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Abstract 

A model is presented which relates the dynamics of energy migration 

in crystals to the mechanism by which thermal equilibrium between delocalized 

bands .states and localized trap states is achieved. Central to this model 

is the requirement that coherent energy migration must be the dominant mode 

of migration at low temperatures in order to achieve Boltzmann equilibrium 

between band and trap states within the lifetime of the excited electronic 

state. Secondly, a stocastic model for detrapping is developed which is 

based on an irreversible radiationless relaxation process of a phonon-trap 

intermediate into the density of delocalized band states. Explicit account 

is taken of trap-phonon interactions in the formation of the excited trap 

intermediate. Further, the relation between detrapping and the ability for 

a crystal to achieve thermal equilibrium within the excited state lifetime 

is developed and applied to one-dimensional crystals. Experimental results 

on molecular crystals representing examples of one-dimensional exciton bands 

are also presented. Specifically, the temperature dependence of phosphor-

escence from excited triplet trap states is interpreted in terms of the 

above considerations. From these experiments one can obtain both the sign 

of the intermolecular interaction and the dispersion of the first excited 

triplet band in addition to an estimate of the coherence length associated 

with exciton migration in the Frenkel limit. Finally, some new and unique 

methods for studying energy migration are presented which utilize optically 

detected magnetic resonance techniques in zero-field. They include experi-

ments based on the measurement of electron spin coherence in the rotating 

frame and the relationship of the spin coherence to the various rate pro-

ceases important in trap-exciton interactions. 
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I. INTRODUCTION 

In. this paper, the' relation· between. energy migration. ii1' solids arid 

the populations of localized and· delocalized states will be discussed in 

terms of a model which 'includes ·explicit features of the exciton band' 

the sign of the intermolecular interacti()n in the nearest neighbor approx-

imation, the number· of wave ·vector state:s comprising the band, and a 

. 1 . 
mechanism for Frenkel exciton migration in· solids including the effects 

of coherent and incoherent propagation. Although the theoretical and 

experiinental details which will be presented here pertain to the triplet 

state of molecular solids, identical considerations·are also applicable 

to singlet states and transport pherioinena in non-molecular solids. The 

model will be applied specifically to the temperature dependence of the 

intensity of trap emission in molecular crystals although the approach 

is applicable to a wide variety of·related problems. 

The necessity of considering the above features of exciton migration 

iri solids in a model which attempts to· explain some straightforward 

observations on the temperature dependenceof the intensity of the trap 

states can readily be seen by the paradoxes whichare created if·exciton 

dynamics are not treated properly. For illustration consider the simplest 

case where it i·s tacitly assumed that the excited states of the host are 

degenerate and that the different types of traps which may be due either 

to impurities or' crystal lattice defects may be regarded as independent 

but describable by Boltzmann statistics. The problems created by this 

oversimplified treatment can readily be seen. In the absence of inter-
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molecular interactions between an excited host molecule and its unexcited 

neighbors, the excitation is an isolated molecular state as opposed to a 

mobile crystal state, and hence it cannot migrate to a trap. The failing 

of this model is not so much in the trivial assumption that the host states 
( 

are degenerate (i.e., no intermolecular interactions) but rather in not 

providing a mechanism whereby t~ermal equilibration between the host and 

trap states can be achieved,which permits the use of Boltzmann sta­

fistics.2 This latter consideration requires that a distinction be made 

between coherent and, incoherent migration insofar as the dynamics of 

achieving trap-exciton equilibration determine whether or not BOltzmann 

statistics is a valid assumption. Intermolecular interactions break the 

degeneracy of the host excited states and produce a band of mobile exciton 

states with width 4S, where 13 is the intermolecular interaction matrix 

element. These mobile excitons can migrate between traps in one limit 

(the low temperature limit) as a coherent wave packet whose properties 

are determined by the wave vectors of the crystals or in another limit 

(high temperature limit) as a random walk diffusional process characterized 

by a hopping fr~quency proportional to the intermolecular interaction.
3 

If the migration is rapid, equilibration of the excited state populations 

can be established among the exciton and trap states within the lifetime 

of the excited electronic state. The populations of the various energy 

levels can then be determined using a Boltzmann statistical model. The 

width of the exciton band and .the sign of the intermolecular interaction, 

the location of the exciton energy levels relative to the trap depth, 
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and the mode of exciton migration all determine whether or not the 

equilibrium condition can be established within -the lifetime of' the state 

and hence ,determine the functional fo.rm of the temperature dependence of 

the trap emission. Indeed we shall demonstrate that the measurement of 

trap phosphorescence which reflects the triplet trap population, provides 

a tool capable of investigating the mode of migration in triplet Frenkel 

-excitons in addition to the magnitude and sign of intermolecular inter-

action S· 

-Specifically in the following, the temperature ,dependence- of trap 

phosphorescence will be discussed using a model which primarily treats 

the exciton band as one-dimensional although multidimensional bands are 

considered briefly. A method for determining the exciton band width and 

the sign of S from the trap emission.temperature dependence is presented. 

Systems composed of both single alild multiple traps.in .equilibritim.with 

an exciton band will be considered where the effect of coherent versus 

random walk exciton migration on the temper-ature dependence of the trap 

emission intensity is central to the model. Next we will discuss iso-

topically mixed crystals where the effects of trapping result in both a 

,Boltzmann equilibration and non-Boltzmannequilibration in different 

temperature regions. Solutions .to the non-.Boltzmann ._steady state between 

1._1 trap_ and band states .also allow _a measure of :the coherence .to be ~stimated. 

In·addition, a. model for the.decay of localized states into delocalized band 

states based on raciiat ionless ,relaxation is developed. Finally, E>xperimental 

::esults on "one-dimensional" molecular crystals will be presented and 

interpreted in terms of the above considerations. These include optically 

detected magnetic resonance experiments on trap states in which the electron 

spin coherence in the rotating frame is used to measure absolute detrapping rates. 
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II. THERMAL EQUILIBRIA BETWEEN EXCITON STATES AND SINGLE TRAPS 

The formal features of one-dimensional Frenkel excitons in the absence 

4 
of phonon exciton coupling are well understood. A finite linear array of 

n independent molecules in which one molecule of the chain is in an excited 

0 
electronic. state will have an energy E corresponding· to the "isolated" 

molecular excited state energy. The system however is n fold degenerate, 

since the excitation may be on any one of the n molecules in the linear 

array. If the molecules are allowed to interact through a nearest neighbor 

interaction a, the degeneracy is destroyed and a band of energies is formed. 

In the nearest neighbor approximation the energy dependence of the exciton 

band on the.quantum number k which labels the levels is given by 

E(k) = E + 2S cos ki 
0 

(2 .1) 

where a is the distance between translationally equivalent molecules along 

the axis of delocalization. The quantum number k can take on n values from 

zero to ±:rr/a in the first Brillion Zone giving a band width of 4S. 

The temperature dependence of the intensity of trap emission in the 

temperature region where Boltzmann statistics are applicable can be understood 

in terms of the partition function, z, for the systems consisting of one 

excitation found either in the .trap energy level or in one of the levels 
. 

. of the.exciton band. We adapt as a model for "real" one~dimensional crystals, 

a crystal composed of a set of independent exciton chains, each chain being 

separated by one or more impurities or trap sites. The gaussian distribution 

of chain lengths in a crystal is sharply peaked,and therefore the average 

length is employed. ·This is a valid assumption for most bands provided the 

number of molecules in a chain exceeds -100. Each chain may be labeled by a set of 
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molecular indicies which specify its location in the crystal and thus 

make it distinguishable from the other chains in the crystal .. This, in 

addition to the fact that there are many energy levels available to each 

excitation in the crystal, allows Boltzmann statistics to be employed· in 

writing the partition function provided the trap and band states are in 

equilibrium. Such a partition function has the form 

(n-l) (TI I an) 
-MkT ~ Ze-(.!l-2(3(1-cos. ka))/kT 

z=l+e + £..J . (2. 2) 

k=TI/an 

The zero of energy is taken at the energy of the trap while the trap 

depth, .!l, is taken to be the difference in energy between the trap level 

and the k = 0 level of the exciton band in the approximation that the 

wave vector of the radiation field has zero momentum.5 This is the depth 

which can be measured spectroscopically from absorption or emission exper-

iments at low temperatures. The first term in z is simply the Boltzmann 

factor for the trap level while the second term is associated with the 

nond·egenerate k = '0 level of the band. Apart from k = 0, k can take on 

values greater than zero to ±:rr/a, and thus, all' non k = 0 states in the band are 

doubling degenerate. If there are (2N) · st:ates in the band in addition to k = 0 

state, corresponding to (2N + 1) molecules in a linear chain, then the final 

. .~ ' ' 

term in the partition function is a summation over N doubly degenerate 

states where k takes on values TI/aN, 2n/aN, 3n/aN ••. Nn/aN = n/a. The 

energy dependence of the band on quantum number k is given by Equation 1, 

and the partition function ~s been written so that the k = 0 level ·has 

energy .!l. 
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In terms of the partition function, z, the probability that an 

excitation of the system is in the trap is simply 

P = 1/z • trap 
(2.3) 

The intensity of emission·, I, from the trap is 

I = Kr N 
trap trap trap 

(2.4) 

where Kr is the radiative rate constant and N is the number of 
trap trap 

trap states populated. If the total number of states excited in the 

system is Ntotal' then 

N = P N 
trap trap total 

and 

I 
trap 

= Kr N P 
trap total trap 

= Kr N z-l 
trap total 

(2.5) 

(2. 6) 

S~nce K~rap is essentially temperat~re independent
6 

and the Ntotal is 

usually constant, the temperature dependence of the trap intensity is 

determined by the temperature dependence of the normalized trap probability, 

" . 
p 
trap 

-1 = z which includes explicit feature of band states. 

By varying S and the number of states in the band while keeping the 

trap depth 6. constant, the relationship between the "real" partition 

function and a partition function using the degenerate approximation for 

calcu~ating the trap probability can be seen. Two cases arise depending 
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upon the sign of S as illustrated in Figure 1. If S is negative the 

exciton band spans an energy range from 11, the k = 0 energ_y, to 11 + 4S, 

the k = ±:rr/a energy. On the other hand, if S is positive the band .is 

inverted and it spans an energy range from 11 to 11 - 4S. The approximation 

that all the states in theband are given the energy of the k = 0 state 

corresponds to the limiting case of a band with zero band width. In 

cases where S is finite however, most states accumulate at the t9p and 

bottom of the band where the density of states function for one-

7 
dimensional systems is sharply peaked. One might expect a significant 

effect on the trap emissio.n due _to the dispersion of the band, particularly 

when the band width to trap depth ratio, 48/1:,., takes on reasonable values. 

Such is indeed the case. 

Recently 1,2,4,5-tetrachlorobenzene and 1,4-dibromonapt~lene have 

been shown to exhibit the properties of one-dimensional excitons. Francis 

8 
and Harris measured the band width of TCB by an optically det~cted magnetic 

resonance experiment 9 and found it to be 1.25 cm-l Hochstrasser and 

Whiteman
10 

in an isotopically mixed crystal, experiment measured 1,4-dibromo­

-1 
napthalene band width to be 29.6 em • These two values will be used as 

examples of narrow and broad triplet exciton bands respectively although 

it should be kept in mind that singlet bands can be one or more orders 

of ~gnitude greater in width. In Figures,.2a through 2e the trap proba;-

bility, Ptrap, versus temperature is plotted for several different negative 

values of 4S using the experiment;al value of /:,. (21.3 em -l) determined for 

11 
the X-trap in h

2
-TCB. In each figure curves ,resulting from several 
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different ratios of number of states in band to number of t~aps is 

plotted. Figure 2a is the degenerate case. Figure 2b uses the small 

value of S taken to be the narrow band example. Figures 2c and 2d are 

calculated using intermediate values, and Figure 2e uses a value associated 

with a·broader band. In Figure 3, one line from each of the Figure 2 

drawings is shown so that the differences can be more clearly seen. The 

number of k states (i.e., the number of molecules in the chain) has been 

kept constant in Figure 3. ·· Figures 4a through 4e are similar plots however 

a positive sign'of Sis considered. As illustrated in Figure 1, asS 

becomes more negative the energy differences between the trap and all the 

states in the band, except the k = 0 state, become greater. For a given 

number of states the temperature dependence of the trap probability and 

therefore the change in emission is more gradual. As S takes on 

larger positive values, the energy differences between the states in the 

·band and the trap become smaller. This causes the trap probability (and 

the trap intensity) to have a steeper temperature dependence. Figure 4e 

is an example where 4S, the band width,is greater than ~' and hence the 

bottom of the band extends below the trap. When the trap and exciton States 

amalgamate
12 

it is necessary to consider additional perturbations in the 

energy region where the trap·and exciton state are degenerate in cases 

where the intermolecular interaction becomes significant. This would cause 

some deviation from the· zeroth order temperature dependence illustrated 

in Figure 4e. In Figure 5 one curve from each of the Figure 4 drawings 

is plotted so that the change in the temperature dependence with S can 
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can be more clearly seen. One notes that the temperature dependence 

of trap emission, in addition to belng dependent on the trap depth and 

trap concentration, ls significantly governed by the detailed structure 

of the exciton band. In the case of amalgamation,for example,a reversal 

in the termperature dependence results (Cf. Figure 4e). In other cas,es, 

each value of the chain length and band width generates a unique tem~era-

ture dependence in the trap phosphorescence. Indeed, this interrelation-

ship between the band width, exciton chain length and trap depth can be 

exploited to give an experimental measure of these parameters· in crystals 

representative of one-dimensional systems. The temperature dependence 

of trap emission can also be used to determine (via inference) whether 

or not the band and trap states are in Boltzmann equilibrium. An example 

of this is illustrated in Figure 6, where the experimental temperature 

dependence of the intensity of the intrinsic h
2

-TCB X-trap is plotted as 

a function of temperature. The best calculated fit to the experimental 

data is also shown along with values of the parameters which are well 

outside of the limits on the accuracy of the results. Since the trap is 

intrinsic, the trap concentration was unknown; consequently, both S and 

the trap concentration were varied in order to obtain the calculated curve. 

The best values are 3.5 ± 2 cm-l for the band width 4S with S positive 

and a trap concentration of one part in 90,,000. If the trap concentration 

is known from an independent measurement, the uncertainty in the band width 

measured in this type of experiment can be greatly reduced. Although the 

n
2

-TCB band width measured by this method is somewhat larger than that 
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reported8 (1.25 dn-1) from an independent method, the essential features 

of these results are in agreement w:tth the interpretation of the earlier 

results. 
8 

It is important to note that the earlier experiments and the 

above experiment can only be'fully understood and interpreted in terms of a model 

which is dependent upon coherent migration being the principal mode'of exciton 

transport in the TCB crystal at low temperatu:res. The importance of 

coherent migration in the above results is discussed in detail in the next 

section. · The discussion in this and following sections is primarily 

concerned with excited triplet states; however, it should be kept in mind 

that identical considerations also apply to singlets and transport 

properties in general. 

III. EXCITON GROUP VELOCITIES AND THERMAL EQUILIBRIUM 

In the Frenkel limit once a molecule is excited it cannot transfer .. 

its excitation to another molecule without an intermolecular interaction 

which destroys the degeneracy of the states. In a finite band, the. 

velocity with which an excitation propagates in the crystal with a particular 

momentum i.n a coherent model is the group velocity, Vg(k), which is given 

by the slope of the energy dispersion of the band 

v (k) = 1 aE(k) 
g 1i ak 

(3 .1) 

and is proportional to the change in exciton energy with k. For a non-

degenerate band at temper-atures above zero degrees Kelvin, the group 

- I 
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velocity will be non-zero because of t,he population of non k = 0 or ±TT/a 

wave vector states; the excitation will be able to migrate. The average 

velocity of this migration, and certain details of phonon-exciton 

scattering determines whether or not .the system can reach thermal equili-

brium. If during the lifetime of the excited state,the excitations do not 

travel far enough to reach traps, the trap probability cannot be described 

by Boltzmann statistics. On the other hand, if the excitations during their 

lifetime can travel on the average many times farther than the average 

distance between traps, then all the excitations will be able to "sanJ,ple" 

traps, the system will be able to reach thermal equilibrium, and the trap 

probability will be determined by the partition function of the .previous 

section. The importance of phonon-exciton scattering in the equilibration 

process cannot be underestimated, for it is precisely what ultimately limits 

13 14 
the mean free path of coherent propagation. ' If we assume that there 

is no memory between phonon-exciton scattering events and restrict the 

15 
scattering to stocastic first order Markoffian processes one can assign 

a coherence time, T(k), to the wavepackets propagating at velocities V (k). 
g 

The distance, .R.(k), a coherent state propagates between "random" scattering 

events is then given by 

.R. (k) = V g (k) • T(k) (3 .2) 

and is thus equivalent to a mean free path. 

At intermediate temperatures where the principal limitation on T (k) 

is phonon-exciton scattering, Frenkel excitons initially in a state k 
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. (or a linear combination of k states) scatter 'to other k 1 states in a 

time short compared to the radiative or radiationless lifetime, but in 

• . .. -1 
a time long compared to the intermolecular interaction time (S ). As 

a result the.coherence time, T(k), is shortened, the mean free path reduced 

> ' 

and the ability to equilibrate trap and exciton state is attenuated. We 

will show in a later publication that scattering is principally to adjacent 

k states and hence the average group velocity is relatively unaffected 

until one approaches the high temperature limit. Diffusion or random 

walk is simply the limit where the change in k occurs on a time scale 

-1 
fast compared to S • These features will be dealt with in far greater 

16 
detail in a subsequent paper where a method for observing the dynamics 

of individual k states will be presented. In the present case however 

only manifestationsof the average velocities (and/or T(k)'s) are easily 

measurable and therefore we restrict the dfscussion to these features. 

The importance of <V (T)> is easily seen by comparison of coherent and 
g 

incoherent migration • 

. Treating the exciton band as one-dimensional, the average group 

velocity at a given temperature, <Vg(T)>, is given by the normalized sum 

over the velocities of the k states in the band with each velocity weighted 

by the probability of finding the system in that k state at a particular 

temperature, T, i.e., 

>. si~ (ka)e-(2S cos ka/kT) 
<V (T)> = ! <aE(k)> = 2~ 1r 

g -h aK T u .~ e-(2Scos ka/kT) 
(3.3) 
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In Table I, group velocities, calculated using Equation 3.3, for: a narrow, 

intermediate and broadtriplet.band are listed as a function of temperature. 

The average group velocity is not very sensitive to the number of states 

in the band when the number of states in the band is greater than 100. 

It can be seen from Table I, that even for the narrow band width of 1.25 

-1 8 . 
em which Francis and Harris have reported for TCB, at l°K traveling 

completely coherently an excitation will be able to sample 10
9 

lattice 

sites in ten milliseconds which is the order of the lifetime of the TCB 

11 
triplet state. (The exciton will of course travel even further given 

the 3.5 cm-l band reported here.) This is sufficient to enable a system 

with trap concentrations as low as 1 part per 107 to come to thermal 

equilibrium. For the larger band widths, systems with even smaller trap 

concentrations will be able to equilibrate. Only very pure samples with 

nearly degenerate bands will be unable to come to thermal equilibrium 

when the excitons m~grate coherently. 

Attenuation of this long range migration occurs when phono~-exciton 

scattering limits the coherence time and hence the coherence length. 

When this length becomes less than the average trap...:to-trap separation, 

thermal equilibrium becomes progressively more difficult to achieve. 

In the high temperature limit, phonons destroy the translational symmetry 

of the lattice and tend to scatter an excitation at each lattice site, 

and hence the group velocity is replaced by a diffusion rate as the excita-

tion executes a random walk at every lattice site. In one-dimensional 

diffusion,. the exciton can move with equal probability to either of the 
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two molecules adjacent to it. The average time, :r, it takes an exciton 

undergoing a rartdom walk migration to take one step is on the order of17 

h 
T = 4S • (3.4) 

Hence, the median distance traveled in em is given by 

<d> = 1/3 ~/ 2 a: (3 .5) 

where N is the number of hops taken per unit time and a is the distance 

traveled in one hop, one lattice translation, i~ centimeters. In Table 

II, the median random walk distances are listed for the three band widths 

used in Table I for a variety of times. The value of a used is 3.76 A 

which is the translational spacing of molecules along the a direction in 

TCB.
18 

Table III also gives the ratio of the distances traveled by,an 

exciton.moving in the coherent limit versus random walk migration for the 

three band widths at 2.8°K. 

4 6 
It is seen that random walk migration is a factor of 10 to 10 slower 

than .coherent migration. While a h
2

-TCB exciton traveling completely 

coherently could sample approximately 10
9 

lattice sites during its life-

time (10 ms), a:n exciton undergoing random walk migration on the average 

3 4 
will only sample 10 to 10 lattice sites. The number of excitons able 

to migrate larger distance falls off very rapidly because one-dimensional 

random walk processes are describable by a Gaussian distribut,ion of 

19 
distances around some initial starting point. In the case of h

2
-TCB 

t 
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only 3 excitons out of 1000 traveling completely by random walk migration 

would be able to cover a distance of 5 x 10
4 

lattice sites which is half 

the average distance between traps in these crystals. The obvious conclusion 

to be drawn is that the observation that the temperature dependence of the 

h
2

-TCB trap intensity obeys Boltzmann statistics provides strong evidence 

for coherent migration as the principal mode of exciton transport at liquid 

helium temperatures. Indeed the coherence time must be at least several 

orders of magnitude longer than the intermolecular exchange time. 

IV. THE EFFECTS OF MULTIPLE BANDS 

A. Zero-Field Splitting of the Exciton Band and Trap States 

To this point, the triplet exciton band and trap have each been 

considered as consisting of a single magnetic sublevel. This is an accurate 

description for singlet states, but both the triplet exciton band and trap 

are split into three energy sublevels by the zero-field spin dipolar inter-

20 
action of the unpaired triplet electron spins. The intensity of trap 

emission, I , for the three level system is 'given by 
trap 

I = Kr N + Kr N + Kr N (4.1) 
trap x trap x trap y trap y trap z trap z trap 

where Kri t is the radiative rate constant for the ith sublevel and 
rap . 

th 
N. is the po.pulation of the i sublevel. In the absence of a spin-
·~ .trap 

lattice relaxation processes in the band states, the trap states, and 
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between trap andband states, the population of a triplet sublevel is 

independent of the populations of the other sublevels and hence the total 

population of a particular magnetic spin component is the sum of the 

populations in the particular spin sublevel of exciton band and the trap. 

. th 
Thus, the trap population of the i sublevel can be given by 

N 
i trap 

(4. 2) 

h Z i h i i f . f h . th i bl 1 w ere i s t e part t on unct~on or t e ~ sp n su eve • Under these 

conditions the total trap intensity can be written as 

I 
trap 

= Kr N 1 
x trap x total Z 

X 

+ Kr N 1 
y trap y total Z 

y 

+ Kr N 1 
z trap z total Z 

z 
(4 .3) 

In the absence of spin-orbit coupling the dispersion of each of the three 

triplet bands will be identical when the zero-field spin dipole interaction 

is much smaller than the band dispersion. Thus, the three spin sublevel 

partition functions, Z , Z , and Z are essentially the same and the trap 
X y Z 

intensity is given by 

I = (Kr N + Kr N + Kr N ) l 
trap x trap x total y trap y total z trap z total Z 

(4.4) 

The net result is that the temperature dependence, as in the single spin 

sublevel case, is determined only by the change in z with temperature. 

In general, however, spin~orbit coupling must occur in order to give 

allowed transition character from the triplet excited state to the ground 

' --
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In most cases the spin eigenfunctions have different . ,· . 

·symmetry properties resulting in admixture of different singlet states 

22 
into three individual spin sublevels. The dispersion of the three 

_/ 

triplet spin sublevel bands can differ in such cases giving. each sublevel 

a slightly different partition function and therefore i~ principle a 

different intensity temperature dependence. However, the changes in the 

dispersions of the bands due to spin-orbit coupling are, in almost all 

cases, so small that the temperature dependence of the intensity of trap 

phosphorescence is unaffected by these small energy differences. In 

h
2

-TCB spin-orbit coupling produces only one part in 10
6 

difference in 

the dispersion of the three spin sublevel bands.
8 

A more. serious consideration, for molecular systems in some temp.erature 

region~ is the effects of spin lattice relaxation O~!- the temperature 

dependence of trap emission. In the above discussions the steady state 

population in the band and trap, Ntotal' in a particular magnetic sublevel 

was assumed to be independent of temperatur~ anq independent of the popu-

lations of the other two sublevels. However, spin lattice relaxation 

couples the sublevels, allowing population to be transferred from one to 

another. 
23 

Since this is in general highly temperature dependent, . the 

total steady state population of a particular magnetic sublevel can change 

significantly with temperature. To account for these variations is in 

principle straightforward. The population of a trap, and therefore its 

intensity, at any one temperature is determined by the partition flfnction 

as before, but as the temperature changes, the change (via T
1

) in the total sublevel 
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population a:s well as the change in the partition function must be determined. 

The change in the tot'al sublevel populations'can be determined by measuring 

the change in the lifetimes of the three sublevels as a function of temper­

ature, and thereby assessing the amount of spin lattice relaxation.
24 

The 

trap probability is determined as before using the partition function, but 

now it must be multiplied by the relative sublevel population for each 

temperature, i.e.~ 

I 
trap = [ """ Kr N (T)] !_ ~ i trap i total z • 

i=x,y,z 
(4 .5) 

Althou~h the effects of spin lattice relaxation between the magnetic 

sublevels of the triplet barid in one-dimensional bands can complicate 

the evaluation of the trap phosphorescence intensity, in most crystals 

this does not present any real difficulty. It is only when ther·e is a 

significant temperature dependence to the effective spin lattice .relaxation 

process over the temperature· range of interest that difficulty arises. 

Usually, small two~dimensional exchange interactions between translationally 

inequivalent molecules in the'unit cell result in an effective averaging 

of the spin sublevel populations in band states on a time short compared 

to the lifetime of the state. Thus, the exciton dynamics itself keeps the 

individual spin-sublevels close to Boltzmann equilibria·, and hence the 

tempe~ature dependence of spin lattice relaxation is inaffective in 

causing large deviations in the individual spin sublevel populations over 

the range of temperature of interest. This is the case at least for 

,. 
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B. Two and Three Dimensional Bands 

The above considerations can be readily extended to systems in which 

a trap interacts with a multidimensional exciton band. For one molecule 

per unit cell the most general form is given by the three-dimensional 

partition function z: 

z = 1 
n/a 

+ E 
k =0 

a 

n/a 

E 
~=0 

£ G(k)e""'(~-2(3a(l-coskaa)-2(3b(l-cos~b)-2(3c(l-coskcc)/kT 
k =0 

c 

(4 .6) 

where k , ~ , and k are the wave vectors associated with the crystallographically 
a -l> c 

- -
translational directions a, b, and c and f3a' f3b' and f3c are the nearest neighbor 

intermolecular interaction matrix elements along these three 

axes. G(k) is a degeneracy factor which takes on the value 1 when the value 

of all three k wave vectors are zero, 2 when any two k wave vectors are 

zero, 4 when only one k wave vector is zero, and finally, 8 when all three 

k wave vectors are greater than zero. The partition function for the case 

in which the exciton band is two-dimensional is obtained by setting (3 equal 
c 

to zero, and the one-dimensional partition function given in Equation 2.1 

follows naturally from Equation 3.1 by setting f3c and f3b equal to zero. 

To simplify the discussion, only the two-dimensional case will be 

explicitly considered. For illustration (3b is set equal to 1/2 of f3a and 

the two-dimensional exciton band is limited to four hundred states corres-

ponding to a square array of 400 molecules. An energy level diagram for 

the trap and exciton system is given in Figure 7. As in the one-dimensional 
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case, the 0-0 absorption must obey the selection rule ~k • 0; thus, the 

o-o transition is associated with the ka • 0, ~ • 0 level. Depending 

upon the signs of sa and sb' the ka = 0, ~,= 0 exciton level can occur 

at four different energies relative to the trap energy. As indicated in 

Figure 7, if Sa and Sb are both negative, ~l will be the observed trap, 

depth. If Sa is negative and Sb is positive, ~ 2 will be the trap depth. 

If sc' is positive and sb is negative, ~3 will be the trap depth. If both 

sa and sb are positive, ~4 will be the spectroscopi~ally measured trap 

depth. 

For a given trap concentration, the average number of states in the 

exciton band is known, the trap depth, ~' can be measured, and the temper-

ature dependence of the trap intensity can be fit by varying the signs 

and magnitudes of sa and sb in the multidimensional partition function 

(Equation 4.6). For systems in which the number of states in the band is 

large, i.e., low trap concentration, the density of states in the band 

becomes so large that the partition function is not sensitive to S . and 
a 

Sb separately but depends only upon the total bandwidth, 41Sa1 + 41Sbl; 

thus, a measure of the band width can be experimentally determined, even 

in multidimensional crystals, but details of the band along specific 

crystallographic axes are lost. The above discussion has been restricted 

to systems containing trap levels of only one energy. Systems with two 

or more traps of different energies present a different problem but 

provide additional and unique information on the exciton dynamics and will be 

considered in detail below. 

.ir' 
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V. BOLTZMANN EQUILIBRIA BETWEEN EXCITON STATES AND MULTIPLE TRAPS 

The extension of the above treatment to systems in which there are 

two 'or more types of traps having different energies would be.straight-

forward if it were ·not for the fact that the excitons and traps have 

finite lifetimes. If the excited state lifetimes were long enough, the 

system would come to thermal equilibrium at any temperature and a statistical 

treatment would always be proper for any temperature or trap depth. 

However, given the finite lifetimes of the states involved, a statistical 

approach is only possible above a certain characteristic temperature, hereafter 

termed T , which is determined by the trap d,epths, the trap concentration, 
- c 

· and the exciton band width. 

The inability of the system to achieve thermal equilibrium below the charac-

teristic temperature is due in part to the spacial separation of the traps 

of different energies and in part due to different trap-phonon interactions 

at the different trap sites in the lattice. This can be seen more clearly 

by considering an energy level diagram in Figure 8 for a system consisting 

of an exciton band, a shallow trap, Ts' and a deep trap, Td. The dashed 

arrows indicate the possible paths electronic excitation can travel in the 

system in the absence of direct long range:. energy exchange between traps. 

Basically, an excitation cannot be transferred to another trap site without 

first being thermally promoted to the exciton band in which it can migrate 

to another trap site and again be trapped. Equilibrium is only established 

through a continuous process of detrapping, migration, and retrapping. 

If the process continues long enough, the system reaches its equilibrium 
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population distribution in spite of the fact that the shallow and deep 

traps exchange their populat_ion with the band states at different rates. 

Because the exciton and trap states have a finite lifetime, however, the 

rate of detrapping and retrapping for both traps must be large enough 

to compete with radiative and radiationless processes. This can only 

occur above some characteristic temperature Tc where phonon-trap inter-

action are frequent enough to keep the system in thermal equilibrium. 

In the equilibrium temperature region, the temperature 

dependence of the trap intensities can be determined from the probabilities 

PTd and PTs that an excitation will be in deep trap, Td' or shallow trap, 

T , respectively. Taking the exciton band to be one-dimensional in the 
s 

nearest neighbor approximation, the partition function, z, for the system 

is given by 

A ,,_, A / 1·'T (n·-~n~/na -(A -2a(l-cos ka)]/kT 
z = 1 + G

1 
e -ul ~T + G

2
e-0

2 ~ + LJ 2G
2

e 0
2 ..., . • (5.1) 

k=TI/na 

The zero of energy is taken as the energy of the deep trap. _ As shown in 

Figure 8, /).l is the energy difference between the deep and shallow traps, 

a~d /).
2 

is the energy difference between the-deep trap and the k = 0 level 

of the exciton band. The k = 0 level may be at the top or bottom of the 

band (as discussed previously) depending upon the sign of B. The concen-

tration of the traps and excitons are normalized to a unit concentration 

of the deep trap. The first term in z is due to the deep trap. The 

second term is the Boltzmann factor for the shallow trap, multiplied by G
1

, 

.. ----

t 
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the number of shallow traps relative to a single deep trap. The third 

term is the Boltzmann factor for the non-degenerate k = 0 level .of. the 

exciton band times G
2

, the number of exciton chains relative to a single deep 

trap. The final summation is over the remainder of the exciton k states, 

\ 

which are doubly degenerate, giving rise to the factor of two. The total 

number of host moiecules states relative to one deep trap is G
2 

x (2n) 

where there are 2n states per exciton and G
2 

exciton chains per deep 

trap. The trap probabilities PTd and PTs (which are proportional to the 

trap intensities) are 

(5.2) 

and 

(5.3) 

respectively. Calculated plots of PTd and PTs versus temperature for 

systems.which contain 99.2% host exciton states, 0.8% shallow traps, 

and 1.6 x 10-
3

% deep traps are illustrated in Figure 9. The trap depths, 

~1 and ~ 2 are 10 
-1 

and 20 em 
-1 

respectively. These values typical em 
' 

are 

of a single and doubly protonated traps in deutero crystals. The curves 

for a range of band widths, 413, between +8 
-1 

and -8 
-1 

Several are em em 

features of the trap phosphorescence intensity in multiple trap systems 

are particularly noteworthy. First, as 413 becomes more positive the energy 

levels in 'the band become closer to the trap levels. This results in a 

loss of trap probability and therefore a loss of trap intensity. Although 
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both traps are affected, the change in the deep and shallow trap probability 

are entirely different. The decrease in the deep trap phosphorescence 

with increasing temperature results from the partitioning of the excitation 

into the higher energy shallow trap and exciton -st"ates. When the number 

of molecules in an exciton chain (the number of k states in the band) greatly 

exceeds the number of shallow traps, the form of the deep trap temperature 

dependence becomes indistinguishable from the single trap problem considered 

earlier. The temperature dependence of the shallow trap is not so simple. 

Physically,as the temperature increases from a value where ori.ly the deep 

trap is emitting (PTd= 1.0; PTs= 0.0) the initial loss in Td results in 

the onset of T emission. How rapidly T increases with increasing temper-
s s 

ature,however, is determined by the partitioning of energy from the shallow 

trap into the band states. If many exciton states are near in energy to 

the shallow trap, the shallow trap will never acquire a significant intensity 

because of the ability of the. exciton states to ,partition the energy, i.e., 

large value of the band partition function. This occurs when the shallow 

trap depth (~ 2 - ~l in Figure 8) is small and/or the exciton band has a 

large number of k states at energies near the shallow trap (positive S). 

·On the other hand, when the shallow trap depth becomes larger and/or the 

exciton band has a smaller positive dispersion or negative dispersion, 

the shallow trap emission will continue to increase in intensity at the 

expense of the deep trap probability until a point when the Boltzmann 

factor starts to signifiCantly populate the exci.ton state. At this point 

the shallow trap will lose intensity with increasing temperature because 

....... 

t 
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of partitioning to the band. An important point of the temperature 

variation of both the. deep and shallow traps is that for every curve 

associated with the deep trap there is a unique shallow trap curve for 

a specific value of the band dispersion, number of k states and number 

of shallow traps. Moreover, the detailed shape of the temperature 

dependence curve for the shallow traps is determined by the partition 

function. A variation in Td and Ts trap emission_as a function of con­

centration is illustrated in Figure 10. The value of the b~nd dispersion 

-1 -1 
and trap depth have been fixed at values 48 = 4 em , il

1 
=.10 em , and 

-1 
il

2 
= 20 em • As is expected, when the shallow trap concentration increases 

relative to the band states the intensity peaks at higher temperatures. 

The values plotted in Figure 10 are representative of mixed crystals where 

the band states are the pure deutero (d
2

) molecule (2 deuteriums/molecule), 

the shallow trap is the hd molecule and the deep trap is the h
2 

molecule. 

The concentration values listed for cases A through D correspond to 

statistical mixtures of the various species based upon the total deuterium 

concentration of the crystals. 

The practical use of such an approach to obtain information about the 

band is straightforward and self-evident. If a sample .is prepared with 

two traps of known concentration, where il
1 

and il
2 

can be measured spectro­

scopically them the band dispersion and the sign of B can be determined from 

the temperature dependence of the two trap intensities. Figure 11 illus-

trates this for deutero-proto mixed crystals of TCB. Figure lla is the 

temperature dependence of h
2

-TCB(Td) and hd-TCB(T
8

) trap phosphorescence 
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in a d
2
-TCB crystal in the temperature range 1.3°K to 3.8°K. Details of 

the preparation and characterization of the traps are given in Section 

IX (Experimental). The data illustrate two distinct temperature regions, 

one below and one above a characteristic temperature T • These are labeled I 
c 

and II, respectively,and correspond to regions where Boltzmann statistics 

are appropriate (II) because the trap and band state are in thermal · 

equilibria and where Boltzmann statistics are inappropriate {I) because 

the finite lifetime of the excited states are short relative to the'time 

necessary to equilibrate both the deep and shallow traps with the exciton 

band states. 

Using the experimental values for L'l
1

, L'l
2

, Ts and Td' an excellent 

fit for both the deep and shallow trap temperature dependence in region 

II is simultaneously obtained for the lowest triplet bartd in d
2

-TCB. A total 

band width 
-1 

of 12 ± 2 em · and a positive intermolecular exchange inter-

action for d
2
-TCB from these experiments (Cf. Figure 11) is to be compared 

-1 
to a total band width of 3.5 em and a positive intermolecular exchange 

interaction for the same band in h
2
-TCB (Cf. Figure 6). The relationship 

between isotope effect, the Born-Oppenheimer approximation and the band 

dispersion in these crystals will'be discussed in a later publication. 
25 

In the remainder of this paper we will discuss the non-Boltzmann 

region {I) and formulate a general approach to exciton dynamics in this 

region which is amenable to experimentation. This region is charact.erized 

by insufficient phonon-trap interaction to provide thermal equilibrium 

between trap and band states. We will defer detailed interpretation of 

• r 
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TCB in this region u~til later, but we will demonstrate proof that TCB 

in this region is not in thermal equilibrium but.characterized by 

considerations of the next section. 

VI. NON-BOLTZMANN DISTRIBUTIONS BETWEEN EXCITON AND TRAP STATES 

Below a characteristic temperature, the system does not come to 

thermal equilibrium within the lifetimes of the states because the phonon 

interaction with the trap states does not equilibrate the trap and band 

states at a fast enough rate. The problem must therefore be treated in 

terms of a set of coupled rate equations for the processes which are 

occurring. Differential equations describing the time variation of the 

states illustrated in Figure 12 are given in Equations 6.1 through 6.4. 

(6.2) 

d(T ] 
dts = K i(E] - K (T ] - K (T ] s so s s s 

(6.3) 

(6.4) 

1 
[E] is the exciton population; [S ] is the population of the first excited 

0 
singlet band, and [S ] is the ground state concentration; [Td] and [Ts] are 
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the deep and·shallow trap populations; Pis the rateconstant for the 

production of excited singlet excitons, and K 1 is the·rate constant for 
s . 

h 1 i f i 1 h . d . . if ld 0 .h ·1 ISC t e re axat on o s ng ets to t e groun state man · o , S , w 1 e K 

is the intersystem crossing rate constant. ~' Kd and Ks are the total rate con-

. . . 
stants for relaxation to the ground state from the exciton bands, deep 

traps, and shallow traps, respectively; they include radiative and radiation-

less processes. Ksi and Kdi are the trapping rate const.~nts. for excitons 

entering. the shallow and deep traps respectively, and Kso and. Kdo are the 

detrapping rate constants of the shallow and deep traps into the exciton 

bands. 
0 

The ground state concentration, [S ], is taken as a constant. If 

the lifetimes of the excited states are short, then [S
0

] will be the con-

centration of host molecules in the crystal. If the lifetimes of the 

exciton and trap states are long but are approximately the same, [S
0

] will 

remain constant with changing temperature since transferring population 

between excited states of the same lifetime will not result in changing 

0 0 
[S ] •. However, if the lifetimes are long and differ greatly; then [S ] 

can change with temperature but will still be constant at any one temperature. 

Hence, Equations 6.1 through6.4 can be solved for [Ts] and [Td] by assuming 

steady state. The results are: 

and 

A•Ksi(Kd + Kdo) 
= ~------~~--~~~----~~------~------~ 

(Kd + Kd ) (K + K - C·K i)- B . .;Kdi(K + K ) 
0 ~ so s s so 

A·Kdi(K + K ) s so 
[ Td] = ~---=---:::"'~~---:-.=.:=---=:.---::~~--::-=--.:::--:-=~ 

(Kd + Kd )(K + K - C·K i) - B·Kdi(K + K ) 
0 s so s s so 

(6.5) 

(6. 6) 

... ~-



-.... 

-30-

K = <V > • d -l 
di g d 

(6.lla) 

K = <V > • d -l 
si g s 

(6.llb) 

The average exciton group velocity at a particular temperature is given by 

Equation 2.1, and dd and ds are the average distances between the deep and 

shallow trap sites, respectively. The trapping rate constants are the 

inverse of the average time it takes an exciton to reach a trap, and hence 

in the temperature region under considerat1on~ the rate of finding the 

trap is inversely proportional to the number of trapping sites available. 

The concentration of popula~ed deep and shallow traps is then simply 

given by 

[Ts] A <V > 
-1 -1 

(6.12a) = . . K . d 
g s s. '• 

[Td] A <V > 
-1 -1 

(6.12b) = . . 
Kd 

. 
dd g 

or 

[Ts] A . <V > . -1 . N = K 
g s s 

(6.13a) 

[Td] A <V> 
-1 • N = . . 

Kd g d 
(6.13b) 

where Nd and Ns are .the deep and Shallow trap site concentrations. ~en 

the rate of trapping is large relative to the decay of the exciton through 

other channels (Kdi + Ksi >> ~), the steady state trap concentrations 
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where 
(6. 7) 

(6.8) 

K 
c = ~-----s~o------~ 

(~ + Kdi + Ksi) 
(6 0 9) 

A. Non-Boltzmann Low Temperature Limit 

At some temperature well below the characteristic temperature T , 
c 

Kso and Kdo will become insignificant because of the lack of phonons to 

equilibrate the trap and band states at a rate comparable to the lifetime. 

Setting these two constants equal to zero in Equations 6.5 and 6.6 yields 

a low temperature limit for Td and T
8 

given by 

(6.10a) 

[Ts] = A•K ' K -l 
si s 

(6.10b) 

-1 -1 
where the constants Kd and Ks are the deep and shallow trap lifetimes. 

Kdi and Ksi' the rate constants for excitons flowing into the traps, can 

be identified in the coherent model with the average group velocity of 

the excitons,. <V g>' weighted by distance between traps, i.e., 
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become independent of the average group velocity associated with exciton 

migration and hence independent of temperature: 

(6.14a) 

and 

[-rdJ (6.14b) 

and the ratio of the steady state concentrations is simply proportional 

to their respective total concentrations: 

[1: ] 
s 

I-rdl = 
(6.15) 

On the other hand, when the exciton decay competes with or is greater 

than the rate of trapping (KE >> Ksi + Kdi)' the steady state trap con­

centrations are proportional to the temperature dependent average group 

velocity of exciton wave packets and are given by 

K -1 • N 
• <Vg> • s s (6.16a) 

and 
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• <V > 
g 

K -l • N 
d d 

(6.16b) 

The ratio of concentrations however still remains velocity and therefore 

temperature independent and is also given by Equation 6.15. 

Since the intensity of emission from the traps is proportional to 

number of trap sites, the invariance of the ratio over a finite temperature 

range provides an experimental test of this .limit. In addition, since the 

temperature dependence of {Ts] and {Td] results from a change in the average 

group velocity, the trap emission provides a ~ool capable of investigating 

the average velocity distribution in the exciton band and h~nce the coherence 

even at the very lowest temperatures. 

B. Non-Boltzmann Intermediate Temperatures 

As the temperature is increased toward T , the rate constants for 
c 

energy transferring from traps to exciton bands are expected to increase. However, 

if the depths of the traps Ts and Td below the bottom of the band are 

significantly different relative to kT, then excitations will be able to 

thermalize from thP. shallow trap T into the band at temperatures too low 
s 

for excitations to thermalize from.Td. The net result is that Kso will 

become significant at temperatures where Kdo ~s still negligible. Setting 

Kdo equal to zero in Equations 6.5 and 6 .. 6, the concentration of traps 

are given by 

• !·-

• I 
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J 
f 

A • Kdi(K + K ) •. s so 

[Td] = -.....--[ ~. ( --"---K ~) J 
K . K + 1 - si K 

d s KE + Kdi + Ksi so 

(6.17a) 

(6.17b) 

The dependence of·these equations on <V >can be seen by substituting 6.lla 
g 

and 6.llb for Kdi and K~i· In this region the temperature dependence of 

Ts and Td results from both the temperature dependence of <Vg> and the 

shallow detrapping rate constant, K • Specifically, when the radiative 
so 

and radiationless decay of the exciton states to the ground state is slow 

relative to trapping, KE << Kdi + Ksi' the group velocity dependence con­

tained in Kdi and Ksi vanishes and Ts and Td are given by 

(6.18a) 

and 

(
p • KISC[S 9~ + K ~~ N ~ ) . 

= ISC o s K so N + d N [ ( 1 N ) ] ( 6 .18b) 
Ksl + K d d s K + l _ s K 

. s Nd + Ns so 

respectively. Hence, the only temperature dependence of Ts and Td is 

contained in Kso" In the other limit, when trapping is slow relative to 

the radiative and radiationless decay of the exciton states, KE >> Kdi + Ksi' 
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the shallow trap population reflects the average group velocity of the 

excitons via its trapping rate from the band (K i); i.e., . s 

(6.19a) 

The increase in the concentration of T via the increase in the exciton 
s 

<Vg> may be' offset by the increased detrapping rate K with 
so 

temperature. By constrast, the deep trap concentration is given by 

(6.19b) 

and its temperature dependence results only from the increase in the group 

velocity of the exciton states with temperature. Finally, the temperature 

dependence of the ratio of the trap popJJlations is only functionally related 
' I ~ 

to K 
so 

This can be seen by combining Equations 6.18a and 6.18b in one case and 

6.19a and 6.19b in another.In both cases, the ratio is: 

(6.20) 

This is valid for both conditions, ~ << Kdi + Ksi and ~ >> Kdi + Ksi· 

The important point of the above. equations is that the steady state con-

centration of the shallow and deep traps and thus the emission intensity 

depends implicitly upon both the group velocities in the band and the rate 

• f 
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of detrapping of the shallow trap, Kso. Both of these quantities are measur­

able and provide, in principle, detailed information on the dynamics of trap-

exciton interactions. 

Qualitatively, the above processes can be physically viewed as follows. 

At very low temperatures both K arid Kd are zero, and the populations . so . 0 

[T s] and [Td] (except for changes caused by variations in <V >) remain 
_g 

constant with increasing temperature. Since T is closer in energy to the 
s 

band than Td' as the temperature is increased K becomes non-zero before 
so 

Kdo' and some of the shallow trap's population is thermalized into the 

exciton band. This additional exciton population migrates in the band 

at an average group velocity determined by the temperature and band dis-

persion and is retrapped in deep traps. Contrary to what would have been 

expected for a thermal equilibrium, the deep trap gains population and 

intensity at the expense of the shallow trap. The importance of the deep 

trap concentration in relation to the magnitude of K cannot be under­
so 

estimated if a phenomenological understanding of the compleXities and 

variations of impurity effects in crystals are to be properly understood. 

C. Other Considerations 

To this point, the effects of possible differences in exciton and 

trap radiative and radiationless lifetimes on the temperature dependence 

of trap emission in the equilibrium temperature region has not been 

discussed. If Ntot is the total triplet excited state population, then 

1 
IT oc Ntot Z(T)' where Ntot is assumed to be temperature independent. 
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If the total lifetime of the exciton and trap states are equal then the 

transfer of population between the band and trap does not alter th~ value 

of Ntot" However, if they are not equal, Ntot will be temperature depen-

1 
dent, and IT~ Ntot(T)Z(T)"Hence, both Ntot and z are functions of temperature. 

Ntot(~) can be determined from a system of differential equations 

assuming steady state. In terms of the parameters in Figure 12, assuming 

the ground state concentration, [S ], remains constant, 
0 

d[S
1

] = 
dt 

' -·~ . 

~ '·. 

(6.21) 

(6.22) 

X is the percentage of popt~:lation found in the trap. . X .. = 1/Z (T), and 

(1 - x) .is the percentage of population found in the band at a given 

temperature. At steady state Ntot (T) is found to .be 

(6.23) 

where the only temperature dependent parameter on the right side of the 

equation is X· The ratio of the values of Ntot(T) at two temperatures is 

[KTX(T1) + ~(1 - x(T1))] 

[KTX(T2) + ~(1 - x(T2))] 
(6.24) 

.; 
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Equation 6.24 can be used to obtain Ntot(T) relative to the value of 

Ntot (T
1

) which may be used to .. normalize the total population for all other 

temperatures. Thus, it is not necessary to know the actual value of Ntot(T). 

A similar procedure can be used in the case of more than one trap or for 

corrections in Ntot due to spin-lattice relaxation effects discussed above. 

Another point which needs to be mentioned is that it has been tacitly 

assumed that intersystem crossing takes place from the singlet state to 

the triplet exciton band and that exciton migration and trapping takes 

place from the triplet band. However, in some cases after exciting initially 
/ 

into the singlet exciton band, migration and trapping take place before 

intersystem crossing occurs producing triplet traps. If the triplet traps 

are in equilibrium with the band, the trap intensity as a function of 

temperature will reflect the parameters of the triplet system. However, 

if the time for a trap to transfer its excitation to the band is long 

compared to its lifetime for decay to the ground state, the triplet trap's 

population will be determined by the singlet trap's population. In this 

case, the problem must be considered in terms of the band width and trap 

depth of the singlet exciton and trap system giving careful consideration 

to the question of equilibrium. In studying triplet systems, if these 

complications arise, they can be eliminated to a large extent by suitably 

filtering the excitation light so that only the first triplet excited state 

is produced. 
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D. Qualitative Features of TCB in the Non-B~ltzmann Region 

The intensity versus temperature data for the two traps in deuterated 

d
2

-TCB crystals in the temperature r~gion befor:e Boltzmann equilibration 

(I) is illustrated in Figure lla. The predicted behavior for a system 

of this type is indeed observed. The shallow tra,p intensity decreases 

and the deep trap intensity increases as the temperature increases. The 

-1 -1 
shallow trap hd-TCB and the deep trap h 2 ~TCB are 12.8 em and 23.5 em 

below the d
2

-TCB triplet band (k = 0), respectively. Because the Boltzmann 

factor is small in the temperature region of interest, there is a significant 

difference in the detrapping rates K and Kd • Apart from the phenomena-
so 0 

logical observation that the temperature dependence of the two traps quali-

tatively behave in the. proper fashion. in Region ~, sev.era,l independent 

experimental observations conclusively demonstrate that Kso >> Kdo for 

this system. In Figure 14 the zero-field optically det~cted magnetic 

26 
resonance (ODMR) spectra for the two traps found in deuterated TCB are 

illustrated •. These spectra are obtained by_monitoring the optical emission 
. . ' . ' .. . 

to the electronic origin from.the two traps separately as microwave field 

27 
is swept in frequency. The upper spectrum is the optically detected 

electron zero-field D - lEI transition of the deep trap., h
2

-TCB •. The 

peak labeled A 17or:esponds to electron spin only transitic;ms while the 

peaks labeled B and B' are the simultaneous electron spin plus 
35c1 and 

37 
Cl nuclear quadrupole transitions, 



-.. 

u 

-39-

28 2q_ 
respectively. ' -The B and B' peaks are separated from the center line by 

35 37 - . 
the characteristic Cl and Cl excited state nuclear quadrupole frequencies. 

The C peaks correspond to simultaneous electron spin 35
c1 and 37

c1 double 

29 
nuclear quadrupole transitions. These transitions are split from the 

electron spin only transition A peak by the difference in the 
35

c1 and 

37
c1 quadrupole frequencies. On the low frequency side of the deep trap 

spectrum between peaks B' and C is a peak going in the opposite direction 
. at exactly the frequency associated with the shallow trap D - IE I transition. 

from the rest of the spectrumj\ This will be referred to as the T peak. 

The major peaks A and B of the deep trap spectrum have been truncated to 

facilitate display. The lower spectrum in Figure 14 is the D - lEI 

transition of the shallow trap, dh-TCB. Only one peak is observed even at 

moderately high microwave powers at temperatures above 1.3°K. This peak 

corresponds to the fully allowed electron spin only transition. The 

change in the light intensity in the shallow trap spectrum is opposite 

the direction of the change in the light in the deep trap spectrum except 

for the T peak. These results can be understood as follows. 

The spin alignment of the shallow trap is changed by the application 

of the microwave field at the transition frequency, 3.5600 GHz. This 

change in spin alignment is at least partially carried into the exciton 

band by shallow trap detrapping processes. The net result is that the 

exciton band acquires an altered spin alignment which is carried into the 

deep traps by the trapping process Kdi" This results in a change in the 

deep trap light intensity in the same direction and at the same microwave 

frequency as the shallow trap transition. This is the observed T peak 
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in the deep trap spectrum. Similar effects are observed in_h
2

-TCB when 

the exciton band spin alignment is altered by a microwave field 
' . " . 

30 
and the trap emission is modulated. The significant point here is that 

there is no corresponding T peak in the shallow trap spectrum even though 

the deep trap transition is more than an order of magnitude stronger • 
. , 

This implies that the shallow trap excitations are detrapping, migrating 

and retrapping in deep trap sites, but that· deep trap excitations are not 

transferring population to the shallow trap sites to any significant extent. 

A second important observation can be made from the ODMR spectra. 

Because the electron spin and the nuclear quadrupole eigenstates ate 
< • < 

coupled by the electron-nuclear hyperfine interaction, only the pure 

electron transition will be observed in the absence of the hyperfine 

interaction. If the lifetime of a state is short compared to the inverse 

frequency associated with the hyperfine interaction, then the triplet state 

electrons will not be influenced by hyperfine interaction and the coupling 

of the electron eigenstates to the nuclear eigenstates will vanish, and 

. 35 . 37 . . ' ·. 
the_ quadr'!Jpole peaks (B (Cl . ) and B' (Cl ) ) will be absent from the ODMR. 

In TCB and similar compounds the hyperfine interaction is on the order of 

1 MHz.29,30 The fact that quadrupole transitions are not observed in the 

shallow trap ODMR spectrum sets an upper limit of less than 1 ~sec. for 

the time an excitation remains trapped in the shallow trap at 1.3°K. On 

the other hand, the fact that strong quadrupole peaks are observed in the 

deep trap ODMR spectrum implies that excitations remain in the deep traps 

for times much longer .than 1 psec. When the temperature is lowered to about 

. . 
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1.2°K to decrease K , weak quadrupole satellites on the shallow trap 
so 

spectra appear at high microwave power indicating that the detrapping rate 

constant K is in fact becoming smaller. Thus, the ODMR data in addition 
so 

to the temperature dependence of the trap emission data establish that in 

the temperature region I immediately before Boltzmann equilibration occurs 

the shallow trap is detrapping rapidly while the deep trap is detrapping 

slowly relative to their lifetimes, i.e., Kso >> Kdo" 

Finally, we would like to outline a method for measuring the absolute 

detrapping rate constants K and Kdo by an optically detected magnetic . so 

resonance experiment in which the population entering the trap via K . 
Sl. 

and Kdi is completely removed from consideration. Specifically, it has 

been shown by Harris et a1.
31 

that any state of the electron spin coherence 

a$sociated with excited state and the full correlation function for dephas-

. 31 32 
ing of the electron spin ensemble can be observed by the optical detectl.on , 

33 34 
of electron spin echoes or spin locking. By viewing the excited triplet 

state in an interaction representation which removes the electron spin 

35 
zero-field splitting it can be shown that the population of one of the 

two spin sublevels being coupled by the time dependeat microwave field 

can be represented as a pseudomagnetization along the positive z-axis 

of the interaction representation. Population in the other spin sublevel 

in the laboratory frame is related to a pseudomagnetization along the 

negative z-axis of the interaction representation. When the time dependent 

density matrix describing the dynamics of the electron spin ensemble is 

displayed through the electric-dipole transition moment responsible for 
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phosphorescence intensity, usually ·only z .. components of the interaction 

35 
representation are observable in the emission. In the present problem, 

the electron-spin coherence can be used to measure kinetic phenomena such 

as the detrapping process in a unique way. By applying a 'IT/2 microwave 

pulse to one of the three zero-field transitions of a particular trap 

state, say the deep trap, the spin sublevel populations become saturated 

in the laboratory frame but are still coherently coupled. The corresponding 

pseudomagnetization in the interaction representation is simply tilted 

34 
Spin locking the population in the rotating frame by phase shifting 

the applied microwave field 90° immediately after the 'IT/2 prevents the 

spin coherence prepared by the initial 'IT/2 pulse from being lost for a time 

corresponding to Tlp" 
31 

Tlp can be measured by restoring the pseudomagne-

tization back to the z-axis by an additional 'IT/2 pulse with the same phase as the 
initial 
'IT/2 pulse and measuring-the resulting change in phosphorescence, ~I (Cf. 

Figure 15), as a function of the spin locked timeT. The uniqueness of 

spin locking to the measurement of kinetic phenomena is that once the 

electron spins have been locked in the rotating frame any population entering 

the trap at later times via Ksi or Kdi enters along the + or - z-:axis in 

the rotating frame. The electron spin coherence of this additional popu-

36 
lation is,however, lost very rapidly via rotating precession in the plane 

perpendicular to the applied field in a time corresponding to the inhomo-

geneous relaxation time T
2
*. In short, in the rotating frame, this addi­

tional population never gets spin locked. The net effect in the laboratory 

frame is that any population entering the trap state after the.initial 

- i 
I 
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n/2 pulse gets incoherently equally distributed into both spin 

sublevels; hence, when the final n/2 pulse is appl~ed to restore the 

spin lock population, there will be no change in phosphorescence ~I (Cf. 

Figure 15) due to the incoherent non spin locked population. 

-1 -1 
Thus, ~p is identically equal to Kso or Kdo when other contri-

butions to relaxation are small compared to detrapping. 

The ability to measure the absolute value for the detrapping rate 

constant or just a lower limit depends upon the magnitude of these other 

contributions. 
31 

It has been already demonstrated that dephasing of a spin 

locked ensemble due to fluxuating local fields (principally fields due to 

the nuclear spins) can be eliminated by the application of a locking field 

H
1 

large enough to ensure that the resonance condition in the rotating 

frame, yM
1

, is larger than nuclear-electron dipole or hyperfine coupling. 

In effect, a large y}(
1 

eliminates contribution to the electron Tlp from 

nuclear spin diffusion. The only other serious limitation on Tlp' apart 

from the trap lifetime, is electron-spin lattice relaxation, T
1

. In the 

non-Boltzmann temperature region in the TCB system this is not a limita-

tion on K 
so 

T
1 

is on the order of the lifetime of the triplet state 

while detrapping rates are on three to four orders of magnitude faster. 

-1 
For deep traps, however, Kdo can approach the radiative and radiationless 

lifetime. This is illustrated in Figure 15 for d
2
-TCB doped in d

14
-tetra-

-l 37 
methylbenzene (~ "'2800 em ) • A Tlp of 43 ms at 2.0°K was found, a 

value representative of the lifetime of the triplet state. In theY-trap 

-1 
(~ = 53 em ) in h

2
-TCB; however, the value for the loss of electron spin 

coherence of "'600 ~s 38 
was found from a technique similar to spin locking. 
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i 
The details of these experiments will be reported later. Even at this initial 

stage of development, it is clear that experiments based on the measurement 

of electron spin coherence in the rotating frame offer another new a~d 

unique method for studying the dynamics of energy migration and in this case 

the absolute detrapping rates. 

VII. RADIATIONLESS RELAXATION IN TRAP-EXCITON DECAY: 
A MODEL FOR DETRAPPING TO BAND STATES 

In view of the central role the detrapping rate plays in achieving 

Boltzmann equilibrium, a concrete model for the detrapping process whose 

' details can be veriffed and tested experimentally is desirable. In this 

context we develop a ,model in this section that describes detrapping to 

bands states in a general way but includes in a well defined and specific 

manrier important considerations such as the phonon · dispersions and popu-

lations, the exciton dispersion and phonon-trap interactions. We will 

only consider single phonon single-trap int~ractions where the decay of the 

trap into the band conserves the total momentum and energy of the overall 

process. Further we shall assume that the initial interaction of a phonon 

and trap results in an intermediate state that is degenerate with some k 

state in the band. The decay of the intermediate localized state into 

the delocalized band states is taken to be a radiationless relaxation 

' 39 ' ' 40 
process and is displayed in the form of a Golden Rule rate. The 

assumptions implicit in this model are that the creation of the intermediate 

41 
state is a stocastic process, and that the decay of the intermediate trap 

' . 42 
state into the band states is irreversible in the sense that recurrence 

<J 
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is negligible because of the high density of exciton states in the band 

and the finite lifetime of k states in the band into which the intermediate 

has evolved. This is schematically illustrated in Figure 13. 

In this model the probability per unit time of a trap, <T I , interacting 

with a phonon, P(E), of energy £ and detrapping. into a specific band state, 

<kl, having momentum ~k via an intermediate state, T., is given b~ 
l. 

(7 .1) 

<n(£)> is the number of phonon states with energy£; I<T•P(E)IHTPITi•P(E­

Ei)>l
2
is the probability of creating an intermediate Ti which can be 

43 
identified with ITi•P(£- Ei)>. Both direct and Raman. trap-phonon 

interactions are included by £ = Ei and £ > Ei, respectively. Obviously 

the initial phonons P(£) must have energies greater than or equal to Ei unless 

multiphonon processes are included. It is expected that multiphonon 

detrapping rates would be much slower. The radiationless decay of the 

intermediate Ti into the exciton manifold whose k states are at energies 

Ei above the trap is given by I<Ti·P(E- E;IHTEik•P(E- Et>I
2

P(Ei) where 

p(Ei) is the exciton density of states function evaluated at Ei. We will 

assume that the final phonon, P(E - Ei)' is not bound to or does not 

interact with the final exciton k state. With this assumption the inter­

mediate. trap-exciton coupling Hamiltonian, ~TE' does not depend upon coordinates 
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of the phonon wave vectors and hence only coordinates of the trap and band 

state need be considered. Although there are many mechanisms (i.e., many 

forms of~TE) which could describe the coupling of the intermediate trap 

to the band, in the absence of experimental data it is not clear at this 

point what the most appropriate choice would be. The coupling matd.:X' 

elements must certainly, however, refl~ct the exchange between the trap 

and band of both electronic energy and the local distortion that is 

adiabatically propagated with the excited state in the Frenkel limit. 

The average number of phonons at energy E at temperature T, <n(E)>T' 

. . 44 
is given by the Planck distribution function, 

1 <n (E) >T = --r.:-=::._­
E/ l<r 

e - 1 
(7~2) 

in which the phonon energies E are·given explicitly by the phonon dispersion 

of the crystal. The total detrappil'lg probability· per unit time 'which is the 

detrapping rate constant K · or Kd is found by suminiri.g over all phonons 
so 0 

of energy E ~ Ei and then summing over all intermediate ·states ti which 

have energies Ei greater than or equal to the energy difference between 

the bottom of the band and the trap, i.e., 

(7. 3) 

When considering the temperature region in which K is just becoming 
so 

non-zero Ei >> kt, the Planck distribution· functio~ can be dppr~~imated by: 

~-

~i 

l 
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(7 .4) 

Further, since the one-dimensional exciton density of states function 

p(Ei) is sharply peaked at k = 0 and k = ±TT/a, we anticipate that inter­

mediate states, Ti' with energies equal to the energies of the top and 

bottom of the band might be expected to play the dominant role in the 

f d . 14 k I etrapping occurs selective to one state, transition probability. 

45 
say k = 0, then the band width to temperature ratio would be relatively 

46 
unimportant. On the other hand, in the absence of a k dependent trap-

exciton coupling, if the band width is significant relative to kT, the 

populations of phonons with energies capable of producing intermediate 

states at the top of the band will be small compared to the number of 

phonons available to produce intermediate states at the bottom of the 

band. In this limit, the expression for· K can be approximated by 
so 

considering only one intermediate state at the bottom of the band (which 

will be k = 0 or k = ±TT/a depending upon the sign of S). In either of 

these limits, the expression for Kso becomes 

(7 .5) 

where Ei is the energy of the intermediate state Ti which coincides with 

the maximum density of states of the band in one case or to the particular 

k state ·(k = 0) in the band in the other. All the non-temperature dependent 
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terms except the density of states function have been collected into the 

constant C with the assumption that phonon-trap interaction is constant 

over a range of phonon energies E close to Ei;" 

In either of the two above limits the temperature dependence of the 

detrapping rate would appear as an activated process with an Arrhenius-
In reality, however, there is no activation, and E simply refle~ts the phonon* 

like activation energy Ei.AMoreover, when the densitf of k states at the 
· · · *distribution. 

energy of the intermediate trap state differ, as would be the case in 

different mixed crystal.Swith exciton chains of varying lengths, the 

absolute value of the detrapping rate K
80 

or Kdo would change ~ia P(E~) 

(Equation 7 .5); however, the apparent activation energy, Ei' would stay 

constant except for small changes resulting ;rom differences in the band 

dispersions for different. finite chain lengths •. An experimen~al investi­

gation into the validity of this model being pursued uses some of the 

optically detected magnetic resonance techniques described in the previous 

section. 

VIII. EXPERIMENTAL 

1,2,4,5-tetrachlorobenzene (which ~11 be referred to as TCB) was 

purchased from Aldrich Chemical Company, recrystallized from ethanol and 

vacuum sublimed to remove residual solvent. The recrystallized TCB was 

vacuum sublimed into a zone refining tube, repeatedly outga~sed, ~nd 

sealed under vacuum in a 10 nnn diameter. tub_e. The sample was then zone 

refined.for 600 passes at a rate of 1 em/hour. On~y the center third 

of the zone refined material was used. 
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Assuming that the substitution reaction proceeds with the 

same probability for exchange of either a hydrogen or deuterium atom 

with the ring, the percentage of the three species found in the sample can 

be determined by their statistical probabilities. A sample which contains 

97.5% deuterium is composed of 95.06% d
2

-TCB, 4.88% dh~TCB and 0.06% h
2
-TCB. 

' . 

Quantities of both TCB and deuterated TCB were vacuum sublimed into 

individual crystal growing tubes and out gassed. Single·· crystals were then 

grown using the Bridgeman technique. The large single crystals were 

cleaved, and small transparent pieces were used as eXperimental samples. 

The samples were placed in a liquid helium dewar which was cooled slowly 

to 77°K over a period of thirty minutes after which liquid He was added. 

. •: . ' 

The temperature was monitored by an NRC Equipment Corporation Alphatron 

·. vacuum gauge type 530. The temperature can be read to 0. 01 °K; however, 

a small systematic error in temperature measurement may occur if the crystal 

is not in complete thermal equilibrium: with the liq~id hel·i~m bath. The 
.. ~ 

temperature was varied between 4.2°K and 1.35°K by changing the rate of 

pumping on the liquid helium. 

The samples were illuminated by a 100 watt PEK ·high p~essur'e· mercury 

arc lamp through a 2800 A interference filter. Excitation take~ :Piace 

into the singlet· manifold and after intersystem crossing the f"irst excited 

triplet state is populated. Phosphorescent emission from the triplet 

state is detected at right angles to the exciting light using a· 3/4 meter 

Jarrell Ash Czerny-Turnet scanning spectrometer with cooled EMI 6256 

photomultiplier tube. The spectrometer is also fitted with a camera which 

' "~· 
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47 
Deuterated TCB was prepared as follows. n

2
o and so

3 
were reacted 

to form n
2
so

4
• n

2
so

4 
and h

2
-TCB were then heated for 12 hours in a sealed 

tube at 150°C. The cold reaction mixture was poured onto cracked.ice and 

the exchange product was filtered off, washed with water,and used as the 

.starting material for the next exchange. Five successive exchanges were 

performed in this manner. The final product was washed thoroughly with 

water, recrystallized from ethanol, vacuum sublimed, and zone refined for 
. ' . . 

300 passes. Two separate batches were prepared in this manner. 
The percentage deuterium in each sample was determined in the following * 
f\weighed sample from each batch of the deuterated TCB was dissolved 

*manner. An accurately 
in a known amount of cs

2
• Known amounts of dioxane, c

4
H

8
o

2
, were added 

until the concentration of protons from the two species in the cs
2 

solution 

were approximately equal. Proton NMR spectra were then tak~n and integrated 

using a Varian model T60 NMR spectrometer. The spectra were also integrated 

mechanically by taking the area under the spectral peaks. Comparison of 

these areas allowed the computation of the percent of deuteration of the 

TCB. As a check on this procedure a second standard was used. A weighed 

sample of deuterated TCB was dissolved in a known volume of deuterated 

benzene (95.5%d). The deuterated benzene served as an internal standard in the 

analysis of the proton NMR spectra,. Both of these procedures were repeated 

6 times and gave the same result, although the standard deviation was 

Smaller when using the dioxane standard. The deuterated TCB samples con-

tained 97.5 ± .1% deuterium. 

Since the deuteration procedure is limited by the percent deuteration 

of the n
2
so

4
, the deuterated TCB consisted of 3 species, h

2
-TCB, dh-TCB, 
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was used for absorption spectra to determine the exciton origin and trap 

depths. The phosphorescent emission spectrum of the h
2

-TCB samples con­

sists of two electronic and vibronic origins, one from the exciton band, 

3748.2 !, and. the other from a trap, 21.3 cm-l lower in energy. A detailed 

. 48 11 
analysis of the phosphorescence spectrum has already been reported. ' 

Although the exact nature of this trap is unknown, doping of impurities 

into TCB crystals does not enhance the intensity of this trap, but rather 

produces another trap of lower energy.
9 

The trap is thought to be associated 

with a crystal lattice defect. At 4.2°K, the d
2

-TCB spectrum consists of 

three origins, one from each of the three species found in the deuterated 

0 

TCB crystal. The d
2

-TCB triplet exciton emission origin is at 3745 A. 
. . . -1 ·. 

The mono-deuterated trap, dh-TCB, is 12.8 em lower in energy, and the 

-1 
diproto trap, h

2
-TCB, is 23.5 em lower in energy than the exciton origin. 

Optically detected magnetic resonance {ODMR) spectra of the trap in 

the TCB crystals and of the traps in the deuterated TCB crystals gave 

characteristic tetrachlorobenzene spectra. The details of the TCB trap's 

11 
ODMR spectra and of the experimental set-up are reported elsewhere. 

The results of the trap intensity versus temperature measurement are 

shown in Figure 6 for the h
2

-TCB and in Figure 11 for the d
2
-TCB traps • 

The figures are typical of several sets of data taken on separately 
! 

prepared TCB single crystals and on single crystals prepared from each of 

.i 

the two batches of deuterated TCB. 

Finally, all computer calculations illustrated in the figures and 

tables were performed on a CDC 7600.· 
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IX. SUMMARY 

(1) We have attempted to explain in a general way the mechanism by which 

thermal equilibrium between localized trap ~tates and d~localized band states 

in solids is achieved. The essential features of the statistical model which 

satisfactorially accounts for many experimental observations are that at low 

temperatures, exciton migration must propagate coherently as a wave packet 

rather than by a random walk process in order to thermally equilibrate the 

exciton and trap states within the lifetime of the excited electronic 

state. A proper description of the process or processes related to the 

equilibrium populations of trap and band states must include the density 

of k states, the number of k states comprising the band relative to the 
~ ·. {" .. 

number of localized trap states, the detrapping rates which are dependent 

upon phonon dispersions, the trap depth, the sign anq magnitude of the intermolecular 

interaction which gives rise to the band dispersion and exciton~phonon 

scattering. 

(2) The application of this model to crystals representative of one-

dimensional bands allows one to extract from the temperature dependent 

trap emission the magnitude of the band dispersion, the sign of the inter-

molecular interaction matrix element and an estimate of the coherence length ~ 

and average group velocity of the exciton wave packets. 

(3) In a crystal characterized by two or more trap states at different 

energies,below a certain temperature, a "bottleneck" ~n the Boltzmann 

distribution between band and trap states results because of the inability 

of the phonons to detrap the deeper traps at a sufficient rate relative 



. -. 

; . 

l \ 
I..J 

-53 ... 

to the radiative and radiationless lifetime of the state. We have 

solved the coupled differential equation and interpreted the various 

rate processes in terms of the coherent model • 

(4) We have derived a general theory for detrapping which treats the 

detrapping rate constant as a stocasticradiationless rel~~ation process in 

which the trap state once thermally activated decays irreversibly into 

the density of exciton states. 

(5) Finally, we have presented a ser.ies of experiments on one-dimensional 

.molecular crystals designed to test the model. Specifically, we have shown 

how electron spin coherence and optically detected magnetic resonance in 

localized states can be used to obtain specific information regarding the 

dynamics of detrapping and the relationship of detrapping to Boltzmann 

equilibration between trap and band states. 
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Table :t · ·· 

Average Group Velocities· (em/sec) for a Band .of 25,000'k Sti:l.tes 
as a Function of Temperature 

1.0 
1.6 
2.2 
2.8 
3.4 
4.0 

1.25 em 

2652 
2750 
2782 
2797 
2804 
2809 

-1 

Band Width 

15 cm-l 

12747 
15996 
18592 
20762 
•22601 
24161 

., ··' -1 
29.6 em 

18075 
22781 
26611 
29902 

.. 

328'14 
35436 

..... 

.·'-. 
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1 ms 

10 inS 

100 ms 

1 s 
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Table II 

Median Distance Traveled in a Random Walk Process 

Band Width 

1.25 
-1 

15 em 
-1 -1 

em 29.6 em 

-5 -4 -4 
7.6 X 10 em 2. 7 X 10 em 3. 7 X 10 em 

-4 8.4 X 10:-4 -3 2.4 X 10 em em 1.2 X 10 em 
-4 -3 -3 

7.6 X 10 em 2.7 X 10 em 3.7 X 10 em 
. -3 -3 -2 

2.4 X 10 . em 8.4 X 10 em 1.2 X 10 em 



Time 

1 ms 

10 ms 

100 ms 

1 s 

Table III 

Ratio of the Coherent Migration Distance to the 
Random Walk Distance at 2.8°K 

Band Width 

1.25 
-1 

15 
-1 

29.6 em em em 
-1 

3.7 X 10 
4 ·4 

7.8 X 10 7.8 X 10 
4 

'· 

1.1 X 10 
5 ,. 5 

2.5 X 10 2.5 X 105 ', 

3.7 X 10 
5 . 5 

7.8 X 10 - 7.8 X 10 
5 

1.1 X 10 
6 

2.5 X 10 
6 

2.5 X 10 
6 
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Figure Captions 

Trap and exciton energy levels for both negative and positive 

signs of the intermolecular interaction, S. For negative S, 

the exciton band extends 4S to higher energy than the trap 

depth 6, and for positiveS theband is inverted and extends 

4S to lower energy than 6. 

Calculated trap probabilities, which are proportional to trap 

intensities are shown as a function of temperature for various 

negative values of S• The numbers to the right of each set of 

curves give the number of exciton k states (number of molecules 

per chain) per trap state used to calculate the curve. The 

trap depth 8 used is the tetrachlorobenzene trap depth, 21.3 

cm-
1 

(a) illustrates the limiting case of a band with zero 

width, 4S = 0. (b) uses the band width previously reported 

for tetrachlorobenzene. (c) and (d) are for intermediate 

band widths, and (e) is calculated using the reported 1,4-

dibromonapthalene band width. As the band width becomes more 

negative, the energy differences between the trap and states 

in the band become greater and the tempe~ature qependence of 

the trap probability becomes more gradual. 
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~ 

One curve.from each of the five sets of curves of Figure 2 

is displayed so that the temperature dependence o~, t~e·: trap 

probability as a function of f3 can be ~ore clearly seen. 

The curves are for 6400 exciton k states per each trap using 

the negative values of 4f3 from Figure 2. 

Calculated trap probabilities, which are proportional to 

trap intensities are shown as a ~unction of temperatur~ for 

various positive values of f3.- The number. next to each curve 

gives the number of exciton states per trap state. The 21.3 

-1 
em tetrach~orobenzene trap depth b., is .u,sed. The band width, 

4f3, used to calculate the curves is giveiJ.. in each section of 

the drawing. It should be,noted .that t:P.e scale changes in 

{d). and (e). As the band width 4f3 becomes increasingly more 

positive th~ energy differences between the trap and the 

levels of the band become smaller resulting in a steeper 

temperature dependence at trap probability. (e) is an example 

of the amalgamation limit where the bottom of the band extends 

below the traJ> .. depth. 

One curve from each of the sets of .curves in Figure 4(a) through 

4(d) is displayed so that the temperature dependence of the 

trap probability as a function of f3 can be more clearly seen. 

' 
The curves are for 6400 exciton k states per each trap using 

the positive values of 4f3 from Figure 4. 
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The solid circles are the experimentally determined intensity 

-1 
versus temperature data for the 21.3 em trap in 1,2,4,5-

tetrachlorobenzene. The center solid line is the theoretically 

det~ine4 best fit of the data to the band width, 4S, and the 

number of exciton k states which corresponds to the number of 

molecules in the average exciton chain. The other two fits 

are shown to give an idea of the possible error. The best 

-1 
value of the band width is 3.5 ± 2 em with S positive. 

· Trap and exciton energy level diagrams for a one-dimensional 

1 
exciton band ~ = 0 and a two-dimensional band with sb = 2sa. 

The spectroscopically determinable trap depth is the difference 

in energy between the t:tap level and the ~ = 0, ~ = 0 level 

of the two~dimensional exciton band. The trap depth can have 

one of the four possible values, 6
1 

to 6
4 

shown in the figure, 

depending upon the signs of Sa and Sb. If both Sa and Sb 

are negative, 6
1 

will be observed. If Sa < 0 and Sb > 0, 

62 will be observed. If sa > 0 and sb < 0, 63 will be observed, 

and if sa and sb are both positive, 64 will be the spectro­

scopically measured value of the trap depth. 
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.Energy level diagram fo.r a system, containing an excito·n band 

and traps of two different energies. T -labels the shallow 
s 

traps, and T d labels the deep traps... ~l is the energy dif­

ference between Ts and Td' and ~ 2 is the energy difference 

between Td and the k = 0 level of· the exciton band. The 

dashed arrows indic~te the ·possible· paths. an excitation can. 

travel in the system. 

Trap probabilities, which are proportional to phosphorescence 

intensities, as a function of temperature are plotte~Lfor an 

-1 
exciton and ·a two-trap type .. syst:em •. Ts. and Td are 10 em 

and. 20 cm-l below·the k :::;: 0 level of the band, respectively. 

Each pair of lines, one for Td and.one forTs' is calculated 

-using the indicated exciton .band width, 48. The percent of 

each of the species and· the corresponding partition function 

parameters are given at the top o.f; the figure. G
1 

is the 

number of shallow traps relative to,onedeep trap. G
2 

is the 

number of exciton chains with· 2N molecules per chain relative 

to one deep trap •. 

Trap probabilities as a function of temperature for different 

percent compositions of the three species in the crystal 

indicated at the top of the figure. 
-1 

The two traps have 10 em 

and 20 cm-l trap depths and the exciton band width is 4 cm-l 

for all curves. 
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(a) displays the intensity versus temperature experimental 

data, solid circleswith a smooth line drawn through them, 

for the exciton and two-trap system of deuterated tetrachloro-

benzene. The deep trap Td is h
2

-TCB, the shallow trap Ts is 

dh-TCB, and the host molecules which comprise the exciton 

chainsare d
2
-TCB. The shallow and deep trap depths are 

respectively 12.8 cm-l and 23.5 cm-
1

• Region I is the non-

Boltzmann temperature region, and Region II is the temperature 

region in which the system is in thermal equilibrium. The 

shaded section indicates the transition region. (b) shows 

the experimental data in addition to cruves calculated for 

various exciton band widths, 4S, using the experimental trap 

depths and trap concentrations. It can be seen that in the 

Boltzmann equilibrium Region II, both the shallow trap data 

and. the deep trap data fall on the 12 cm-l shallow and deep 

trap calculated curves. 

Energy level diagram for an exciton and two-trap system showing 

rate .constants used in th~ non-Boltzmann temperature region. 

Ks' KE' Kd' and Ksl are the total rate constants for relaxation 

to the ground state, S
0

, for the shallow trap Ts' the exciton 

. band E, the deep trap T d, and the first excited singlet state 

s1
, respectively. Pis the rate constant for the production 

of eXcited singlet states and KISC is the intersystem crossing 
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rate constant. K
8

i and Kdi are the rate constants f'of'· · 

excitations flowing into'the shallbw'and deep traps, respec-

tively, and Kso and Kdo are the rate· constants for excitation 

flowing out of the. shallow and deep tr'aps~ respectively. 

Schematic representation of the detrappin~{ process. P(e:) is 

a phono~ of energy E inter~cting with a trapped excitation T 

to produce an excited trap· state T i equienergetic with the i th 

exciton band state~ The excitation then decays into 

' th b d the i an state. Ei is the energy difference between the 

trap T and the band·state. The energy o£ the phonon P(e:) 

must obey e: ~'Ei. 

The optically detected magnetic resonance 'spectra for the 

deep trap (upper spectrtilii) and the' shailowtrap (lower spectrum) 

found in deuterated tetrachlorobenzene in.the non-Boltzmann 

temperature Region I. The A peaks are electron only transi­

tions.. The B and B' peaks are c1
35 

and c1
37 el~ctron·· spin 

plus nuclear quadrupole spin transitions, respectively. The 

. ' '• . 1 . 35 d 137 d bl 1 C peaks are electron spin p us· Cl · an C · ou e nuc ear 

quadrupole spin transitions~ The large peaks in the deep trap 

spectrum have been~runcated' t~ facilitate display. In the 

deep 'trap spectrUm. between peaks· B' and C oi1 the low frequency 

side is :a peak going. in the' opposite direction from the rest 
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of the deep trap spectrum and in the same direction and 

at the same frequency as the shallow trap electron spin 

only transition. 

(a) Relationship of the phosphorescence intensity to the 

pulse sequence used to spin lock. 

(b) Microwave pulse sequence for spin locking. 

(c) Spin-lattice relaxation in the rotating frame, Tlp' 

3 
for the mr* state of d

2
-TCB in d · 

4
-durene at 2. 0°K, 

1 .· 
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