criteria derived from coherent dispersion functions can be shown
to be valuable for simplifying computationally intensive solution methods
[Sebastiani (1996a)].

Throughout this paper we have assumed that the experimenter knows the
functional form of the model for all uncertain quantities involved in the exper-
iment. In many realistic situations this will not be the case, and the problem
will then need to incorporate some aspect of model choice, or model mixture,
prior to estimation or prediction. The decision-based formulation can, in prin-
ciple, be extended to incorporate such model uncertainty; however, the com-
plexity of the ensuing computational problem will demand the development
of new methods of solution, perhaps based on stochastic optimization. Such
methods may also prove fruitful for handling nonconcave criteria and for the
nonasymptotic analysis of nonlinear nonnormal problems.
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