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Excitation energy transfer (EET) and electron transfer (ET) are crucially involved in photosyn-
thetic processes. In reality, the photosynthetic reaction center constitutes an open quantum system
of EET and ET, which manifests an interplay of pigments, solar light and phonon baths. So far the-
oretical studies have been mainly based on master equation approaches in the Markovian condition.
The non-Markovian environmental effect, which may play a crucial role, has not been sufficiently
considered. In this work, we propose a mixed dynamic approach to investigate this open system.
The influence of phonon bath is treated via the exact dissipaton equation of motion (DEOM) while
that of photon bath is via the Lindblad master equation. Specifically, we explore the effect of non-
Markovian quantum phonon bath on the coherent transfer dynamics and its manipulation on the
current–voltage behavior. Distinguished from the results of completely Markovian Lindblad equa-
tion and those adopting classical environment description, the mixed DEOM–Lindblad simulations
exhibit transfer coherence up to a few hundreds femtoseconds and the related environmental ma-
nipulation effect on current. These non-Markovian quantum coherent effects may be extended to
more complex and realistic systems and be helpful to the design of organic photovoltaic devices.

I. INTRODUCTION

Photosynthesis is one of the most important processes
in biological systems, by which plants and other organ-
isms convert sunlight energy into chemical energy. It is
found that excitation energy transfer (EET) and electron
transfer (ET) are crucially involved in the photosynthetic
process. To be concrete, sunlight is absorbed to create an
excited state, followed by EET along pigments to reaction
center, where ET happens resulting in charge separation
converting excitation energy to chemical energy.
In recent years, the role of quantum coherence in the

EET and ET processes of photosynthesis has got great
interest.1–9 The core complex is the main participant in
the EET and ET processes of reaction center. In reality,
it constitutes an open quantum system, which manifests
an interplay among pigments, solar light and phonon
baths. The involved dynamics could be non-Markovian
in case that the coupling strength between pigments and
the phonon environment be comparable to that between
pigments themselves, as well as the timescale of EET/ET
around that of the phonon bath memory.
Unlike the light-harvesting systems, which have been

theoretically intensively studied,10–19 dynamics of the
EET/ET processes in the reaction center is relatively
rarely explored. So far theoretical studies on EET/ET
in the photosynthetic reaction center are mainly based
on some approximate methods in the Markovian con-
dition, such as the Redfield equation,4,20 polaron mas-
ter equation,21 Lindblad equation,22 and Pauli master
equation.23 The quantum coherence enhanced effect on
electric current was once exhibited in Ref. 24. However,
Creatore and co-workers pointed out that the solutions in
Ref. 24 were unstable and the numerical evolutions there
did not retain the positivity of density matrix, resulting
in artificial behaviors which would diverge with time go-
ing on, see the details in Supplemental Material of Ref.
23. Hence accurate simulations are needed, together with
assessments on approximate approaches.

In this work, we study this open system problem using
a mixed dynamic approach. The photon bath (light) in-
fluence is treated adopting the Lindblad equation,25,26

while that of the phonon environment is via the dis-
sipaton equation of motion (DEOM) method.27,28 The
DEOM is a non-Markovian and nonperturbative ap-
proach, constructed on basis of a quasi-particle, dissipa-
ton representation for hybridized collective bath dynam-
ics. For reduced system dynamics, the DEOM is equiv-
alent to the hierarchical equation of motion (HEOM)
formalism,29 which is established via time derivative on
the influence functional path integral or stochastic fields
methods.30–34 Both HEOM and DEOM are exact under
Gaussian bath statistics. The DEOM is more convenient
and straightforward to study environmental dynamics
related problems, such as polarizations under external
fields.15,28,35

In numerical demonstrations, the phonon bath will also
be treated via the semigroup Lindblad master equation
for comparison with DEOM. In this way the effects of
quantum coherence versus non-Markovian phonon bath
will be highlighted. The remainder of paper is orga-
nized as follows. In Sec. II A, we introduce a five–level
model6,21–24 applied in our study, which captures the
main features of the EET and ET processes in the pho-
tosynthetic reaction center. The associated Hamilto-
nian and bath functions are then described. The mixed
DEOM–Lindblad dynamic equations are proposed in
Sec. II B. The construction of Lindblad master equation
is briefly outlined in Appendix. Numerical simulations
on transfer dynamics and current–voltage behaviors are
demonstrated and discussed in Sec. III. We summarize
the paper in Sec. IV.

II. THEORETICAL DESCRIPTION

In this section, we begin with the setup of total system–
plus–baths composite exploited in this study, where the

http://arxiv.org/abs/2205.04353v3
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FIG. 1: Sketch of the total composite model before and after
the diagonalization of system Hamiltonian.

system is described by a five–level model.6,21–24 This five–
level model system, based on the photosystem II core
complex, not only characterizes the main features of EET
and ET processes, but also takes into account the impor-
tant interactions involved. The system Hamiltonian and
bath coupling statistics as well as the proposed mixed
DEOM–Lindblad dynamic approach are given after that.
For brevity, we set ~ = 1 and β = 1/(kBT ) throughout
the paper, with kB being the Boltzmann constant and T
the temperature.

A. Five–site model of system and bath statistics

Let us first introduce the system from the biological
perspective.6 The photosystem II reaction center core
complex contains four chlorophylls (special pair PD1 and
PD2 and accessory chlorophylls ChlD1 and ChlD2) and
two pheophytins (PheD1 and PheD2), arranged into two
branches (D1 and D2). Only the D1 branch plays an
active role in the photo-induced electron transfer:

|a〉 : PD1ChlD1PheD1 −→ (PD1)
∗ChlD1PheD1 : |b〉

e ↑ ↓
|e〉 : P+

D1ChlD1PheD1 PD1(ChlD1PheD1)
∗ : |c〉

e  ↑ ↓
P+
D1ChlD1Phe

−
D1 ←− PD1Chl

+
D1Phe

−
D1 |d〉

The D1 branch, PD1ChlD1PheD1, is firstly excited from
|a〉 to |b〉 via the absorption of photons. From |b〉 to
|c〉 is the EET, followed by the charge separation result-
ing in state |d〉 where the positive and negative charges
are rapidly spatially separated. For simplicity, a charge–
separated state |d〉 is coarsely used to represent both
states. From |d〉 to |e〉, an electron is released from the
system. At last, the system captures an electron from
the surroundings to complete the cycle and returns to
the ground state |a〉.
According to the above description, the system Hamil-

tonian can be written as

HS =
∑

m∈I

Em|m〉〈m|+ V (|b〉〈c|+ |c〉〈b|), (1)

with I ≡ {a, b, c, d, e}. To phenomenologically describe
the electron release from |d〉 to |e〉, a superoperator can
be introduced as21–24

LΓÔ = −
Γ

2

[
Ô|d〉〈d| + |d〉〈d|Ô − 2|e〉〈d|Ô|d〉〈e|

]
. (2)

Here, Γ is the rate of release. In square brackets of
Eq. (2), the last term and the first two terms correspond
to T1 relaxation and T2 dephasing, respectively.36,37 In
this work, we exploit this constant rate description as in
literature,21–24 to phenomenologically represent the pro-
cess from |d〉 to |e〉. This description is widely applied
in various fields, such as chemical kinetics and radioac-
tive decay processes, where the inverse processes rarely
happen. In the photosynthetic reaction center, a series
of chemical reactions are driven by the electron released
from |d〉 and finally reach |e〉, while the inverse process
from |e〉 to |d〉 is almost prohibited.
For the system–plus–baths composite, the total Hamil-

tonian reads

HT = HS +H
(I)
SB +H

(II)
SB + h

(I)
B + h

(II)
B . (3)

Here, the system Hamiltonian is as in Eq. (1), while the
bath Hamiltonians are

h
(I)
B =

∑

k

εkb
†
kbk and h

(II)
B =

∑

j

ωja
†
jaj (4)

for the photon bath and phonon bath, respectively. The
system-bath interaction Hamiltonians read

H
(I)
SB = Q̂

(I)
1 F̂

(I)
1 , (5a)

H
(II)
SB =

5∑

µ=2

Q̂(II)
µ F̂ (II)

µ , (5b)

with Q̂
(I)
1 = |a〉〈b|+ |b〉〈a|, Q̂

(II)
2 = |c〉〈d|+ |d〉〈c|, Q̂

(II)
3 =

|e〉〈a| + |a〉〈e|, Q̂
(II)
4 = |b〉〈b|, and Q̂

(II)
5 = |c〉〈c|, whereas

F̂
(I)
1 = 1√

2

∑
k c̃k(bk + b†k) and F̂

(II)
µ=2∼5 = 1√

2

∑
j cµj(aj +

a†j). These settings are depicted in the left panel of Fig. 1
and constitute Gaussian bath couplings. Their influences
on the system can be completely characterized by the
spectral densities,

J
(I)
1 (ω > 0) =

π

2

∑

k

c̃2kδ(ω − εk), (6a)

and (for µ, ν = 2 ∼ 5)

J (II)
µν (ω > 0) =

π

2

∑

j

cµjcνjδ(ω − ωj). (6b)

In Fig. 1, red and blue dash arrows represent the state
transfers induced by photon and phonon baths, respec-
tively. The system Hamiltonian eigenstates are |a〉, |d〉,
|e〉 and

[
|+〉
|−〉

]
= U

[
|b〉
|c〉

]
≡

[
u11 u12

u21 u22

] [
|b〉
|c〉

]
(7)

with U being the real and orthogonal transformation ma-
trix which diagonalizes HS. Inversely

[
|b〉
|c〉

]
=

[
u11 u21

u12 u22

] [
|+〉
|−〉

]
. (8)
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Correspondingly, we can recast

Q̂
(I)
1 = u11

(
|a〉〈+|+ |+〉〈a|

)
+ u21

(
|a〉〈−|+ |−〉〈a|

)
,

Q̂
(II)
2 = u12

(
|+〉〈d|+ |d〉〈+|

)
+ u22

(
|−〉〈d|+ |d〉〈−|

)
,

Q̂
(II)
4 = u2

11|+〉〈+|+ u2
21|−〉〈−|+ u11u21

(
|+〉〈−|+ |−〉〈+|

)
,

Q̂
(II)
5 = u2

12|+〉〈+|+ u2
22|−〉〈−|+ u12u22

(
|+〉〈−|+ |−〉〈+|

)
,

and Q̂
(II)
3 is not affected. The transformed interaction

patterns are exhibited in the right panel of Fig. 1.

B. Mixed DEOM–Lindblad dynamic approach

In the total composite space, the total density operator
ρT(t) evolves as

ρ̇T(t) = −i[HT, ρT(t)] + LΓρT(t), (9)

with HT and LΓ defined in Eqs. (3) and (2), respectively.
In the proposed mixed dynamic approach, light is treated
as photon bath via the Lindblad master equation, de-
tailed in Appendix. Thus an additional superoperator
for the action of light is now introduced as

L(I) = γ+u
2
11L+ + γ−u

2
21L− , (10)

with γ± ≡ 2J
(I)
1 (ω±a) the dissipative rate and

L±Ô = (1 + n̄±)
(
〈±|Ô|±〉 |a〉〈a| −

1

2

{
|±〉〈±|, Ô

})

+ n̄±

(
〈a|Ô|a〉 |±〉〈±| −

1

2

{
|a〉〈a|, Ô

})
, (11)

where n̄± ≡ n̄±a; cf. Appendix.
To explore non-Markovian and non-perturbative in-

fluence of phonon bath, we adopt the well-established
DEOM approach. It starts with the exponential expan-
sion form of bath coupling correlation functions,

C̃(II)
µν (t) =

1

π

∫ ∞

−∞
dω

e−iωtJ
(II)
µν (ω)

1− e−βω
=

∑

κ

ξµνκ e−γµν

κ
t .

(12)
The first identity is the fluctuation–dissipation
theorem.38,39 The standard DEOM algebra gives
rise to27,28

ρ̇(n)
n

= −
[
iLS − LΓ − L(I) +

∑

µνκ

nµν
κ γµν

κ

]
ρ(n)
n

− i
∑

µνκ

[
Aµρ

(n+1)

n
+
µνκ

+ nµν
κ C

µν
κ ρ

(n−1)

n
−

µνκ

]
, (13)

with LSÔ ≡ [HS, Ô] and

AµÔ ≡ [Q̂(II)
µ , Ô], (14a)

Cµνκ Ô ≡ ξµνκ Q̂(II)
ν Ô −

(
ξµνκ̄

)∗
ÔQ̂(II)

ν . (14b)

This is the mixed DEOM–Lindblad formalism. The term
of index κ̄ is associated with that of κ by γµν

κ̄ ≡ (γµν
κ )∗.

The indices of density matrices are denoted as n = {nµν
κ },

an ordered set of the bosonic dissipaton’s occupation
numbers, nµν

κ = 0, 1, · · · , and n =
∑

µνκ n
µν
κ the total

number. n
±
µνκ differs from n only at the specified nµν

κ

by ±1. ρ
(0)
0

is just the reduced system density operator,

while the others, ρ
(n≥1)
n , coupled to ρ

(0)
0

in a hierarchical
manner, are dissipaton density operators.

III. NUMERICAL DEMONSTRATIONS AND

DISCUSSIONS

For numerical simulations, we adopt the Drude model
for the phonon bath spectral densities (for µ, ν = 2 ∼ 5),

J (II)
µν (ω) =

2ηµνλνγνω

ω2 + γ2
ν

. (15)

The Drude model is a strongly overdamped solvent
model. In Eq. (15), λν is the reorganization energy and
γν is the damping rate. {ηµν} should form a positive–
definite matrix. It characterizes the correlation between
different dissipative modes, cf. Eq. (6b). Here, the way
of denoting cross–correlation contributions is essentially
the same as in Ref. 40. We set parameters as in Table. I.
They are selected in accordance with Refs. 22–24. Par-
ticularly, the photon average occupation paramter, n̄±,
is chosen to be 60000, to match with Refs. 22–24. As
pointed out in Ref. 22, this represents solar energy con-
centration within the antenna and is not related to the
actual physical temperature of photon bath. The setup

Parameters Units Values
Ea cm−1 0
Eb cm−1 14856
Ec cm−1 14736
Ed cm−1 13245
Ee cm−1 1611
V cm−1 30
γ± cm−1 0.005
n̄± 60000
T K 300
λ2 cm−1 140
γ2 cm−1 140
λ3 cm−1 200
γ3 cm−1 200
λ4 cm−1 100
γ4 cm−1 10
λ5 cm−1 100
γ5 cm−1 10

TABLE I: Parameters used in the simulations.

of system Hamiltonian results in the following U–matrix
in Eq. (7),

U =

[
0.973 −0.230
0.230 0.973

]
.
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In simulations, the {ηµν} parameters are set as




η22 η23 η24 η25
η32 η33 η34 η35
η42 η43 η44 η45
η52 η53 η54 η55


 =




1 0 0 0
0 1 0 0
0 0 1 η
0 0 η 1


 .

We choose η = 1 and η = −1 to represent the fully
correlated and anti–correlated scenarios of the involved
two fluctuating modes, Q̂

(II)
4 = |b〉〈b| and Q̂

(II)
5 = |c〉〈c|,

respectively. Note their real effects shall be considered
with the eigenstates of system and may be different if
the sign and value of the coherent coupling V change.
The Γ parameter in Eq. (2) will be varied in the following
demonstration.
Before numerical discussions, it is worth to clarify

that non-Markovian quantum nature is basically the
real physical characteristics of phonon environments.
Whether the caused effect is important or not theoret-
ically depends on parameters.41,42 When approximate
treatments are adopted, validity is to be assessed by com-
paring with accurate methods. Meanwhile the existing
difference in such comparisons would reflect the feature of
the neglected factor in those approximate approaches. In
the following part of this section, the completely Marko-
vian Lindblad equation or methods adopting classical en-
vironment description will be assessed via comparison
to the simulation results given by the mixed DEOM–
Lindblad approach. The effects of non-Markovian quan-
tum phonon environment can then be analyzed in due
course.
Figures 2 and 3 depict the transient dynamics ob-

tained from different approaches. We choose cases where
Γ = 100 and 500 cm−1, both simulated for η = −1 and
η = 1. The system is set to be at |a〉 initially. The black-
solid, DEOM curves are evaluated via the mixed DEOM–
Lindblad formalism proposed in Sec. II B. Both the ex-
pansion of phonon bath correlation functions and the hi-
erarchy of dynamic equations are converged. To explore
the quantum phonon environment effects, results from
the classical bath correspondence are illustrated with the
red-dot curves for comparison. In the classical bath con-
dition, the involved bath correlations are real functions.
Thus, the difference of red-dot curves to the black-solid
ones is due to neglecting the imaginary parts of the sec-
ond identity of Eq. (12). The blue-dash, Lindblad re-
sults are obtained by applying the Lindblad master equa-
tion for both photon and phonon bath operations, cf.
Eqs. (29)–(30) of Appendix. Note the Pauli master equa-
tion adopted in Ref. 23 neglects the off-diagonal elements
of system density matrix. It corresponds to the Lindblad
equation of Eq. (29) subject to a population projection.
Therefore the non-Markovian correlated environmental
effects can be highlighted in comparison between black-
solid and blue-dash curves.
In Fig. 2, the mixed DEOM–Lindblad (black-solid)

simulations exhibit quantum coherence in the panels of
ρee. Both the complete Lindblad (blue-dash) and classi-
cal bath (red-dot) results show little quantum coherent
behavior, similar as the time evolutions demonstrated in
Supplemental Material of Ref. 23. The associated deco-

0 1
B (ps)

0

0.1

d
4
4

0 1
B (ps) 0 1

B (ps) 0 1
B (ps)

0

0.1

d
3
3

0

0.2

d
2
2

0

0.6

d
1
1

[ = -1

I = 100 cm−1

[ = 1 [ = -1

I = 500 cm−1

[ = 1

DEOM Classical bath Lindblad

FIG. 2: Population evolutions evaluated via the mixed
DEOM–Lindblad (black-solid), DEOM–Lindblad under the
classical bath limit (red-dot), and complete Lindblad (blue-
dash) methods with varied Γ and η parameters.

0 1
B (ps)

−0.02

0

Im
d
1
2

0 1
B (ps)

0 1
B (ps)

0 1
B (ps)

−0.1

0

R
e
d
1
2

[ = −1

I = 100 cm−1

[ = 1 [ = −1

I = 500 cm−1

[ = 1

DEOM Classical bath Lindblad

FIG. 3: Decoherence during EET between the states |b〉 and
|c〉, evaluated via the mixed DEOM–Lindblad (black-solid),
DEOM–Lindblad under the classical bath limit (red-dot), and
complete Lindblad (blue-dash) methods with varied Γ and η

parameters.

herence processes of ρbc are depicted in Fig. 3. There are
no Lindblad (blue-dash) curves in the panels of Imρbc, be-
cause its results retain zero from the chosen initial state.
It is observed that by the mixed DEOM–Lindblad (black-
solid) simulations, the anti–correlated bath fluctuations
with η = −1 lead to faster dephasing processes than the
correlated ones with η = 1, for the present system. In
both Fig. 2 and Fig. 3, the Γ = 100 and 500 cm−1 cases
give similar transient behaviors except for ρdd [cf. Eq. (2)
and comments after it]. Further effects of Γ and η on
steady states and the associated current–voltage proper-
ties are to be demonstrated in Fig. 4.

As in the literature,6,21–24 we may view the composite
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FIG. 4: Current, power, and conductivity versus the effective
voltage with the Γ parameter varied. The black solid curves
are from the mixed DEOM–Lindblad simulations while the
blue dash curves are from the complete Lindblad simulations.

as a biological heat engine, with the steady-state current,

j = eΓρst
S;dd , (16)

and the effective voltage Φ via

eΦ = Ed − Ee + kBT ln
ρst

S;dd

ρst
S;ee

. (17)

Here, e is the electron charge. Figure 4 depicts the cur-
rent (upper-panels), power j ·Φ (middle-panels), and con-
ductivity dj/dΦ (lower-panels) versus the voltage, for
the results from the mixed DEOM–Lindblad (black-solid)
and complete Lindblad (blue-dash) simulations. The cur-
rent and voltage, j and Φ, are evaluated from Eq. (16)
and Eq. (17), respectively, with the Γ parameter varied
from 600 down to 8 cm−1 for the mixed DEOM–Lindblad,
and 900 down to 12 cm−1 for the complete Lindblad sim-
ulations. Note that under the classical bath condition,
ρst

S;dd = 0, leading to both current and voltage undefined.
Negative conductivity is observed owing to the setup of
the present model heat engine.
In Fig. 4, the mixed DEOM–Lindblad results show

certain manipulation effects by adjusting the cross–
correlation, η–parameter, between different environmen-
tal couplings. The current evaluated via the mixed
DEOM–Lindblad simulation (black-solid) is overall en-
larged in the η = 1 case (upper–right panel) compared
with η = −1 (upper–left panel). This observation high-
lights the relationship among the non-Markovian quan-
tum environment, the transfer coherence, and the current

enhancement. Recall that we have shown in Fig. 3 the
former case possesses a longer time of coherence than the
latter one. In contrast, since the non-Markovianity and
quantum coherence are not fully covered in the complete
Lindblad approach, it produces the opposite behaviors
that the current is weakened in the η = 1 case in com-
parison with η = −1, as seen from the blue-dash curves
in the upper panels of Fig. 4.

IV. SUMMARY

In this work, we propose a mixed DEOM–Lindblad ap-
proach to study the transient dynamics and steady-state
current–voltage behaviors of a model photosynthetic re-
action center system. The photon bath (light) influence is
treated via the Lindblad dissipative superoperator while
that of the phonon environment is via the exact DEOM
method taking into account the non-Markovian and non-
perturbative effects. The correlation between photon
and phonon baths’ couplings on the reduced system are
also included in the construction of the mixed DEOM–
Lindblad formalism. The transfer dynamics and steady-
state current–voltage behaviors are compared among dif-
ferent approaches, the mixed DEOM–Lindblad, complete
Lindblad, and DEOM–Lindblad with classical bath limit,
to explore the non-Markovian quantum environment ef-
fects. Distinguished from the other two methods, results
via the mixed DEOM–Lindblad simulation exhibit the
transfer coherence up to a few hundreds femtoseconds
and an environment manipulation effect on the current
enhancement. As DEOM is an accurate method, the
present observations of non-Markovian quantum coher-
ent effects are expected to be extended to more complex
and realistic systems and be helpful to the design of or-
ganic photovoltaic devices.
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Appendix: Constructional detail of Lindblad master

equation

In this appendix, we give the constructional detail of
the Lindblad master equation. Consider a general form
of system–plus–bath total Hamiltonian,

HT = HS +
∑

µ

Q̂S

µF̂
B

µ + hB. (18)

The time-local quantum dissipation equation for the re-
duced system density operator, via the cumulant partial



6

ordering prescription with neglecting bath dispersion, is
obtained as37,43

ρ̇S(t) = −iLSρS(t)−
∑

µ

[Q̂S

µ, Q̃µρS(t)− ρS(t)Q̃
†
µ], (19)

with

Q̃µ ≡
∑

ν

Cµν(−LS)Q̂
S

ν , (20)

and

Cµν(ω) ≡
1

2

∫ ∞

−∞
dτ eiωτ C̃µν(τ) = [Cνµ(ω)]

∗. (21)

To obtain the concrete form of Lindblad equation, we

shall recast Q̂S

µ and Q̃µ in the system eigenstate repre-
sentation, {|m〉} satisfying HS|m〉 = ǫm|m〉, as

Q̂S

µ =
∑

mn

QS

µ;mn|m〉〈n|, (22a)

Q̃µ =
∑

νmn

Cµν(ωnm)QS

ν;mn|m〉〈n|, (22b)

with

ωmn ≡ ǫm − ǫn and QS

µ;mn ≡ 〈m|Q̂
S

µ|n〉. (23)

We obtain

ρ̇S(t) = −iLSρS(t) +
∑

µνmnm′n′

[(I)− (II)− (III)] , (24)

with

(I) = [Cµν(ωmn) + Cµν(ωn′m′)]Ŝν;m′n′ρS(t)Ŝ
†
µ;nm,

(II) = Cµν(ωn′m′)Ŝ†
µ;nmŜν;m′n′ρS(t),

(III) = Cµν(ωmn)ρS(t)Ŝ
†
µ;nmŜν;m′n′ . (25)

Here, Ŝµ;mn ≡ QS

µ;mn|m〉〈n|, satisfying

Ŝ†
µ;mn = QS

µ;nm|n〉〈m| = Ŝµ;nm. (26)

Now applying the rotating wave approximation that
only terms of n′ = m and m′ = n contribute, Eq. (24)
gives rise to

ρ̇S(t) = −iLSρS(t) +
∑

µνmn

Cµν(ωmn)
[
2Ŝν;nmρS(t)Ŝ

†
µ;nm

− Ŝ†
µ;nmŜν;nmρS(t)− ρS(t)Ŝ

†
µ;nmŜν;nm

]
. (27)

The detailed-balance relation reads

Cµν(ω) = Jµν(ω)[1 + n̄(ω)] = Jνµ(−ω)n̄(−ω). (28)

Note that Jνµ(−ω) = −Jµν(ω) and n̄(ω) + n̄(−ω) = −1
where n̄(ω) = 1/(eβω − 1). We obtain readily

ρ̇S(t) =
[
− iLS +

∑

µνmn

(
L(+)
µνmn + L(−)

µνmn

)]
ρS(t) (29)

where [n̄mn ≡ n̄(ωmn)]

L(+)
µνmnÔ =

1

2
Jµν(ωmn)(1 + n̄mn)

(
2Ŝν;nmÔŜ†

µ;nm

− Ŝ†
µ;nmŜν;nmÔ − ÔŜ†

µ;nmŜν;nm

)
, (30a)

L(−)
µνmnÔ =

1

2
Jνµ(ωmn)n̄mn

(
2Ŝ†

ν;nmÔŜµ;nm

− Ŝµ;nmŜ†
ν;nmÔ − ÔŜµ;nmŜ†

ν;nm

)
. (30b)

This is just the standard form of Lindblad master
equation.25,26 It is also equivalent to the secular Redfield
equation.36,37

In comparison with DEOM for the non-Markovian in-
fluence of phonon bath, the Markovian Lindblad master
equation treatment in Sec. III is as the above Eq. (29)
with Eq. (30). Note that the system eigenstate represen-
tation shall be adopted. For the photon bath with the

single coupling mode Q̂
(I)
1 in Sec. II A, we finally obtain

Eq. (10) with Eq. (11).
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J. P. Ogilvie, “Hidden vibronic and excitonic structure
and vibronic coherence transfer in the bacterial reaction
center,” Sci. Adv. 8, eabk0953 (2022).

2 J. S. Cao, R. J. Cogdell, D. F. Coker, H.-G. Duan,
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