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Abstract

We consider coherent electronic transport between two ferromagnetic electrodes separated either by

a metallic nanoparticle or by a conducting molecule. Correlations between electrons with opposite

spins lead to the Kondo resonance, which manifests a formation of the singlet state. Although

tunnelling rates for electrons with opposite spin orientations are different the conductance reaches

the unitary limit in the Kondo regime. We predict a negative magnetoresistance effect, which can

be observed for asymmetric magnetic junctions.
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I. INTRODUCTION

Spin-dependent electronic transport attracts recently great interest due to its potential

applications in nanoelectronics. In the last decade intensive studies of giant magnetore-

sistance (GMR) led to a practical application of the effect in magnetic field sensors and

read heads for drives.1 More recent studies of tunnel magnetoresistance (TMR) in mul-

tilayered metal-nonmetal thin films or in metal-nonmetal granular systems seem also to

be very promising.2 An interesting proposition is a ferromagnetic single–electron transistor

(fSET)3,4, in which transport through a nanoparticle placed between ferromagnetic elec-

trodes is a single-electron process. Due to high contact resistances (R > 10MΩ) the current

intensity is, however, very low and tunnelling events for transfer of an electron to and from

the nanoparticle are incoherent. One can expect that further development in technology

leads to a production of magnetic nanodevices operating in the coherent regime of the elec-

tronic transport. This is achieved if a typical dimension of the object becomes smaller than

the phase coherence length. The issue of coherence is critical for the possible application in

quantum computers.

There are known experiments on coherent transport in nonmagnetic nanostructures,

through quantum dots5 and single-walled carbon nanotubes (SWNT)6. In this regime quan-

tum interference and electronic correlations play an essential role, they lead to the Fano

resonance as well as to the Kondo resonance.5–7 The coherence effects should be also impor-

tant in magnetic nanostructures. Garcia et al. [8] showed that the relative difference between

the resistance for the parallel (RP ) and the antiparallel (RAP ) orientation of magnetization

in the electrodes MR = (RAP − RP )/RAP can be very large in the ballistic transport

through a magnetic point contact. The effect is due to a relative change of a number of con-

ducting channels when magnetization changes its orientation from parallel to antiparallel.9

Some attempts were undertaken to measure magnetoresistance through multi-walled carbon

nanotubes (MWNT) connected with cobalt electrodes.10 Although the minimal resistance

Rmin ≈ 9kΩ was less than the resistance quantum RQ = 13kΩ typical for the ballistic trans-

port, the magnetoresistance was rather low MR ≈ 0.02. One could not distinguish any
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mechanism of the magnetoresistance from these experimental data10; moreover there was

lack of any features of interference, which were well seen for SWNTs connected to the gold

electrodes6.

The purpose of the present work is to study the coherent electronic transport between

ferromagnetic electrodes separated by a nonmagnetic nanoparticle (e.g. either a quantum

dot or a molecule). The electrodes are assumed to be in the form of thin films with an in-

plane magnetization perpendicular to the direction of the current flow. For a nanoscopic gap

between the electrodes, the stray magnetic fields at the particle vanish. In considerations

we take into account Coulomb interactions at the particle with special attention on the

correlations between electrons with opposite spin orientations flowing through the particle.

The considered system is of a transistor type with a gate electrode, which allows to shift a

position of the energy level and to change a number of electrons at the particle. We expect

for the deep dot level the Kondo resonance with a peak in a local density of states at the

Fermi energy, what reflects a formation of a singlet state. Passing from the Kondo regime

to the empty state regime one can observe a crossover from the strongly correlated to the

uncorrelated electron system. It is of a special interest to examine whether the singlet state

in the Kondo regime is preserved with increasing polarization of electrodes.

The paper is organized as follows: In section 2 the model is described and the cur-

rent is expressed by means of nonequilibrium Green functions. In order to find the Green

functions we use (in section 3) the slave-boson method within the mean-field approxima-

tion (SBMFA),11,12 which takes into account essential electronic correlations and captures

the Kondo resonance. This method is very simple and efficient for the study of electronic

transport in nanostructures,13 however, it has some limitations. Therefore, in the section

4 we apply the equation of motion method (EOM)7,14 and compare the results with those

obtained within the SBMFA. In the section 5 some final remarks will be given.
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II. DESCRIPTION OF THE MODEL AND DETERMINATION OF THE CUR-

RENT

The Hamiltonian for the system with two ferromagnetic electrodes separated by the

metallic nanoparticle can be expressed as

H =
∑

k,α,σ

εkασ c†kα,σckα,σ +
∑
σ

ε0 c†0σc0σ + Un0↑n0↓

+
∑

k,α,σ

tα (c†kα,σc0σ + h.c.) . (1)

The first term describes electrons in the left (α = L) and the right (α = R) ferromagnetic

electrode, the second and the third one correspond to electrons at the particle with the single

energy level ε0 and the onsite Coulomb interaction U of two electrons with the opposite spins

σ =↑ and σ =↓, the fourth term describes tunnelling between the electrodes and the particle.

The current is calculated from the time evolution of the occupation number N̂L =

∑
k,σ c†kL,σckL,σ for electrons in the left electrode

J ≡ −e〈dN̂L

dt
〉 =

ie

h̄
[
∑

k,σ

tL〈c†kL,σc0σ〉 − c.c.] . (2)

The thermal averages are expressed by the lesser Green function15 as

〈c†kα,σc0σ〉 =
∫ dω

2πi
G<

0σ,kασ(ω) . (3)

From the Dyson equation we find

G<
0σ,kασ(ω) = tα[gr

kασ(ω)G<
0σ,0σ(ω) + g<

kασ(ω)Ga
0σ,0σ(ω)] , (4)

where gkασ is the bare Green function for electrons in the α-electrode, G0σ,0σ is the dressed

Green function at the particle, and the superscript r, a and < denotes the retarded, the

advanced and the lesser Green function, respectively. Assuming quasi-elastic transport, for

which the current conservation rule is fulfilled for any energy ω, one gets

G<
0σ,0σ(ω) = −2iIm[Gr

0σ,0σ(ω)][γLσfL(ω) + γRσfR(ω)], (5)

where γασ = Γασ/∆σ, Γασ = πρασt
2
α and ∆σ = ΓLσ + ΓRσ. We used the relations for

the bare Green functions in the electrodes gασ =
∑

k

gkασ ≡
∑

k

1

ω − εkασ

, g<
ασ = 2iπρασfα
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and gr,a
ασ = ∓iπρασ, where ρασ = 1/(2Dασ) is the assumed constant density of states for

|ε| < Dασ, Dασ is a half of the bandwidth and fα denotes the Fermi distribution function

for electrons in the α-electrode. Putting (5) into Eq. (4), (3) and (2) one gets

J =
e

h̄

∑
σ

2ΓLσΓRσ

∆σ

(〈nRσ〉 − 〈nLσ〉) , (6)

where

〈nασ〉 =− 1

π

∫ Dασ

−Dασ

dωfα(ω)Im[Gr
0σ,0σ(ω)] . (7)

The charge and the spin accumulation at the particle are expressed as 〈n0〉 ≡ ∑
σ〈n0σ〉 =

∑
α,σ γασ〈nασ〉 and 〈m0〉 ≡ ∑

σ σ〈n0σ〉 =
∑

α,σ σγασ〈nασ〉, respectively. There are several

possible choices for treatment of electronic correlations and calculation of the Green function

Gr
0σ,0σ. We choose the slave-boson approach well adopted to describe the Kondo regime and

complement the calculations by the equation of motion treatment, which allows to get a

deeper insight into the mixed valence range.

III. SLAVE-BOSON APPROACH

Slave-boson fields were used for decades in strongly correlated electron systems (see [16]

for a review). In the context of the Anderson model of a magnetic impurity, the slave-boson

representation was first used by Barnes11 and later developed by Coleman12 and others17.

Within this approach the annihilation operator c0σ of an electron at the particle is expressed

in terms of the slave-boson operators e0, d0 and the slave-fermion operator f0σ

c0σ = e†0f0σ + σf †0σd0 . (8)

The local eigenstates |0〉, |σ〉 and |2〉 (corresponding to the empty, the single and the doubly

occupied state at the particle) are constructed by the auxiliary operators

|0〉 = e†0|vac〉 , |σ〉 = f †0σ|vac〉 , |2〉 = d†0|vac〉 (9)

from the vacuum state |vac〉. In order to operate in the physical space the auxiliary operators

should obey the constraint

e†0e0 +
∑
σ

f †0σf0σ + d†0d0 = 1 . (10)
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The slave-boson representation (8) gives the reliable results for the equilibrium situation

and for the system with paramagnetic electrodes. It is well known12,17,18 that this represen-

tation can be generalized for large spin degeneracy N . The mean-field approximation gives

then exact results in the limit N → ∞ and T = 0. Moreover, one can include Gaussian

fluctuations about mean field solution, which corresponds to the 1/N corrections. The local

density of states shows then two peaks corresponding to the charge and the spin fluctuations,

respectively.

Kotliar and Ruckenstein19 proposed other approach using four slave-boson operators for

representation of the electron operator c0σ. The method is associated with the Guzwiller

approximation and has been widely used in the last decade for studies of the ground state

of strongly correlated electrons in lattice models.16 For the Anderson model of a single–

magnetic impurity this approach gives, however, a mean-field stable solution with the local

magnetic moment (〈n0↑〉 6= 〈n0↓〉) for large U and T = 0 (for paramagnetic electrodes), in

contrast to the exact solution 〈n0↑〉 = 〈n0↓〉.
We choose the Barnes-Coleman representation (8) for studies of our model with the fer-

romagnetic electrodes, because this method gives the reliable results for the paramagnetic

case and describes a continuous evolution of physical quantities when the magnetization in

the electrodes increases. We are aware that within the mean field approximation (MFA) the

method takes into account spin fluctuations but neglects charge fluctuations. The one parti-

cle Green function has the quasi-particle contribution only. In order to get the full electronic

spectrum one has to include the 1/N corrections (see for example [12] and the chapter 8 in

[18]). Moreover, the Barnes-Coleman representation by its construction underestimates long

range spin correlations, which may eventually lead to magnetic solutions for the electrodes

with a very high magnetic polarization.

The expression (8) is introduced into the Hamiltonian (1). In order to find the Green

functions we use the mean-field approximation, within which the slave-boson operators are

treated as the complex numbers. Moreover, it is assumed U → ∞, in which the double

occupancy at the particle is prohibited (d0 = 0). The problem is reduced then formally to

the free electron model with the renormalized parameters t̃α = e0tα and ε̃0 = ε0 + λ, for
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the coupling between the electrodes and the particle and the local energy level, respectively.

Here, λ denotes the Lagrangian multiplier corresponding to the constraint (10). The stable

solution is found from the saddle point of the partition function, i.e., from the minimum of

the free energy with respect to the variables e0 and λ. The free energy is the sum of the

fermionic and the bosonic parts F = Ff + Fb, which are given by

Ff = −∑
α,σ

Im
∫ Dασ

−Dασ

dω

2πDασ

fα(ω) ln(ξσ − ω), (11)

Fb = λ(e2
0 − 1). (12)

Here, ξσ = ε̃0 + i∆̃σ and ∆̃σ = e2
0∆σ. The minimum of F is determined by

∂F

∂λ
=

∂Ff

∂λ
+ (e2

0 − 1) = 0, (13)

∂F

∂e0

=
∂Ff

∂e0

+ λe0 = 0. (14)

These equations can be expressed in the form

1− e2
0 =

∑
α,σ

γα,σIm[Aα,σ] , (15)

λ = 2
∑
α,σ

Γα,σRe[Aα,σ] , (16)

where

Aα,σ = − 1

π

∫ Dασ

−Dασ

dωfα(ω)G̃r
0σ,0σ(ω) (17)

and the Green functions G̃r
0σ,0σ is given by

G̃r
0σ,0σ(ω) =

1

ω − ε̃0 + i∆̃σ

. (18)

The equation (15) is the condition for the average number of electrons at the particle and

the equation (16) gives the shift of the resonant level. In the SBMFA the local density of

states has a Lorentzian peak close to the Fermi energy (at ε̃0), with the renormalized width

∆̃σ. The method ignores the charge fluctuations and consequently no peak occurs in the

density of state at ε0.

Let us analyze the situation for the small voltage V → 0 and the temperature T = 0.

The conductance is calculated from

G =
e2

h

∑
σ

4e2
0ΓLσΓRσ

ε̃2
0 + ∆̃2

σ

=
e2

h

∑
σ

4γLσγRσ sin2(π〈n0σ〉) , (19)
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where 〈n0〉 and λ are determined from the set of self-consistent equations (15)-(16). Fig.1a

presents the conductance as a function of the position of the particle energy level ε0 − εF

(with respect to the position of the Fermi level taken as εF = 0) for the parallel GP and

the antiparallel GAP orientation of magnetization in the electrodes. In the calculations we

assumed the density of states in the electrodes ρL↑ = ρR↑ = 1 and ρL↓ = ρR↓ = 1/2 (i.e.

DL↑ = DR↑ = 1/2, DL↓ = DR↓ = 1) for the parallel configuration and ρL↑ = ρR↓ = 1

and ρL↓ = ρR↑ = 1/2 for the antiparallel configuration. Following the Julliere approach20

one can express the polarization as Pα = (ρα↑ − ρα↓)/(ρα↑ + ρα↓), which in our case is

PL = PR = 1/3. In the following the limit of strong polarization Pα → 1 is not considered,

because it corresponds to the case of vanishing bandwidth of one of spin subbands and it

breaks down our assumption on the weak coupling, in which Γασ ¿ Dασ.

The magnetoresistance MR = (GP − GAP)/GP is presented in Fig.1b. In the regime of

the empty state (for ε̃0 À ∆σ) one can find

MR =
2PLPR

1 + PLPR

. (20)

It is the Julliere formula20, as one could expect for the uncorrelated transport of electrons.

Note that the magnetoresistance in the empty state regime depends only on polarizations

of the electrodes. No quantity specifying the particle or its coupling to the leads enters into

the formula (20). In the Kondo regime (ε̃0 → 0) the conductance is G = (e2/h)
∑

σ 4γLσγRσ .

In general, an expression for MR has a complex algebraic form. A simpler form of MR is

for the system with equal polarization of the electrodes PL = PR = P

MR =
P 2(1− 3α2 + α2P 2 + α4P 2)

(1− α2P 2)2
, (21)

where α = (t2L− t2R)/(t2L + t2R) describes asymmetry between the left and the right junction.

For a large asymmetry α → 1

MR = − 2PLPR

1− PLPR

. (22)

The magnetoresistance is then negative and its absolute value is larger than in the empty

state regime [compare with Eq.(20)].

Fig.1c presents the spin accumulation 〈m0〉 at the particle. When a gate voltage is applied

to the particle, the position of ε0 is shifted from the empty state regime to the Kondo regime.
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The spin accumulation then increases and achieves its maximal value in the mixed valence

regime, next it decreases to zero. Using the formula 〈n0σ〉 = 1
π

arctan(∆̃σ/ε̃0) for the average

number of electrons with the spin σ valid at T = 0, one can easily derive the following

relation linking the magnetization with the occupation of the particle

sin(π〈m0〉) =
∆↑ −∆↓
∆↑ + ∆↓

sin(π〈n0〉) . (23)

It means that in the Kondo regime (i.e. when 〈n0〉 → 1) the spin accumulation 〈m0〉 → 0

and the system achieves the unitary limit with the singlet state. Although the tunnelling

rates Γασ are different for electrons with the opposite spin orientation, the Kondo resonance

leads to an equal probability to find an electron with the spin σ =↑ and σ =↓. The vanishing

spin accumulation at the nanoparticle in the Kondo regime is independent on the asymmetry

of the junctions (Fig.1c). It is not true for the transmission, where equal values for both

spin channels are only achieved for the symmetric case (tL = tR, PL = PR). This fact is

illustrated in Fig.1a, where for the asymmetric junctions (tL 6= tR) the conduction does

not reach the maximal value 2e2/h in the Kondo limit. Qualitatively similar behavior (not

presented) holds for for tL = tR but PL 6= PR.

The relation (23) is valid for free electrons (U = 0) as well. There is a difference in the

dependence of the average number of electrons 〈n0〉 on the position of the particle level ε0,

which for the correlated electrons within the SBMFA is expressed by the renormalized value

ε̃0 = ε0 + λ. Using the electron-hole symmetry in our model (1) one finds that in the limits

〈n0〉 → 0 and 〈n0〉 → 2 electronic correlations are irrelevant and the magnetoresistance is

the same as for free electrons. The absolute value of 〈m0〉 is equal in both the limits, but

its sign is opposite. Therefore, we expect that 〈m0〉 = 0 for the symmetric Anderson model

with ferromagnetic electrodes, i.e. when ε0 = U/2 and 〈n0〉 = 1. The problem shall be

undertaken in the next section within the equation of motion approach.

Fig.2 shows the temperature dependence of the conductance and the slave-boson field e2
0.

In the Kondo regime G and e2
0 decreases to zero when T → Tc. The sharp transition from the

broken symmetry state to the state with vanishing boson field expectation value is an artifact

of the MFA. The peak in the density of states disappears at Tc. In the mixed valence regime
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the value of Tc is much larger and one can observe an increase of G corresponding to smearing

of the Fermi distribution function (see the curves in Fig.2 corresponding to ε0 = 0). The

SBMFA is reliable in the Fermi liquid regime when the temperature T is much lower than

the Kondo temperature TK . Moreover, the method neglects charge fluctuations relevant in

the mixed valence regime and at higher temperatures. Therefore, in the next section, we

complement the studies of electronic transport by the equation of motion approach.

IV. EQUATION OF MOTION APPROACH

Lets us first describe the equation of motion (EOM) method. The equation for Gr
0σ,0σ at

the particle

(ω − ε0 + i∆σ)Gr
0σ,0σ(ω) = 1 + U〈〈c0σc

†
0σ̄c0σ̄|c†0σ〉〉rω , (24)

generates the higher-order Green’s function 〈〈c0σc
†
0σ̄c0σ̄|c†0σ〉〉rω. Here, σ̄ denotes the spin

orientation opposite to σ. Next, the equation of motion for this function is written

(ω − ε0 − U)〈〈c0σc
†
0σ̄c0σ̄|c†0σ〉〉rω = 〈n0σ̄〉+

∑

k,α

tα
[
〈〈ckασc

†
0σ̄c0σ̄|c†0σ〉〉rω −

〈〈c0σc
†
kασ̄c0σ̄|c†0σ〉〉rω + 〈〈c0σc

†
0σ̄ckασ̄|c†0σ〉〉rω

]
. (25)

We proceed a step further and truncate the series of hierarchy of equations of motions using

the self-consistent decoupling procedure proposed by Lacroix14, within which

〈〈ckασc
†
k′α′σ̄c0σ̄|c†0σ〉〉rω ≈ 〈c†k′α′σ̄c0σ̄〉Gr

kασ,0σ(ω) , (26)

〈〈ckασc
†
0σ̄ck′α′σ̄|c†0σ〉〉rω ≈ 〈c†0σ̄ck′α′σ̄〉Gr

kασ,0σ(ω) , (27)

〈〈c0σc
†
kασ̄ck′α′σ̄|c†0σ〉〉rω ≈ 〈c†kασ̄ck′α′σ̄〉Gr

0σ,0σ(ω) . (28)

The Green’s functions from the left hand side of (25) can be written as

∑
k〈〈ckασc

†
0σ̄c0σ̄|c†0σ〉〉rω ≈ tαgr

ασ〈〈c0σc
†
0σ̄c0σ̄|c†0σ〉〉rω and

∑
k〈〈c0σc

†
0σ̄ckασ̄|c†0σ〉〉rω ≈ R0σ̄,ασ̄(ω) + tαgr

ασ̄〈〈c0σc
†
0σ̄c0σ̄|c†0σ〉〉rω +

R0σ̄,ασ̄(ω)
∑

k′,α′
tα′G

r
k′α′σ,0σ(ω)−Gr

0σ,0σ(ω)
∑

α′
tα′Rα′σ̄,ασ̄(ω) , (29)
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where R0σ̄,ασ̄(ω) =
∑

k
〈c†0σ̄ckασ̄〉
ω−εkασ

, Rα′σ̄,ασ̄(ω) =
∑

k,k′
〈c†

k′α′σ̄ckασ̄〉
ω−εkασ

. The function

〈〈c0σc
†
kασ̄c0σ̄|c†0σ〉〉rω ∝ 1/U and can be neglected in the limit U → ∞. After these ap-

proximations one gets (for U →∞)

Gr
0σ,0σ(ω) =

1− 〈n0σ̄〉+ Hσ̄(ω)

ω − ε0 + i∆σ + i2∆0Hσ̄(ω) + Fσ̄(ω)
, (30)

where 2∆0 = ∆↑ + ∆↓,

Hσ̄(ω) =
∑
α

Γασ̄

∫ dω′

π

fα(ω′)Ga
0σ̄,0σ̄(ω′)

ω′ − ω − i0+
, (31)

Fσ̄(ω) =
∑
α

Γασ̄

∫ dω′

π

fα(ω′)
ω′ − ω − i0+

=

∑
α

Γασ̄

π

{
iπfα(ω) + ln

2πkBT

Dασ̄

+ ReΨ
[1

2
− i

ω − εFα

2πkBT

]}
. (32)

Here, ReΨ denotes the real part of the digamma function and εFα is the position of the

Fermi level in the α electrode. Eqs.(30)-(31) and the condition

〈n0σ〉 =− 1

π

∑
α

∫ Dασ

−Dασ

dω γασfα(ω)Im[Gr
0σ,0σ(ω)] (33)

consist a set of self-consistent integral equations, which have to be solved.

At T = 0 the function Hσ̄(ω) and Fσ̄(ω) has a logarithmic singularity at the Fermi level

ω = εFα, but Gr
0σ,0σ0(ω) varies more smoothly around this point. At the equilibrium the

equation (30) for the Green function can be written as

Gr
0σ,0σ(εF ) =

Ga
0σ̄,0σ̄(εF )

i2∆0Ga
0σ̄,0σ̄(εF ) + 1

. (34)

Assuming the solution in a form Gr
0σ,0σ(εF ) = [1− e2iφσ ]/(2i∆σ) one gets

sin(φ↑ − φ↓) =
∆↑ −∆↓
∆↑ + ∆↓

sin(φ↑ + φ↓) . (35)

Taking the phase shift φ = φ↑ + φ↓ according to the Friedel sum rule φ = π〈n0〉 and

η = φ↑ − φ↓ = π〈m0〉 the relation (35) becomes the same as the one (23) derived for the

SBMFA. Again we come to the conclusion that the spin accumulation 〈m0〉 → 0 in the

Kondo regime.

In general, the Green function Gr
0σ,0σ(ω) was determined numerically solving the set of

Eqs.(30)-(33). The singularity at εF was treated with a special care. Integration around
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the singularity point was performed according to a logarithmic discretization procedure18.

In Fig.3 the density of states (DOS) is presented for both spin orientations. Besides the

sharp Kondo peak close to εF = 0, one can see the broad peak close to ε0 corresponding

to charge fluctuations. Since the real part of the denominator of the Green function (30)

is different for both spin orientations, the maxima of the charge fluctuations peaks are at

different positions. Moreover, one can see that the weight of DOS for σ =↑ is much larger

than that for σ =↓. This results from the nominator of Gr
0σ,0σ (30), which is different for

the opposite spin directions. It is in contrast to the SBMFA, where no spin asymmetry of

the weights is observed – compare the Green functions (30) and (18). The difference reflects

the fact that the SBMFA solution (18) completely neglects charge fluctuations.

Fig.4a presents the conductance GP and GAP for the parallel and the antiparallel config-

uration of the magnetization (solid and dashed curves, respectively). It is seen that with

lowering of the temperature the peak of G is shifted (as expected 21) to the Kondo regime.

The magnetoresistance is presented in Fig.4b. In the empty state regime it is similar to

the SBMFA result (compare Fig.1b). In the mixed valence regime MR behaves different, it

increases and achieves large values. Moreover, MR shows a strong temperature dependence.

In this range the contribution of the charge fluctuations is dominant and since the width

of the peaks of the DOS for the opposite spin directions are different, so the different

temperature dependence of the conductance results. A further shift of ε0 into the Kondo

regime leads to a reduction of MR, which achieves its minimal value given by Eq.(21) (for

our case MR = P 2 = 1/9).

The spin accumulation 〈m0〉 calculated within the EOM approach (Fig.4c) is much larger

than that for the SBMFA (compare Fig.1c). Its maximal value can be as large as 0.8 at

ε0 ≈ −0.02, which means that electrons with the spin σ =↑ are mostly transferred through

the particle. In the Kondo regime we recover the SBMFA result with 〈m0〉 → 0. It is weakly

temperature dependent (in contrast to G and MR). For the antiparallel configuration there

is no spin accumulation for any ε0 (see the dashed curve in Fig.4c). It results from the

transfer rates to and from the particle, which are equal for both spin orientations in the case

of symmetric junctions.
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Temperature characteristics of our system are presented in Fig.5 for ε0 = −0.025. The

EOM approach14 gives the Kondo temperature TK = 0.57D/kB exp[−π(εF − ε0)/∆0], which

for our case with D = DL↓ = 1 is TK = 3.5× 10−5. The conductance (presented in Fig.5a)

decreases in a very wide temperature range (over four orders of magnitude) and saturates at

temperatures T ≈ 10−4. We drew also a series of auxiliary figures (not presented) with the

DOS for various temperatures (similar to Fig.3) and found that the Kondo peak disappeared

at T ≈ 10−4. For higher temperatures the value of G is connected with the broad peak of

the DOS corresponding to the charge fluctuations, which is weakly temperature dependent.

The spin accumulation depends on both the peaks, corresponding to the charge and the

spin fluctuations. However, the weight of the Kondo peak is small and its contribution to

the electron occupation 〈n0σ〉 is small as well. Therefore, 〈m0〉 starts to decrease at a much

higher temperature T ≈ ∆0/kB (see the Fig5.b), when the charge fluctuation peak becomes

to be deformed. Fig.5 shows also that at low temperatures GAP decreases quicker than GP ,

which results in the magnetoresistance increases first, then decrease and finally the value for

uncorrelated electronic transport given by Eq.(20) is reached.

V. FINAL REMARKS

In the paper we considered the coherent transport through magnetic nanojunctions sep-

arated by a nanoparticle and a role of electronic correlations. In the empty state regime the

transport is uncorrelated and the Julliere formula for the magnetoresistance was recovered.

We showed that in the Kondo regime the conductance reaches the unitary limit and the

singlet state is formed, for which the spin accumulation reaches zero. Correlations between

electrons lower the value of the magnetoresistance, which can be even negative for asymmet-

ric junctions. Analytical formulae were derived for MR in the system with the electrodes

of the same polarization as well as in the limit of strong asymmetry between the junctions.

The slave-boson mean field approach and the equation of motion method were used in the

studies, and both of them gave quantitatively the same results in the Kondo regime and in

the empty state regime. For the mixed valence regime we predict a large magnetoresistance,
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which should exhibit a strong temperature dependence.

Very recently appeared a paper by Sergueev et al. [22] discussing also the spin polarized

transport through a quantum dot. In opposite to our studies they concentrate exclusively

on the Kondo regime and the main point of their interest is the contribution of the Kondo

resonance to the spin valve effect. Their finding of the singlet Kondo state in the presence

of magnetic electrodes is in agreement with our conclusions.

In the presented discussion all the information on correlations of electrons in the elec-

trodes is included in the magnetic polarization only. In this simplified picture the electrodes

are treated as two independent reservoirs of spin dependent noninteracting quasiparticles.

The source of magnetism in the electrodes is coulomb and exchange interactions, which not

only determine the ground state but also the response of the subsystem. This problem has

to be studied by many-particle Green functions including vertex corrections. The essential

point of such more fundamental approach is that the processes for each spin channel do

not proceed separately but the interactions mix the channels. The Kondo resonance at the

nanoparticle is caused by collective excitations of the low-energy particle-hole pairs that

lead to logarithmic singularities. In the response of the conduction electron subsystem the

electron-hole pairs with opposite spins take also part. One can expect that electronic corre-

lations in the electrodes influence of the Kondo resonance and modify the Kondo exchange

coupling. This topic has been discussed in serval papers (see e.g. [23,24]) in the context of

magnetic impurity in a correlated electron medium in the paramagnetic phase. The studies23

showed that for the weakly correlated case (with a small onsite coulomb integral Uα ¿ Dα)

spin fluctuations of conduction electrons are enhanced with an increase of Uα, which results

in an enhancement of both the Kondo exchange coupling and the Kondo temperature. For

the strong coupling between the impurity and the medium (Γα ≈ Dα) and the strong cor-

relations of conducting electrons (Uα > Dα) the studies24 suggest that the single Kondo

picture leading to logarithmic divergences breaks down even for a paramagnetic medium.

The theory is, however, not well developed for this case. Those studies23,24 support our

statement that the Kondo resonance should occur in the system with the magnetic elec-

trodes for the weak coupling between the nanoparticle and the electrodes (Γασ ¿ Dασ) and

14



for the small polarization (Pα ¿ 1). The present approach can not be applied in the limit

of large polarization (Pα → 1), where one can expect a break-down of the Kondo resonance

and magnetic solutions for whole range of ε0.

A ferromagnetic single electron transistor (fSET) has a similar construction25 to the model

discussed in this paper. The tunnel barriers between the electrodes and the nanoparticle

are assumed to be thicker in the fSET and therefore, transport is an incoherent sequential

tunneling process. The current-voltage (I-V ) characteristic shows25 a Coulomb blockade

effect in a low voltage regime. Moreover, for a high voltage the I-V curve is asymmetric like in

a diode and the fSET can operate as a spin filter. Electronic correlations at the nanoparticle

lead to an increase of the magnetoresistance for the incoherent sequential tunnelling – in

contrast to the present results (21)-(22) for the coherent transport.
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7 B. R. BuÃlka and P. Stefański, Phys. Rev. Lett. 86, 5128 (2001).

8 N. Garcia, M. Munoz and Y.-W. Zhao, Phys. Rev. Lett. 82, 2923 (1999).

9 H. Imamura, N. Kobayashi, S. Takahashi and S. Maekawa, Phys. Rev. Lett. 84, 1003

(2000).

10 K. Tsukagoshi, B. W. Alphenaar, and H. Ago, Nature 401, 572 (1999).

11 S. E. Barnes, J. Phys. F 6, 1375(1976); 7, 2637 (1977).

12 P. Coleman, Phys. Rev. B 29, 3035 (1984); B 35, 5072 (1987).

13 see for example: R. Aguado and D. C. Langreth, Phys. Rev. Lett. 85, 1946 (2000).

14 C. Lacroix, J. Phys. F Metal Phys. 11, 2389 (1981).

15 For a technique of the nonequilibrium Green functions and its applications in electronic

transport, see: H. Haug and A.-P. Jauho, Quantum Kinetics in Tranport and Optics

of Semiconductors, (Springer Verlag, Berlin Heildelberg New York, 1998); D. K. Ferry,

Transport in nanostructures, (Cambridge University Press, Cambridge 1997).

16 R. Frésard and P. Wolfle, Int. J. Mod. Phys. B 6, 237 (1992); F. Gebhard, The Mott

metal-insulators transition: Models and methods, (Springer Verlag, Berlin Heildelberg

New York, 1997).

17 N. Read D. Newns, J. Phys. C16, 3473 (1983); A. Auerbach, K. Levin, Phys. Rev. Lett.

57, 877 (1986); Phys. Rev. B 34, 3524 (1986); M. Lavagna, et al., Phys. Rev. Lett. 58,

266 (1987); A. J. Millis and P. A. Lee, Phys. Rev. B 35, 3394 (1987).

18 A. C. Hewson, The Kondo problem to heavy fermions (Cambridge University Press, Cam-

bridge 1993).

19 G. Kotliar and A. E. Ruckenstein, Phys. Rev. Lett. 57, 1362 (1986).

20 M. Julliere, Phys. Lett. 54A, 225 (1975).

21 L. I. Glazman and M. E. Raikh, Pis’ma Zh. Eksp. Teor. Fiz. 47, 378 (1988) [JETP Lett.

47, 452 (1988)]; T. K. Ng and P. A. Lee, Phys. Rev. Lett. 61, 1768 (1988); A. Kawabata,

J. Phys. Soc. Jpn. 60, 3222 (1991).

22 N. Sergueev, Q.-f. Sun, H. Guo, B. G. Wang and J. Wang, Phys. Rev. B 65, 165303

16



(2002)

23 T. Schork and P. Fulde, Phys. Rev. B 50, 1345 (1994); G. Khaliullin and P. Fulde, Phys.

Rev. B 52, 9514 (1995); T. Schork, Phys. Rev. B 53, 5626 (1996);.

24 B. Davidovich and V. Zevin, Phys. Rev. B 57, 7773 (1998).

25 B. R. Bulka, Phys. Rev. B 62, 1186 (2000).

17



0.0

0 .5

1.0

1.5

2 .0

C
on

du
ct

an
ce

  [
e2 / h

]

-0 .1

0.0

0.1

0.2

M
ag

ne
to

re
si

st
an

ce

-0 .06 -0.04 -0.02 0 .00 0.02 0.04

P a rtic le  e n e rg y  le v e l

-0 .1

0.0

0.1

S
pi

n 
ac

cu
m

ul
at

io
n

T  =  0a)

b )

c )

sym m etric

asym m etric

sym m etric

asym m etric

sym m etric

asym m etric

FIG. 1: The results of the SBMFA for the conductance (a), the magnetoresistance (b) and

the spin accumulation as a function of the relative position of the energy level ε0 − εF of

the particle for the symmetric junction (tL = 0.03, tR = 0.03) and the asymmetric junction

(tL = 0.02, tR = 0.06) at the temperature T = 0. All parameters are in units of the half-band

width DL↓ = 1. The solid and the dashed curves correspond the situation for the parallel

and for the antiparallel orientation of magnetization in the electrodes. The polarization is

taken Pα = 1/3.
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tR = 0.03), the polarizations in the electrodes PL = PR = 1/3 are oriented parallel.
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FIG. 3: Local density of states (DOS) determined by the EOM method for the spin ori-

entation σ =↑ (solid curve) and σ =↓ (dashed curve) at T = 10−7. The parameters are

ε0 = −0.02, tL = tR = 0.03, ∆0 = 0.0085 and PL = PR = 1/3.
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FIG. 4: The conductance (a) calculated by means of the EOM approach for the parallel and

the antiparallel orientation of magnetization in the electrodes (solid and dashed curves), the

magnetoresistance (b) and the spin accumulation (c) as a function of the position of the dot

level for different temperatures T = 1× 10−6, 1× 10−5 and 1× 10−4. The other parameters

are the same as those in Fig.3.
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FIG. 5: Temperature dependence of the conductance (a) for the parallel and the antiparallel

orientation of magnetization in the electrodes (solid and dashed curves), the magnetoresis-

tance and the spin accumulation (b) for ε0 = −0.02. The Kondo temperature is estimated

as TK = 3.5× 10−5. The other parameters are the same as those in Fig.3.
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