
PHYSICAL REVIEW D, VOLUME 63, 113009
Coherent exclusive exponentiation for precision Monte Carlo calculations

S. Jadach
Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996-1200

and Institute of Nuclear Physics, ul. Kawiory 26a, 30-055 Cracow, Poland

B. F. L. Ward
Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996-1200

and SLAC, Stanford University, Stanford, California 94309

Z. Wa̧s
Institute of Nuclear Physics, ul. Kawiory 26a, 30-055 Cracow, Poland

and CERN, Theory Division, CH-1211 Geneva 23, Switzerland
~Received 5 July 2000; published 1 May 2001!

We present the new coherent exclusive exponentiation~CEEX!, the older exclusive exponentiation~EEX!,

and the semianalytical inclusive exponentiation~IEX! for the process e2e1→ f f̄ 1ng, where f
5m,t,d,u,s,c,b, which are valid for center-of-mass energies from thet lepton threshold to 1 TeV, that is, for
CERN LEP1, LEP2, the SLC, future linear colliders, andb,c,t factories, etc. The approaches are based on
Yennie-Frautschi-Suura exponentiation. In CEEX, the effects due to photon emission from initial beams and
outgoing fermions are calculated in QED up to second order, including all interference effects. Electroweak
corrections are included to first order, at the amplitude level. Beams can be polarized longitudinally and
transversely, and all spin correlations are incorporated in an exact manner. The EEX is more primitive, lacks
initial-final interferences, but it is valuable for testing the newer CEEX. The IEX provides us with a set of
sophisticated semianalytical formulas for the total cross section and selected inclusive distributions, which are
mainly used for cross-checks of the Monte Carlo results. We analyze numerical results at theZ peak, 189 GeV
and 500 GeV for simple kinematical cuts~comparisons with inclusive exponentiation! and for realistic experi-
mental cuts. The physical precision and technical precision are determined for the total cross section and for
the charge asymmetry.
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I. INTRODUCTION

At the end of the CERNe1e2 collider LEP2 operation,

the total cross section for the processe2e1→ f f̄ 1ng will
have to be calculated with the precision 0.2–1 %, depend
on the event selection. The arbitrary differential distributio
also have to be calculated with the corresponding precis
In future linear colliders~LCs! the precision requirement ca
be even more demanding. This is especially true for the h
luminosity linear colliders, such as in the case of the DE
TeV Energy Superconducting Linear Accelerator~TESLA!.
The above new requirements necessitate the developme
a new calculational framework for the QED corrections a
the construction of new dedicated Monte Carlo~MC! pro-
grams. The present work is a part of the effort made in t
direction.

The main limiting factor preventing us from getting mo

precise theoretical predictions for thee2e1→ f f̄ 1ng pro-
cess is higher-order QED radiative corrections~the QED part
of the electroweak standard model!. In order to achieve the
0.2% precision tag, the virtual corrections have to be ca
lated up to two or three loops and the multiple bremsstr
lung up to two or three hard photons, integrating exactly
multiphoton phase-space for the arbitrary event selec
~phase-space limits!.

For any realistic kinematical cuts, one cannot get the p
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cise theoretical predictions fore2e1→ f f̄ 1ng at the above
ambitious precision level without Monte Carlo event gene
tors. It is therefore mandatory to formulate perturbative st
dard model~SM! calculations in a way that facilitates the
use within a Monte Carlo event generator.

Let us stress that the Monte Carlo method is for us no
ing more ~or less! than the numerical integration over th
Lorentz invariant phase-space. It is therefore an exercis
applied mathematics. In the present work we shall not, ho
ever, elaborate on the methods of the Monte Carlo pha
space integration and construction of the Monte Carlo ev
generator. This is delegated to Ref.@1#, which describes the
new Monte Carlo event generatorKK in which the matrix
element of the present paper is implemented. All numer
results presented here are calculated using the version 4.
KK.

In the present work we concentrate on the definition a
construction of the matrix element for the processe2e1

→ f f̄ within the standard model. We shall especially addr
the problem of the higher-order QED corrections. This wo
is a continuation of two recent papers@2,3#.

A. Two types of QED matrix elements and exponentiations

In the KK Monte Carlo and in this paper, we use tw
types of matrix element, with two types of exponentiatio
exclusive exponentiation, nicknamed EEX, and coherent
©2001 The American Physical Society09-1
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clusive exponentiation, referred to as CEEX. Both a
termed ‘‘exclusive’’ as opposed to ‘‘inclusive,’’ see also th
discussion in@4#. Exclusivity means that the procedure
exponentiation, that is summing up the infrared~IR! real and
virtual contribution, within the standard perturbative sche
of quantum field theory, is done at the level of the fu
differential ~multiphoton! cross section or, even better, at t
level of the scattering matrix element~spin amplitudes!, be-
fore any phase-space integration over photon moment
done.

The other ‘‘inclusive’’ exponentiation is anad hocproce-
dure of summing up IR correctionsafter phase-space inte
gration over photon momenta, that is, for inclusive distribu-
tions. In spite of its weak theoretical basis the inclus
exponentiation is very commonly done routinely in all sem
analytical approaches such as that in Ref.@5#. In Sec. V A we
shall come back to inclusive exponentiation and show how
justify it theoretically.

The two exclusive exponentiations EEX and CEEX a
well suited for the fully exclusive Monte Carlo event gene
tors in which the four momenta of all final-state particles a
available. Historically EEX was formulated for the first tim
in Ref. @6# for the initial-state radiation~ISR! and an im-
proved version was presented in Ref.@7#. It follows very
closely the Yennie-Frautschi-Suura~YFS! exponentiation of
the classical Ref.@8#. The extension of EEX to the final-stat
radiation ~FSR! was done shortly thereafter@9#, but it was
actually never fully published. The computer programYFS3,
in which EEX for FSR was implemented, was incorporat
in KORALZ @10# and some numerical results were publish
in @9#, without actually giving the details of the QED matr
element. The present work gives in fact the first full acco
of the EEX matrix element for ISR and FSR for the proce
e2e1→ f f̄ 1ng, f Þe. This is to be contrasted with the situ
ation for small-angle Bhabha scattering@the well-known
LEP or SLAC Linear Collider~SLC! luminosity process#, for
which the EEX-type matrix element was fully documented
Refs.@11–13#.

CEEX is a new version of the exclusive exponentiatio
generally more efficient for calculations beyond first ord
facilitating inclusion of full spin polarization, narrow reso
nances, and any kind of interferences. Its first version, l
ited to first order, was presented in Ref.@3#. In the present
work we extend it to~still incomplete! second order.

Let us characterize briefly the main features of EEX a
CEEX. EEX is formulated in terms of spin summed or av
aged differential distributions; this is the source of some
vantages and disadvantages that may be summarized a
lows.

The differential distributions in practice are given analy
cally in terms of Mandelstam variables and scattering ang
they are therefore easily inspected by looking and the c
rectness of certain important limits, such as the leadi
logarithmic and soft limits, is quickly recognized.

The analytical representation of the differential distrib
tions allows for analytical phase-space integration and de
opment of the semianalytical formulas, which are useful
cross-checking with the MC results.
11300
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The spin effects are difficult to add already atO(a1),
because one is forced to calculate radiative corrections
spin density matrices, not an easy task.

The squaring of the sums of spin amplitudes from grou
of Feynman diagrams leads to many interference ter
which in the exponentiation procedure are handled ana
cally and individually. The interference terms can therefo
be dealt with efficiently in EEX only for simple processe
dominated by a small number of Feynman diagrams and o
up to first order.

CEEX is formulated in terms of spin amplitudes, and th
is also the source of some advantages and disadvantage

The differential distributions are calculated out of sp
amplitudes numerically—spin amplitudes are genera
simpler/smaller objects, especially beyondO(a1).

Since an analytical representation for the differential d
tributions is not available, the semianalytical integration ov
the phase-space is practically impossible.

The spin effects are added relatively easily, during n
merical evaluation of the differential distributions calculat
out of the spin amplitudes. The addition of the higher-ord
corrections does not make the treatment of spin polariza
more difficult.

The inclusion of all kinds of interference effects~among
which are real photon emissions, many Feynman diagra
etc.! comes almost for free—it is done numerically in th
process of summing and squaring the various contributi
to the spin amplitudes.

As we see, CEEX has many advantages over EEX,
why do we keep EEX? There are important reasons.

Generally, CEEX is a relatively new invention; the old
and more primitive but well-established EEX is a useful r
erence for numerical tests of CEEX.

EEX is better suited for semianalytical integration ov
the phase-space, and can be tested with these semianal
results.

In the presentKK MC the O(a3) leading logarithmic
corrections are available for EEX and are not yet availa
for CEEX.

Summarizing, we see that it makes sense to keep EEX
a backup solution, even if we already rely on CEEX as
default and leading solution.

B. Notation, terminology

It is useful to introduce certain notations and terminolo
already at this stage. In particular, the most common per
bative calculation~no exponentiation! is ‘‘order-by-order.’’
This means that all of the terms beyond a certain order
set to zero. In Fig. 1, it means that we end at a cert
row—at O(a2) we include the first three rows. Exponenti
tion blurs this picture because a certain class of terms
summed up to infinite order and the meaning of ther th order
exponentiation is that we truncate toO(a r) the infrared fi-
nite components, the so-calledb̄ ’s. On the other hand, in the
leading-logarithmic~LL ! approximation the focus is on sum
ming up first the contributions likeanLn and later those like
anLn21, that is in Fig. 1 we sum up columnwise, neglectin
terms far away from the first column, which represents
9-2
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COHERENT EXCLUSIVE EXPONENTIATION FOR . . . PHYSICAL REVIEW D 63 113009
so-called LL approximation. Taking the actual value
a/p;1/400 and of the big logarithmL5 ln(s/mf

2);10, we
discover quickly that in Fig. 1 the limiting line following the
numerical importance of the terms is neither row-wise n
columnwise but diagonalwise. This is why we shall often u
theO(a r)prag , r 51,2,3 approximation, depicted also in Fi
1, wherein we use~exponentiated or not! theO(a r) calcula-
tion in which we use incomplete subleading terms, in
sense of the LL approximation. Note that for the LL appro
mation we shall never use the strict collinear~zero pT) ap-
proximation. The LL approximation will be done at the lev
of the differential distributions~or spin amplitudes! without
forcing pT50 on the photons. Just to give the reader a rou
idea, the precision level of order 0.5–1% corresponds to
O(a1)prag , 0.1–0.5 % to theO(a2)prag , and going below
0.05% will require theO(a3)prag . The above is true for the
exponentiated calculation. The lack of exponentiation ma
the calculation less precise by a factor of 2–5. The p
nonlogarithmic terms of theO(a2) are negligible (,1025)
for any foreseeable practical application.

C. Outline

The outline of the paper is the following. In Sec. II w
describe in detail the SM/QED matrix element for the exc
sive exponentiation based on the Yennie-Frautschi-Su
work of Ref. @8#, that is, for the type of matrix elemen
defined for the first time in Ref.@6#. In Sec. II we describe
the new second-order matrix element with coherent ex
sive exponentiation, which is the default matrix element
KK MC. Its first-order variant was given in@3#, and is also
defined here for the sake of completeness. In Sec. III
elaborate on how we combine the electroweak correction
Refs. @5,14# with the QED corrections within EEX and
CEEX. In Sec. IV we discuss the differences between E
and CEEX. In Sec. V we integrate analytically over t
phase-space for the EEX matrix element in the case of v
simple kinematical cuts. The resulting analytical results

FIG. 1. QED perturbative leading and subleading correctio
The rows represent the corrections in consecutive perturbative
ders; the first row is the Born contribution. The first column rep
sents the leading-logarithmic~LL ! approximation and the secon
column the next-to-leading~NLL ! approximation. In the figure, the
terms selected for the~a! second- and~b! third-order pragmatic
expansions are limited by an additional line. Here,L5 ln(s/mf

2) for
the respective fermion massmf .
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used in Sec. VI, where numerical results from theKK MC
are presented. The most important task presented in Sec
is, however, the determination of the physical and techn
precisions for the total cross section and charge asymm
at theZ peak, LEP2, and 500 GeV. In particular we discu
the contribution from the initial-final state interference~IFI!,
which is included in our new CEEX matrix element~IFI is
neglected in EEX!. In the last section we summarize ou
work. In the Appendix we define the Weyl-spinor techniqu
used in the construction of the CEEX multiphoton spin a
plitudes.

II. AMPLITUDES FOR EXCLUSIVE EXPONENTIATION

As was already indicated, the role of the EEX matr
element described in this section is to provide a testing
vironment for the new, more sophisticated matrix elemen
the CEEX class, which will be defined in the next section

The kinematics of the processe2e1→ f f̄ 1ng is depicted
in Fig. 2. In the case of the EEX matrix element presen
here, we neglect the initial-final state interference. Con
quently, we are allowed in the following to distinguish b
tween photons emitted from the initial-state fermions a
those emitted from the final-state fermions. The fou
momentum

X5p11p22(
j 51

n

kj5q11q21(
l 51

n8

kl8 ~1!

of thes-channel virtual bosonZ1g is then well defined. Let
us denote the rest frame ofX as XMS~theX zero momentum
system!.

A. Master formula

Denoting the Lorentz-invariant phase-space by

dnLips~P;p1 ,p2 , . . . ,pn!5)
j 51

n
d3pj

pj
0

d (4)S P2(
j 51

n

pj D ,

~2!

we define, for the processe2(p1)1e1(p2)→ f (q1)1 f̄ (q2)
1ng(kj )1n8g(kl8), theO(a r) total cross section:

.
r-

-

FIG. 2. The kinematics of the process with multiple phot
emission from the initial- and final-state fermions in the annihi
tion process.
9-3
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sEEX
(r ) 5 (

n50

`

(
n850

`
1

n!

1

n8!
E dn1n812Lips~p11p2 ;q1 ,q2 ,k1 . . . ,kn ,k18 . . . ,kn8

8 !rEEX
(r ) , r 50,1,2,3, ~3!

in terms of the fully differential multiphoton distribution

rEEX
(r ) ~p1 ,p2 ,q1 ,q2 ,k1 . . . ,kn ,k18 . . . ,kn8!

5exp@Ye~V I ;p1 ,p2!1Yf~VF ;q1 ,q2!#)
j 51

n

S̃I~kj !Q̄~V I ;kj !)
l 51

n8

S̃F~kl8!Q̄~VF ;kl8!H b̄0
(r )~X,p1 ,p2 ,q1 ,q2!

1(
j 51

n b̄1I
(r )~X,p1 ,p2 ,q1 ,q2 ,kj !

S̃I~kj !
1(

l 51

n8 b̄1F
(r )~X,p1 ,p2 ,q1 ,q2 ,kl8!

S̃F~kl8!
1 (

n> j .k>1

b̄2II
(r ) ~X,p1 ,p2 ,q1 ,q2 ,kj ,kk!

S̃I~kj !S̃I~kk!

1 (
n8> l .m>1

b̄2FF
(r ) ~X,p1 ,p2 ,q1 ,q2 ,kl8 ,km8 !

S̃F~kl8!S̃F~km8 !
1(

j 51

n

(
l 51

n8 b̄2IF
(r ) ~X,p1 ,p2 ,q1 ,q2 ,kj ,kl8!

S̃I~kj !S̃F~kl8!

1 (
n> j .k. l>1

b̄3III
(r ) ~X,p1 ,p2 ,q1 ,q2 ,kj ,kk ,kl !

S̃I~kj !S̃I~kk!S̃I~kl !
J . ~4!
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Let us explain the notation and physics content in the ab
expression. The YFS soft factors for real photons emit
from the initial- and final-state fermions read

S̃I~kj !52Qe
2 a

4p2 S p1

kj p1
2

p2

kj p2
D 2

,

S̃F~kl8!52Qf
2 a

4p2 S q1

kl8q1
2

q2

kl8q2
D 2

, ~5!

where the electric charges of the electron and fermionf are
Qe and Qf . The Y function in the exponential YFS form
factor is defined as in Ref.@6#:

Yf~V,p,p̄!

[2Qf
2aB̃~V,p,p̄!12Qf

2aRB~p,p̄!

[22Qf
2a

1

8p2E d3k

k0
Q~V;k!S p

kp
2

p̄

kp̄
D 2

12Qf
2aRE d4k

k2

i

~2p!3 S 2p2k

kp2k2
2

2p̄2k

2kp̄2k2D 2

.

~6!

The above form factor is IR finite and depends explicitly
the soft-photon domainsV5V I ,VF , which include ~sur-
round! the IR divergence pointk50. We defineQ(V;k)
51 for kPV andQ(V;k)50 for kP” V. Contributions from
the real photons insideV are summed to infinite order an
combined with the analogous virtual contributions, formi
the exponential YFS form factor. In the Monte Carlo calc
lation we generate photonskP” V characterized by the func
11300
e
d

-

tion Q̄(V,k)512Q(V,k). We require, as usual, thatV I
and VF be small enough~they can be chosen arbitraril
small! for the total cross section, as defined in Eq.~4!, and
any other physically meaningful observable not to depend
how we choose them; in other words, we require thatV I ,F be
dummy parameters in the calculation. If we neglect t
initial-final state interference, then we may chooseV I
ÞVF . Let us defineV I with the k0,Emin condition in the
center-of-mass system of the incominge6 beams andVF

with k0,Emin8 in the center of mass of the outgoing fermio

f f̄ . The two domains differ because the Lorentz frames
which they are defined are different. The above choice is
easiest for the Monte Carlo generation, but in the later d
cussion we shall describe in detail how we implement
V I5VF option in our Monte Carlo calculation. The actu
YFS form factors for the above choices are well know
@6–8#:

Ye~V I ;p1 ,p2!5ge ln
2Emin

A2p1p2

1
1

4
ge1Qe

2 a

p S 2
1

2
1

p2

3 D ,

Yf~VF ;q1 ,q2!5g f ln
2Emin

A2q1q2

1
1

4
g f1Qf

2 a

p S 2
1

2
1

p2

3 D ,

~7!

where

g5ge52Qe
2 a

pS ln
2p1p2

me
2 21D ,

g f52Qf
2 a

p S ln
2q1q2

mf
2 21D . ~8!
9-4
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B. Pure virtual corrections

The perturbative QED matrix element is located in theb̄

functions. Theb̄0 function is ‘‘proportional’’ to the Born
e2e1→ f f̄ differential cross sectiondsBorn(s,q)/dV and it
contains~IR-finite! corrections calculable order by order. A
cording to our general strategy we shall calculateb̄0 and
other b̄ ’s in the O(a i)prag , i 50,1,2.

The O(a i)prag expressions forb̄0
( i ) ,i 50,1,2, read1

b̄0
(r )~X,p1 ,p2 ,q1 ,q2!5~11d I

(r )!~11dF
(r )!

3
1

4 (
k,l 51,2

dsBorn

dV
~X2,qkl!, ~9!

d I
(0)50, d I

(1)5
1

2
g, d I

(2)5d I
(1)1

1

8
g2,

d I
(3)5d I

(2)1
1

48
g3, ~10!

dF
(0)50, dF

(1)5
1

2
g f , dF

(2)5dF
(1)1

1

8
g f

2 ,

dF
(3)5dF

(2)1
1

48
g f

3 , ~11!

where

q115/~pW 1 ,qW 1!, q125/~pW 1 ,2qW 2!,

q215/~2pW 2 ,qW 1!, q225/~2pW 2 ,2qW 2!, ~12!

with all three-vectors taken in the rest frame of the fo
momentumX, that is in the frame XMS.

Let us first explain why, instead of having a sing
dsBorn/dV(q) with a singleq, we take an average over fou
qkl . In fact we could adopt oneq, for exampleq05/(pW 1

2pW 2 ,qW 12qW 2) where all three-momenta are taken in XM
The main reason for our apparently more complicated cho
is related to the implementation of the first- and higher-or
real photon contributions in the next subsections. More p
cisely, it is well known@15,16# that the exact single-photo
ISR matrix element can be cast as a linear combination of
two dsBorn/dV(qk),k51,2, distributions. The same is tru
for the FSR @16#. ~Our implementation of the LL matrix
element for two and three real photons will also involve t
linear combination of this type.! It is therefore logical and
practical to use a similar solution already forb̄0. One should
also keep in mind that in the soft limit, when all photons a
soft, then all four anglesqkl are identical and averaging ove
them is a spurious operation anyway.

1It may look as though we miss a pure (a/p) term in d I ,F
(1) . The

calculation shows@6# that such a nonlogarithmic contribution
accidentally equal to zero.
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The reader who is not familiar with exponentiation m
have an even more elementary question: Why do we h
the freedom of definingq in dsBorn/dV(q) in the first
place? Is this ambiguity dangerous? These questions ar
ready discussed in Refs.@7,11#. The answer is the following:
strictly speaking, the differential cross sectio
dsBorn(s,q)/dV and b̄0

( i ) are defined within the two-body
phase-space. Later on they are used, however, in Eq.~4! and
in the definitions ofb̄ ( i ),i 51,2, . . . , allover the phase-spac
with additional soft and/or hard photons. This requires so
kind of extrapolation ofb̄0 anddsBorn(s,q)/dV beyond the
two-body phase-space. In Ref.@7#, this extrapolation was
done by manipulating the four-momenta and, in Ref.@11#, it
was done as an extrapolation in the Mandelstam varia
s,t,u. Here we present another solution, which is somewh
in between the previous two. What is really important, ho
ever, is that the effect due to changing from one particu
choice of extrapolation to another is always, for the ent
calculation, a kind of ‘‘higher-order effect.’’ For instance,
the O(a1) changing the type of extrapolation is anO(a2)
effect. Of course, it is always wise to use some kind
‘‘smooth’’ extrapolation, which is able to minimize th
higher-order effects.

Another possible question is: Why did we not write dow
the second-order virtual correction factor in anadditiveway,
such as (11d I

(2)1dF
(2)1d I

(1)dF
(1))? We have opted for the

factorizedform because it is generally known that the fa
torized form is closer to reality at higher perturbative orde
Another important reason is that the factorized form is ea
for the semianalytical integrations over the phase-space,
the discussion in Sec. V.

C. One real photon with virtual corrections

The contributionsb̄1
(2) are needed directly in Eq.~4! and

theO(a1)prag version ofb̄1
(2) enters indirectly as a construc

tion element inb̄2. They are constructed from the QED di
tributions with a single real-photon emission and up to o
virtual-photon contribution. They are defined separately
the initial- and final-state photons:

b̄1I
( i )~X,p1 ,p2 ,q1 ,q2 ,kj !5D1I

( i )~X,p1 ,p2 ,q1 ,q2 ,kj !

2S̃I~kj !b̄0
( i 21)~X,p1 ,p2 ,q1 ,q2!,

~13!

b̄1F
( i ) ~X,p1 ,p2 ,q1 ,q2 ,kl8!5D1F

( i ) ~X,p1 ,p2 ,q1 ,q2 ,kl8!

2S̃F~kl8!b̄0
( i 21)~X,p1 ,p2 ,q1 ,q2!,

where i 51,2. Let us first define all the ingredients for th
initial-state contribution. The single initial-state photon em
sion differential distribution at theO(a r), r 51,2,3, with the
eventual additional, up to two-loop virtual correction, fro
the initial- and/or final-state photon reads
9-5
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D1I
(r )~X,p1 ,p2 ,q1 ,q2 ,kj !

5Qe
2 a

4p2

2p1p2

~kj p1!~kj p2!
We~ â j ,b̂ j !

3H ~12â j !
2

2 (
r 51,2

dsBorn

dV
~X2,q1r !

1
~12b̂ j !

2

2 (
r 51,2

dsBorn

dV
~X2,q2r !J

3@11D I
(r 21)~zj !#~11dF

(r 21)!, ~14!

where

â j5
kj p2

p1p2
, b̂ j5

kj p1

p1p2
, zj5~12â j !~12b̂ j !,

D I
(0)~z![0, D I

(1)~z![
1

2
g2

1

4
g ln~z!, ~15!

D I
(2)~z![D I

(1)~z!1
1

8
g22

1

8
g2ln~z!1

1

24
g2ln2~z!,

We~a,b![12
me

2

2p1p2

~12a!~12b!

~12a!21~12b!2S a

b
1

b

aD .

Again the question arises as to why is the averaging overr in
qkr introduced? In the case of just one ISR hard photon
averaging trivially disappears becauseqk15qk2; our for-
mula then coincides with the exactO(a1) result, see@15,17#,
as it should. In the less trivial case of the presence of a
tional hard photons, there is an ambiguity in definingD1I

(r )

which is reflected in our ‘‘averaging’’ procedure; however,
is harmless, i.e., the effect is ofO(a2).

It is necessary and interesting to check the soft limit.
the presence of many additional photons (n.1), if we take
the soft limit kj→0, keeping the momenta of the other ph
tons constant, thenqkr are in general all different. Howeve
in Eq. ~14! the sums overdsBorn/dV combine into a simple
average over all four angles, as in Eq.~9!; in fact the single
photon distribution reduces to

D1I
(2,1)~X,p1 ,p2 ,q1 ,q2 ,kj !;S̃I~kj !b̄0

(1,0)~X,p1 ,p2 ,q1 ,q2!

and thereforeb̄1I
(2,1)(X,p1 ,p2 ,q1 ,q2 ,kj ) is IR finite as re-

quired. The above argument shows that the extrapolation
b̄0 and b̄1 have to be of the same type. If we had opted
another extrapolation in Eq.~14!, for example without aver-
aging, with a single angleqkr→qk , then the extrapolation
in Eq. ~9! would need to be changed appropriately.

Another interesting limit is the collinear limit. If all of the
~possibly hard! photons are collinear to the initial or fina
fermions, then all of the anglesqsr ,s,r 51,2, are identical
and equal to the familiar LL effective scattering angle for t
hard process in the ‘‘reduced frame’’ XMS. This will facili
tate the introduction of the higher-order LL corrections in t
following.
11300
e
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Another remark on Eq.~14! is in order: there are many
equivalent ways, modulo a term ofO(m2/s), of writing the
single-bremsstrahlung spin-summed differential distribut
@17#. Our choice follows the representation implemented
the Monte Carlo programsYFS2 @7#, KORALZ @10#, and
MUSTRAAL @16#, because it minimizes the machine roundi
errors~which are quite important in view of the smallness
the electron mass!, and it is explicitly expressed in terms o
the Born differential cross sections: this feature facilitates
introduction of electroweak corrections.

The virtual correction@11D I
(1)(â j ,b̂ j )# is taken in the

LL approximation @sufficient for ourO(a2)prag approach#
and it agrees with the corresponding distribution in Ref.@18#.
In the kj→0 limit we haveD I

(1)(â j ,b̂ j )→d I
(1) as expected,

and as required for the infrared finiteness ofb̄1F
(2) . The other

factor (11dF
(1)) represents the contribution from the simu

taneous emission of the real initial and the virtual final ph
tons. We again prefer the factorized form over an addit
one (11D I

(1)1dF
(1)).

The essential ingredients for theO(a r) final stateb̄1F
(r ) ,r

51,2, is the single final-state photon-emission matrix e
ment, with up to one-loop virtual initial- or final-state photo
corrections:

D1F
(r )~X,p1 ,p2 ,q1 ,q2 ,kl8!

5Qf
2 a

4p2

2q1q2

~kl8q1!~kl8q2!
Wf~ ĥ l ,ẑ l !

3H ~12ĥ l !
2

2 (
r 51,2

dsBorn

dV
~X2,q r1!

1
~12 ẑ l !

2

2 (
r 51,2

dsBorn

dV
~X2,q r2!J

3@11DF
(r 21)~zl !#~11d I

(r 21)!, ~16!

where

h l5
kl8q2

q1q2
, z l5

kl8q1

q1q2
, ĥ l5

h l

11h l1z l
,

ẑ l5
z l

11h l1z l
, zl5~12ĥ l !~12 ẑ l ! ~17!

DF
(0)~z![0, DF

(1)~z![
1

2
g f1

1

4
g f ln~z!.

Wf~a,b![12
mf

2

2q1q2

~12a!~12b!

~12a!21~12b!2S a

b
1

b

aD .

Any discussion on the ISR distribution of Eq.~14! also ap-
plies to the above FSR distribution.
9-6



i-

F
bu

fer-

ia-

lung
-
ch
e
x-
st,

le-

ad
e

ads

COHERENT EXCLUSIVE EXPONENTIATION FOR . . . PHYSICAL REVIEW D 63 113009
D. Two real photons with virtual corrections

The contributionsb̄2II
(2) , b̄2FF

(2) , andb̄2IF
(2) are related to the

emission of real photons, two initial, two final, and one in
tial and one final, respectively. They are genuineO(a2) ob-
jects because they appear in this order for the first time.
the same reason they do not include any virtual contri
tions. They are defined formally in the usual way:

b̄2II
(r ) ~X,p1 ,p2 ,q1 ,q2 ,kj ,kk!

5D2II
(r ) ~X,p1 ,p2 ,q1 ,q2 ,kj ,kk!

2S̃I~kj !b̄1I
(r 21)~X,p1 ,p2 ,q1 ,q2 ,kk!

2S̃I~kk!b̄1I
(r 21)~X,p1 ,p2 ,q1 ,q2 ,kj !

2S̃I~kj !S̃I~kk!b̄0
(r 22)~X,p1 ,p2 ,q1 ,q2!, r 52,3,

~18!

b̄2FF
(r ) ~X,p1 ,p2 ,q1 ,q2 ,kl8 ,km8 !

5D2FF
(r ) ~X,p1 ,p2 ,q1 ,q2 ,kl8 ,km8 !

2S̃F~kl8!b̄1F
(r 21)~X,p1 ,p2 ,q1 ,q2 ,km8 !

2S̃F~km8 !b̄1F
(r 21)~X,p1 ,p2 ,q1 ,q2 ,kl8!

2S̃F~kl8!S̃F~km8 !b̄0
(r 22)~X,p1 ,p2 ,q1 ,q2!, r 52,3,

~19!
11300
or
-

b̄2IF
(r ) ~X,p1 ,p2 ,q1 ,q2 ,kj ,kl8!

5D2IF
(r ) ~X,p1 ,p2 ,q1 ,q2 ,kj ,kl8!

2S̃I~kj !b̄1F
(r 21)~X,p1 ,p2 ,q1 ,q2 ,kl8!

2S̃F~kl8!b̄1I
(r 21)~X,p1 ,p2 ,q1 ,q2 ,kj !

2S̃I~kj !S̃F~kl8!b̄0
~r 22!~X,p1 ,p2 ,q1 ,q2!, r 52,3.

~20!

The new objects in the above expressions are the dif
ential distributionsD2II

(2) , D2FF
(2) , andD2IF

(2) for double brems-
strahlung. They are not taken directly from Feynman d
grams but they areconstructedin such a way that if one
photon is hard and one is soft, then the single bremsstrah
expressions of Eqs.~14! and~16! are recovered, if both pho
tons are hard and collinear, then the proper LL limit, whi
we know from the double or triple convolution of th
Altarelli-Parisi kernels, is also recovered. The resulting e
pressions are rather compact and the LL limit is manife
which is not necessarily true for the exact doub
bremsstrahlung spin amplitudes~see next section!. The
method is similar to that of Refs.@7,12#. In the case of ISR,
we shall also include the one-loop virtual corrections re
from the triple convolution of the Altarelli-Parisi kernels, se
Ref. @12#.

Our construction in the case of the double real ISR re
as follows:
D2II
(2)~X,p1 ,p2 ,q1 ,q2 ,k1 ,k2![Qe

4 a

4p2

2p1p2

~k1p1!~k1p2!

a

4p2

2p1p2

~k2p1!~k2p2!
We~ â1 ,b̂1!We~ â2 ,b̂2!

3H Q~v12v2!@11D II
(r 21)~z1 ,z12!#~11dF

(r 21)!Fx2~ â1 ;â28 ,b̂28! (
r 51,2

dsBorn

dV
~X2,q1r !

1x2~ b̂1 ;â28 ,b̂28! (
r 51,2

dsBorn

dV
~X2,q2r !G1Q~v22v1!@11D II

(r 21)~z2 ,z21!#~11dF
(r 21)!

3Fx2~ â2 ;â18 ,b̂18! (
r 51,2

dsBorn

dV
~X2,q1r !1x2~ b̂2 ;â18 ,b̂18! (

r 51,2

dsBorn

dV
~X2,q2r !G J , ~21!
.

ine
-

where

â185
â1

12â2

, â285
â2

12â1

, b̂185
b̂1

12b̂2

, b̂285
b̂2

12b̂1

,

~22!

v i5â i1b̂ i , zi5~12â i !~12b̂ i !,

zi j 5~12â i2â j !~12b̂ i2b̂ j !,
x2~u;a,b![
1

4
~12u!2@~12a!21~12b!2#,

D II
(0)50, D II

(1)~zi ,zi j !5
1

2
g2

1

6
g ln~zi !2

1

6
g ln~zi j !.

The variablesâ i ,b̂ i for the i th photon are defined as in Eq
~14!.

In order to understand our construction, let us exam
how the LL collinear limit is realized in the exact single
bremsstrahlung matrix element of Eq.~14!. If the photon
9-7
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carrying the fractionx1 of the beam energy is collinear, let u
say, with p1, then â1;x, b̂1;0, all four angles are the
sameqsr→q* and we immediately recover the correct L
formula

1

2
~12â1!2 (

r 51,2

dsBorn

dV
~q1r !

1
1

2
~12b̂1!2 (

r 51,2

dsBorn

dV
~q2r !

→ 1

2
@11~12x!2#

dsBorn

dV
~q* !.

It is therefore natural to employ for the double emission
angular-dependentAltarelli-Parisi ~AP! factors of the kind

1

2
@~12â2!21~12b̂2!2#

1

2
@~12â1!21~12b̂1!2#.

The above formula is too simple, however, to reproduce c
rectly the result of the double convolution of the AP kern
in the case when both photons are collinear with the sa
fermion

1

2
@11~12x1!2#

1

2
„11$12@x2 /~12x1!#} 2

…

dsBorn

dV
~q* !,

where x285x2 /(12x1) reflects the loss of energy in th
emission cascade due to the emission ofk1. In order to
match the above cascade limit, we construct a better ang
dependent AP factor as

1

2
@~12â1!21~12b̂1!2#

1

2
@~12â28!21~12b̂28!2#.

The above fulfills both types of the LL collinear limit, whe
two photons are collinear with a single beam or each of th
11300
e

r-

e

ar-

m

follows a different beam. Finally, let us reproduce the lim
in which one photon, let us say the first, is hard and
other, the second, is soft,v25â21b̂2→0. In this case it is
logical to split the above double-bremsstrahlung angu
dependent AP factor into two pieces

x2~ â1 ;â28 ,b̂28!5
1

2
~12â1!2

1

2
@~12â28!21~12b̂28!2#,

x2~ b̂1 ;â28 ,b̂28!5
1

2
~12b̂1!2

1

2
@~12â28!21~12b̂28!2#,

and associate each one with the correspondingdsBorn/dV,
following Eq. ~14!. The order in the cascade does not matt
We simply symmetrize over the two orderings in th
cascade—it is essentially a Bose-Einstein symmetrizatio

The above construction clearly provides the correct lim
D2II

(2)(k1 ,k2)→S̃(k2)D1I
(1)(k2) for v15const andv2→0. As a

consequenceb̄ II
(2)(X,p1 ,p2 ,q1 ,q2 ,k1 ,k2) is finite in the

limit of one or both photon momenta tending to zero.
The construction of Eq.~21! will be inadequate if both

photons are hard and at least one has high transverse
mentum. It reflects the fact that we do not control fully
EEX the second-order next-to-leading logarithmic~NLL !,
O(a2L), contributions. However, we have known for a lon
time that a construction of the type of Eq.~21! agrees rather
well with the exact double-bremsstrahlung matrix elem
calculated using spinor techniques, see@19#. When both pho-
tons have high transverse momenta, there is only about 2
disagreement between the approximate and exact results~in-
tegrated over the double-photon phase-space!. This result is
confirmed in the present work by the numerical comparis
of EEX and CEEX, where the double-bremsstrahlung ma
element is exact.

The double final-state bremsstrahlung distribution
defined/constructed in an analogous way:
D2FF
(r ) ~X,p1 ,p2 ,q1 ,q2 ,k18 ,k28!5Qf

4 a

4p2

2q1p2

~k18q1!~k18p2!

a

4p2

2q1p2

~k28q1!~k28p2!
Wf~ ĥ1 ,ẑ1!Wf~ ĥ2 ,ẑ2!H Q~v182v28!

3Fx2~h1 ;h28 ,z28! (
r 51,2

dsBorn

dV
~X2,q1r !1x2~z1 ;h28 ,z28! (

r 51,2

dsBorn

dV
~X2,q2r !G

1Q~v282v18!Fx2~h2 ;h18 ,z18! (
r 51,2

dsBorn

dV
~X2,q1r !1x2~z2 ;h18 ,z18! (

r 51,2

dsBorn

dV
~X2,q2r !G J

3@11D I
(r 21)~zj !#, ~23!
e
the
e
R to
where

h185
h1

11h2
, h285

h2

11h1
, z185

z1

11z2
, z285

z2

11z1
.

~24!
The definition of the ‘‘primed’’ Sudakov variables is don
here in a way different from that in the ISR case, because
fermion momentaq1,2 get affected by photon emission. Th
virtual corrections are absent because we restrict the FS
O(a2)LL . The above expression is tagged withr 52,3 for
9-8
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O(a r); however, we implement the FSR essentially only inO(a2), and the only correction inO(a3) is the ISR one-loop
correction.

The distribution for one photon from the initial-state and one photon from the final-state atO(a r), r 51,2, we construct as
follows:

D2IF
(r ) ~X,p1 ,p2 ,q1 ,q2 ,kj ,kl8!5Qe

2 a

4p2

2p1p2

~kj p1!~kj p2!
We~ â j ,b̂ j !Qf

2 a

4p2

2q1q2

~kl8q1!~kl8q2!
Wf~ ĥ l ,ẑ l !

3H ~12â j !
2

2

~12ĥ l !
2

2

dsBorn

dV
~X2,q11!1

~12â j !
2

2

~12 ẑ l !
2

2

dsBorn

dV
~X2,q12!

1
~12b̂ j !

2

2

~12ĥ l !
2

2

dsBorn

dV
~X2,q21!1

~12b̂ j !
2

2

~12 ẑ l !
2

2

dsBorn

dV
~X2,q22!J

3@11D I
(r 21)~z1!#@11DF

(r 21)~z28!#, ~25!

where the variablesâ j ,b̂ j ,ĥ l ,ẑ l and the other components are defined as in Eqs.~14! and~16!. The above construction is in
fact the easiest, because two photons cannot be emitted in a cascade from one line and we fully exploit the four s
angles in the Born differential cross sections. It is trivial to check that all soft and collinear limits are correct.

E. Three real photons

The differential distribution for three real ISR photons is essentially obtained by the triple convolution of the AP kern
each beam separately; the two results are combined with the help of an additional convolution. This exercise was don
collinear subgenerator ofBHLUMI @12# and we exploit these results here. Even though the collinear limit is of prim
importance, we have to be very careful, in the construction of the fully differential triple-photon distribution, to prese
soft limits: when all three photons are soft, when two of them are soft, and when only one of them is soft. In these lim
three-photon differential distribution has to reproduce smoothly the previously defined Born, single-, and d
bremsstrahlung distributions times the appropriate soft factor~s!. Otherwise we may have a problem with the IR finiteness

b̄3III
(3) ~X,pi ,qj ,k1 ,k2 ,k3!5D3III

(3) ~X,pi ,qj ,k1 ,k2 ,k3!2S̃I~k1!b̄2II
(2)~X,pi ,qj ,k2 ,k3!2S̃I~k2!b̄2II

(2)~X,pi ,qj ,k1 ,k3!

2S̃I~k3!b̄2II
(2)~X,pi ,qj ,k1 ,k2!2S̃I~k1!S̃I~k2!b̄1I

(1)~X,pi ,qj ,k3!2S̃I~k3!S̃I~k1!b̄1I
(1)~X,pi ,qj ,k2!

2S̃I~k2!S̃I~k3!b̄1I
(1)~X,pi ,qj ,k1!2S̃I~k1!S̃I~k2!S̃I~k3!b̄0

(0)~X,pi ,qj !. ~26!

It is therefore not completely straightforward to turn the strictly collinear expression for the three real-photon distribut
Ref. @12# into the fully differential~finite-pT) triple-photon distribution that we need. As in the case of the double real ISR
guiding principle is that~i! the hardest photon decides which of the angles is used indsBorn/dV(X2,q lr ) and~ii ! we have to
perform Bose symmetrization, that is, to sum over all orderings in a cascade emission of several photons from one b
three real photons there are no virtual corrections.

Our construction in the case of the triple real ISR reads as follows:

D3III
(3) ~X,p1 ,p2 ,q1 ,q2 ,k1 ,k2 ,k3![ )

l 51,3
Qe

2 a

4p2

2p1p2

~klp1!~klp2!
We~ â l ,b̂ l !

3H Q~v12v2!Q~v22v3!Fx3~ â1 ;â28 ,b̂28 ,â39 ,b̂39! (
r 51,2

dsBorn

dV
~X2,q1r !

1x3~ b̂1 ;â28 ,b̂28 ,â39 ,b̂39! (
r 51,2

dsBorn

dV
~X2,q2r !G

1remaining five permutations of~1,2,3!J , ~27!

where
113009-9
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x3~u1 ;a2 ,b2 ,a3 ,b3![
1

8
~12u1!2@~12a2!21~12b2!2#

3@~12a3!21~12b3!2#,

â395
â3

12â12â2

, b̂395
b̂3

12b̂12b̂2

.

~28!

In most cases, such an approach should be suffici
however, in some special cases with two hard photons
plicitly tagged, it may not be so. We have programmed a
run special tests~unpublished! relying on ISR amplitudes
with up to three hard photons@20#, constructed with method
similar to those in Ref.@21#, in order to get additional con
fidence in the approximate real emission distributions p
sented in this section.

III. AMPLITUDES FOR COHERENT EXCLUSIVE
EXPONENTIATION

The coherent exclusive exponentiation was introduced
the first time in Ref.@3#. It is deeply rooted in the YFS
exponentiation@8#. It applies in particular to processes wi
narrow resonances, where it is related also to the work
Grecoet al. @22,23#. The exponentiation procedure, that is
reorganization of the QED perturbative series such that
IR divergences are summed up to infinite order, is done
the spin-amplitude level for both real and virtual IR sing
larities. This is to be contrasted with traditional YFS exp
nentiation, on which our EEX is based, where isolating
real IR divergences is done for squared spin-summed s
amplitudes, that is, for differential distributions and spin de
sity matrices.2

Our calculations of the spin amplitudes for fermion-p
production in electron-positron scattering is done with
help of the powerful Weyl spinor~WS! techniques. There ar
several variants of the WS techniques. We have opted for
method of Kleiss and Stirling~KS! @24,25#, which we found
the best suited for our CEEX. In Ref.@2# the KS spinor
technique for massless and massive fermions was revie
and appended with the rules for controlling their comp
phases or, equivalently, the fermion rest frame~all three
axes! in which the fermion spin is quantized—this is a cri
cal point if we want to control fully the spin density matr
of the fermions. We call the global positioning of spin~GPS!
frame this fermion rest frame and the rule for finding it w
call the GPS rule. For the sake of completeness, we inc
the definitions of the KS spinors, photon polarization ve
tors, and our GPS rules in the Appendix.

The very interesting feature of CEEX is that, although
is formulated entirely in terms of the spin amplitudes, the
cancellations in CEEX occur for the integrated cross secti
~probabilities!, as usual; in practice they are realizednumeri-

2The realization of EEX for spin density matrices is an obvio
generalization of the EEX/YFS exponentiation which, howev
was never fully implemented in practice.
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cally. There is no contradiction in the above statement.
order to avoid any confusion on this point, we shall provi
a new detailed proof of the IR cancellations in the CEE
scheme in one of the following subsections.

A. Master formula

Defining the Lorentz-invariant phase-space as

E d Lipsn~P;p1 ,p2 , . . . ,pn!

5E ~2p!4dS P2(
i 51

n

pi D)
i 51

n
d3p

~2p!32pi
0

, ~29!

we write the CEEX total cross section for the process

e2~pa!1e1~pb!→ f ~pc!1 f̄ ~pd!1g~k1!1g~k2!1•••

1g~kn!, n50,1,2, . . . ,̀ ~30!

with polarized beams and decays of unstable final fermi
sensitive to fermion spin polarizations, following Ref.@3#, as
follows:

s (r )5
1

flux~s! (
n50

`

3E d Lipsn12~pa1pb ;pc ,pd ,k1 , . . . ,kn!

3rCEEX
(r ) ~pa ,pb ,pc ,pd ,k1 , . . . ,kn!, ~31!

where, in the CMS~center of mass! flux(s)52s1O(me
2),

rCEEX
(r ) ~pa ,pb ,pc ,pd ,k1 ,k2 , . . . ,kn!

5
1

n!
exp@Y~V;pa , . . . ,pd!#Q̄~V!

3 (
s i561

(
l i ,l̄ i561

(
i , j ,l ,m50

3

«̂a
i «̂b

j slal̄a

i
slbl̄b

j

3Mn
(r )S pk1k2

ls1s2
•••

kn

sn
D FMn

(r )S pk1k2

l̄s1s2
•••

kn

sn
D G*

3sl̄clc

l
sl̄dld

m
ĥc

l ĥd
m , ~32!

and assuming the domination of thes-channel exchanges
including resonances, we define the complete set of spin
plitudes for the emission ofn photons, inO(a r)CEEX, r
50,1,2, as follows:

Mn
(0)S pk1

ls1
•••

kn

sn
D5 (

`P$I ,F%n
)
i 51

n

s[ i ]
$` i %b̂0

(0)S p

l
;X`D ,

~33!
,
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Mn
(1)S pk1

ls1
•••

kn

sn
D5 (

`P$I ,F%n
)
i 51

n

s[ i ]
$` i %H b̂0

(1)S p

l
;X`D

1(
j 51

n b̂1$` j %
(1) S pkj

ls j
;X`D

s[ j ]
$` j %

J , ~34!

Mn
(2)S pk1

ls1
•••

kn

sn
D5 (

`P$I ,F%n
)
i 51

n

s[ i ]
$` i %H b̂0

(2)S p

l
;X`D

1(
j 51

n b̂1$` j %
(2) S pkj

ls j
;X`D

s[ j ]
$` j %

1 (
1< j , l<n

b̂2$` j ` l %
(2) S pkjkl

ls js l
;X`D

s[ j ]
$` j %s[ l ]

(` l )
J .

~35!

In the following subsections we shall explain all of the ba
notations, then in the next section we shall discuss in de
the IR structure in CEEX, effectively deriving all of th
above formulas. AtO(a r) we have to provide the function
b̂k

(r ) ,k50,1, . . . ,r , from the Feynman diagrams, which a
IR finite by construction@8#. Their actual precise definition
will be given in the following. We shall define/calculat
them explicitly up toO(a2).

1. Spin notation

In order to shorten our many formulas, we use a comp
collective notation:

S p

l D5S papbpcpd

lalblcld
D

for fermion four-momentapA ,A5a,b,c,d ~i.e., p15pa ,
p25pb , q15pc , q25pd) and helicitieslA ,A5a,b,c,d.
For k51,2,3,sk are the Pauli matrices andsl,m

0 5dl,m is the

unit matrix. The components«̂1
j ,«̂2

k , where j ,k51,2,3, are
the components of the conventional spin-polarization vec
of thee2 ande1, respectively, defined in the so-called GP
fermion rest frames~see the Appendix and Ref.@2# for the
exact definition of these frames!. We define«̂A

051 in a non-

standard way~i.e., pA• «̂A5me ,A5a,b). The polarimeter

vectorsĥC are similarly defined in the appropriate GPS re
frames of the final unstable fermions (pC•ĥC5mf ,C
5c,d). Note that, in general,ĥC may depend in a nontrivia
way on the momenta of all decay products, see Refs.@2,26–
28# for more details. We did not introduce polarimeter ve
tors for the bremsstrahlung photons, i.e., we take advan
11300
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of the fact that luckily all high-energy experiments are co
pletely blind to photon-spin polarizations.

2. IR regulators and the YFS form factor

Here we introduce and explain our notation for the
integration limits for the real photons in Eqs.~31! and ~32!

and in the following sections. In general, the factorQ̄(V) in
Eq. ~31! defines the IR integration limits for all real photon
More precisely for a single photon,V is the domain sur-
rounding the IR divergence pointk50, which is in factex-
cludedfrom the MC phase-space. In CEEX there is no re
distinction between ISR and FSR photons, andV is therefore
necessarily the same for all photons. We define a charac
istic function Q(V,k) of the IR domainV as Q(V,k)51
for kPV andQ(V,k)50 for kP” V. The characteristic func-
tion for the part of the phase-spaceincludedin the MC inte-
gration for a single real photon isQ̄(V,k)512Q(V,k).
The analogous characteristic function forall real photons is,
of course, the following product:

Q̄~V!5)
i 51

n

Q̄~V,k!. ~36!

In the present calculation corresponding to theKK Monte
Carlo program we opt forV defined traditionally with the
photon-energy cut conditionk0,Emin .

The YFS form factor@8# for V defined with the condition
k0,Emin reads

Y~V;pa , . . . ,pd!5Qe
2YV~pa ,pb!1Qf

2YV~pc ,pd!

1QeQfYV~pa ,pc!1QeQfYV~pb ,pd!

2QeQfYV~pa ,pd!2QeQfYV~pb ,pc!,

~37!

where

YV~p,q![2aB̃~V,p,q!12aRB~p,q!

[22a
1

8p2E d3k

k0 Q~V;k!S p

kp
2

q

kqD 2

12aRE d4k

k2

i

~2p!3S 2p2k

2kp2k2 2
2q2k

2kq2k2D 2

~38!

is given analytically in terms of logarithms and Spence fun
tions. As we see, the above YFS form factor includes ter
due to the initial-final state interference. The above for
factor will be derived in the following. The additional con
tribution to the YFS form-factor due to the narrowZ reso-
nance will be discussed in detail separately.
9-11
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3. Partitions ands factors

The coherentsum is taken over the set$`%5$I ,F%n of all 2n partitions—the single partitioǹ is defined as a vecto
(`1 ,`2 , . . . ,̀ n) where` i5I for an ISR photon and̀ F5F for an FSR photon, see the analogous construction in R
@22,23#. The set of all partitions is explicitly the following:

$`%5$~ I ,I ,I , . . . ,I !,~F,I ,I , . . . ,I !,~ I ,F,I , . . . ,I !,~F,F,I , . . . ,I !, . . . ~F,F,F, . . . ,F !%.
v
o
al

n

-
m

sive
he

,

es,
rm

he

, and
The s-channel four-momentum in the~possibly! resonant
s-channel propagator isX`5pa1pb2(` i5Iki .

The soft ~eikonal! amplitude factorss[ i ]
{ v} ,v5I ,F, are

complex numbers, and they are defined as follows:

s[ i ]
$I %[ss i

$I %~ki !52eQe

bs~k,pa!

2kipa
1eQe

bs~ki ,pb!

2kipb
,

us[ i ]
$I %u252

e2Qe
2

2 S pa

kipa
2

pb

kipb
D 2

, ~39!

s[ i ]
$F%[ss i

$F%~ki !51eQf

bs~ki ,pc!

2kpc
2eQf

bs~ki ,pd!

2kipd
,

us[ i ]
$F%u252

e2Qf
2

2 S pc

kipc
2

pd

kipd
D 2

, ~40!

bs~k,p!5A2
ūs~k!p” us~z!

ū2s~k!us~z!
5A2A2zp

2zk
ss~k,p̂!; ~41!

see also the Appendix for more details. As indicated abo
the moduli squared of the CEEX soft factors coincide up t
normalization constant with the corresponding EEX re
photon soft factorsS̃(ki).

4. Born

The simplest IR-finiteb̂ function b̂0
(0) is just the Born

spin amplitude times a certain kinematical factor~see the
next subsection!:

b̂0
(0)Spl;XD5BS p

l
;XD X2

~pc1pd!2 . ~42!

The Born spin amplitudeB(l
p;X) is a basic building block in

the construction of all of our spin amplitudes, so let us defi
it at this point. The many equivalent notations forB will be
introduced for flexibility, in view of its role as a basic build
ing block in the calculation of the multi-bremsstrahlung a
11300
e,
a
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plitudes. Using the Feynman rules and our basic mas
spinors with the definite GPS helicities of the Appendix, t
Born spin amplitudes for3 the e2(pa)e1(pb)→ f (pc) f̄ (pd)
process are given by

BS p

l
;XD5BS papbpcpd

lalblcld
;XD5BF pbpa

lbla
GF pcpd

lcld
G~X!

5B[ba][ cd]~X!

5 ie2 (
B5g,Z

PB
mn~X!~Ge,m

B ! [ba]~Gf ,n
B ! [cd]HB

5 (
B5g,Z

B[ba][ cd]
B ~X!,

~Ge,m
B ! [ba][ v̄~pb ,lb!Ge,m

B u~pa ,la!,

~Gf ,m
B ! [cd][ū~pc ,lc!Gf ,m

B v~pd ,ld!, ~43!

Ge,m
B 5gm (

l56
vlgl

B,e ,

Gf ,m
B 5gm (

l56
vlgl

B, f , vl5
1

2
~11lg5!,

PB
mn~X!5

gmn

X22MB
21 iGBX2/MB

,

wheregl
B, f are the usual chiral (l511,215R,L) coupling

constants of the vector bosonB5g,Z to the fermionf in
units of the elementary chargee. If not specified otherwise
the ‘‘hook function’’ HB is trivial: Hg5HZ51. It will be
used to introduce special effects into Born spin amplitud
such as running coupling constants or an additional fo
factor due to a narrow resonance.

Spinor products are reorganized with the help of t
Chisholm identity, see Eq.~A11! in the Appendix, which
applies assuming that the electron spinors are massless
the inner product of Eq.~A8!:
B[ba][ cd]
B ~X!52ie2

dla ,2lb
@gla

B,eg2la

B, f Tlcla
Tlbld

8 1gla

B,egla

B, fUlclb
8 Ulald

#

X22MB
21 iGBX2/MB

, ~44!

3For the moment we requiref Þe.
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where

Tlcla
5ū~pc ,lc!u~pa ,la!5S~pc ,mc ,lc ,pa ,0,la!,

Tlbld
8 5 v̄~pb ,lb!v~pd ,ld!

5S~pb ,0,2lb ,pd ,2md ,2ld!,

Ulclb
8 5ū~pc ,lc!v~pb ,2lb!5S~pc ,mc ,lc ,pb ,0,lb!,

Ulald
5ū~pa ,2la!v~pd ,ld!

5S~pa ,0,2la ,pd ,2md ,2ld!. ~45!

Note that the use of the Chisholm identity is a techni
detail, which should not obscure the generality of our a
proach. What we need in practice isanynumerical method of
evaluation of the Born spin amplitudes defined in Eq.~43!,
and the Chisholm identity is just one possibility.

5. Off-space extrapolation

In Eq. ~31! the Born spin amplitudes are obviously us
for thepi which do not necessarily obeythe four-momentum
conservationpa1pb5pc1pd . In the exclusive exponentia
tion, this is natural and necessary because, in the presen
the bremsstrahlung photons, the relationX5pa1pb5pc
1pd may not hold. In Eq.~31! only the fermion momenta
enter as an argument of the Born spin amplitudes. The p
ton momenta play only an indirect role; they disturb the f
mion momenta through energy and momentum conserva
~this is sometimes referred to as a ‘‘recoil effect’’!. The natu-
ral questions are: Is this acceptable? Is this dangerous?
this be avoided? The clear answer is as follows: It is
unavoidable and natural feature of the exclusive exponen
tion that certain scattering matrix elements, originally d
fined within n-body phase-space, are in fact used in
phase-space with more particles. Let us call itoff-space ex-
trapolation, analogously to off-shell extrapolation.4 It surely
makes sense, and in principle it is not dangerous, provide
is done with a little bit of care.

A technical remark is in order: In the actual calculatio
of the multiphoton spin amplitudes, the fermion momentapi
in Eq. ~44! may be replaced, and occasionally will be r
placed, by the momentumk of one of the photons. This wil
be due to purely technical reasons~specific to the method o
calculating multiphoton spin amplitudes!. In such a case, the
spinor into whichk enters as an argument is always und
stood to be massless.

6. Pseudoflux factor

One demonstration of the ‘‘off-space extrapolation’’
the presence of the auxiliary factorX`

2/(pc1pd)2. In the
framework of CEEX, its presence is not really mandato

4In the off-shell case, particles do not obeyp25m2; here we also
modify the dimension of the phase-space.
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and it disappears in the ‘‘in-space’’ situationpa1pb5pc
1pd . In other words, this factor does not affect the s
limit; it really matters if at least one hard FSR photon
present. It is not related to narrow resonances, but rathe
the LL structure of the higher orders. Nevertheless, the ab
factor is useful, because it is already implicitly present in t
photon emission matrix element atO(a1) and at all higher
orders, as can be seen in the LL approximation. It is the
fore natural to include it at the early stage, already in
O(a0) exponentiation. If we do not include it at theO(a0),
then it will be included order by order anyway. However,
such a case, the convergence of perturbative expansion
deteriorate. As we shall see below, the introduction of
above factor will slightly complicate the higher-order exp
nentiation and construction of theb̂ functions, but the gain is
worth the effort. Furthermore, the above factor also has
ways been present in the ‘‘crude distribution’’ in our YFS
type Monte Carlo generators, see for instance Ref.@7#, so
that its presence also improves the variance of the
weight, especially forO(a0)CEEX.

B. IR structure in CEEX

Let us discuss in detail the origin of theO(a r)CEEX ex-
pressions of Eqs.~31! and~32! and the mechanism of the IR
cancellations. Our real starting point is the infinite-order p
turbative expression for the total cross section given by
standard quantum-mechanical expression of the type ‘‘m
trix element squared modulus times phase-space’’:

s (`)5 (
n50

`
1

n! E dtn~pa1pb ;pc ,pd ,k1 , . . . ,kn!

3
1

4 (
l,s i , . . . ,sn56

UMnS pk1k2•••kn

ls1s2•••sn
D U2

, ~46!

wheredtn is the respectiveng12 f Lorentz-invariant phase
space, andMn are the corresponding spin amplitudes. T
simplify the discussion we take the unpolarized case, with
narrow resonances.

1. IR virtual factorization to infinite order

According to the YFS fundamental factorization theore
@8#, all virtual IR corrections can be relocated into an exp
nential form factor5 order by order and in infinite order

M n
(`)5exp@aB4~pa ,pb ,pc ,pd!#Mn

(`) . ~47!

As the convergence of the perturbative series is questiona
the above equation is in practice treated as a symbolic
resentation of the order-by-order relation, which reads
O(a r),

5In the LL approximation it is, of course, the doubly-logarithm
Sudakov form factor.
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M n
(r )5(

l 50

r 2n
~aB4!r 2 l

~r 2 l !!
Mn

[ l 1n] ~n<r !, ~48!

where the indexl is the number of loops inMn
[ l 1n] . The

above identity is quite powerful because theMn
[ l 1n] are not

only free of thevirtual IR divergences, they are also unive
sal: they are the same in every perturbative orderr; for ex-
ample, for one photon, the one-loop~IR-subtracted! compo-
nentM1

(1) is the same in the fifth order and, let us say, in t
second order, where it appears for the first time. The ab
identity can also be reformulated as follows:

Mn
(r )5(

l 50

r 2n

Mn
[ l 1n]

5$exp@2aB4~pa ,pb ,pc ,pd!#M n
(r )%uO(ar ) , ~49!

where M n
(r ) has to be calculated from the Feynman d

grams in at least6 O(a r). The above steps are exactly th
same as in@8#.

The YFS form factorB4 for e2(pa)1e1(pb)→ f (pc)
1 f̄ (pd)1ng reads

aB4~pa ,pb ,pc ,pd!

5E d4k

k22mg
21 i e

i

~2p!3uJI~k!2JF~k!u2, ~50!

JI5eQe@ Ĵa~k!2 Ĵb~k!#,

JF5eQf@ Ĵc~k!2 Ĵd~k!#, Ĵf
m~k!5

2pf
m1km

k212k•pf1 i e
.

Using the identity ((kZkJk)
252( i .kZiZk(Ji2Jk)

2, valid
for (Zk50, whereZk is the charge or minus charge of th
particle in the initial or final state, respectively, we may c
~see Ref.@8#! B4 into a sum of the simpler dipole compo
nents

B4~pa ,pb ,pc ,pd!5Qe
2B2~pa ,pb!1Qf

2B2~pc ,pb!

1QeQfB2~pa ,pc!1QeQfB2~pb ,pd!

2QeQfB2~pa ,pd!2QeQfB2~pb ,pc!,

~51!

B2~pi ,pj ![E d4k

k22mg
21 i e

i

~2p!3

3@ Ĵ~pi ,k!2 Ĵ~pj ,k!#2. ~52!

6The use ofMn
(r 1m) at O(a (r 1m)), m.0, will yield the same

result, which is another way of stating the universality property
11300
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In the above we assume that IR singularities are regular
with a finite photon massmg that enters into all of theB2’s
and implicitly into thes factors ~and into the real photon
phase-space integrals, see the following discussion!.

2. IR real factorization to infinite order

The next step is the isolation of thereal IR singularities
and it is well worth elaborating on this point, because h
the CEEX method differs in essential details from the ori
nal YFS method@8#. We use again the results of the bas
analysis of the real IR singularities of Ref.@8#, the essential
difference being that we do not square the amplitud
immediately—it is done numerically at a later stage. T
validity of the whole basic analysis of the IR cancellations
Ref. @8# remains, however, useful because it is done in ter
of the currents

j f
m~k!5

2pf
m

2pf•k
, f 5a,b,c,d. ~53!

The above currents are simply related to ours factors:

ss
$I %~k!5const3Qe~ j a2 j b!•es~b!,

ss
$F%~k!5const3Qf~ j c2 j d!•es~b!. ~54!

It is important to remember that the whole structure of t
real IR divergences is entirely controlled by the squares
the currentsu j (k)u2, for j 5 j a2 j b or j 5 j c2 j d , indepen-
dently of whether we prefer to work with the amplitude
or their squares, because only the squaresu j (k)u2 are IR di-
vergent and the other contractions do not matter~as was
already stressed in Ref.@8#!. Similarly, if we express spin
amplitudes in terms ofs factors, only the squaresus(k)u2 are
IR divergent and not the interference terms such
R$s(k)(•••)* %.

Having the above in mind, we may proceed using t
results of Ref.@8# and we see that for instance the mo
IR-divergent part ofMn is proportional to the products ofn
s factors

MnS pk1k2•••kn

ls1s2•••sn
D;b̂0S p

l
;XD ss1

~k1!ss2
~k2!•••ssn

~kn!,

~55!

where the functionb̂0 is no longer IR divergent, and we
assumed for the moment the absence of any narrow r
nances, using the sum of the ISR and FSRs factors:7

ss~k![ss
$F%~k!1ss

$I %~k!. ~56!

However, there are also nonleading IR singularities. S
pressing inessential spin indices, the whole real-IR struc
is revealed in the following decomposition@8#:

7In the nonresonant case we may setX5pa1pb , for example.
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Mn
(`)~k1 ,k2 ,k3 , . . . ,kn!5b̂0)

s51

n

s~ks!1(
j 51

n

b̂1~kj !)
sÞ j

s~ks!1 (
j 1. j 2

b̂2~kj 1
,kj 2

! )
sÞ j 1 , j 2

s~ks!

1 (
j 1. j 2. j 3

b̂2~kj 1
,kj 2

,kj 3
! )
sÞ j 1 , j 2 , j 3

s~ks!1•••1(
j 51

n

b̂n21~k1 , . . .kj 21 ,kj 11 , . . . ,kn!s~kj !

1b̂n~k1 ,k2 ,k3 , . . . ,kn! ~57!

where the functionsb̂ i are IR free and include finite-loop corrections to infinite order. Let us stress that these functionsb̂ i are
genuinely new objects. They were not used and even not considered in Ref.@8#.

3. Finite-order b̂ ’s

The decomposition of Eq.~57! also has its order-by-order representation, which atO(a r), r 5n1 l , reads as follows:

Mn
(n1 l )~k1 ,k2 ,k3 , . . . ,kn!5b̂0

( l ))
s51

n

s~ks!1(
j 51

n

b̂1
(11 l )~kj !)

sÞ j
s~ks!1 (

j 1, j 2

b̂2
(21 l )~kj 1

,kj 2
! )
sÞ j 1 , j 2

s~ks!

1 (
j 1, j 2, j 3

b̂2
(31 l )~kj 1

,kj 2
,kj 3

! )
sÞ j 1 , j 2 , j 3

s~ks!1•••

1(
j 51

n

b̂n21
(n211 l )~k1 , . . .kj 21 ,kj 11 , . . . ,kn!s~kj !1b̂n

(n1 l )~k1 ,k2 ,k3 , . . . ,kn! ~58!

5)
s51

n

s~ks!H b̂0
( l )1(

j 51

n b̂1
(11 l )~kj !

s~kj !
1 (

j 1, j 2

b̂2
(21 l )~kj 1

,kj 2
!

s~kj 1
!s~kj 2

!
1 (

j 1, j 2, j 3

b̂2
(31 l )~kj 1

,kj 2
,kj 3

!

s~kj 1
!s~kj 2

!s~kj 3
!

1(
j 51

n b̂n21
(n211 l )~k1 , . . .kj 21 ,kj 11 , . . . ,kn!

)
sÞ j

s~ks!

1
b̂n

(n1 l )~k1 ,k2 ,k3 , . . . ,kn!

)
s

s~ks!
J .

The new functionsb̂n
(n1 l )(k1 ,k2 ,k3 , . . . ,kn) contain up tol-loop corrections, and are not only completely IR finite, but a

also universal: for instance theb̂1
(2)(k), which appears for the first time in the decomposition ofM1

(2)(k), is functionally the
same when decomposingM2

(3)(k1 ,k2) or any higher-orderMn
(n1 l ) . This feature is essential for reversing the relations of

~58!, that is for the practical order-by-order calculations of theb̂n
(n1 l ) from Mn

(r ) , obtained directly from the Feynman rule

b̂0
( l )5M0

( l ) , ~59!

b̂1
(11 l )~k1!5M1

(11 l )~k1!2b̂0
( l )s~k1!,

b̂2
(21 l )~k1 ,k2!5M2

(21 l )~k1 ,k2!2b̂1
(11 l )~k1!s~k2!2b̂1

(11 l )~k2!s~k1!2b̂0
( l )s~k1!s~k2!,

b̂3
(31 l )~k1 ,k2 ,k3!5M3

(31 l )~k1 ,k2 ,k3!2b̂2
(21 l )~k1 ,k2!s~k3!2b̂2

(21 l )~k1 ,k3!s~k2!2b̂2
(21 l )~k2 ,k3!s~k1!

2b̂1
(11 l )~k1!s~k2!s~k3!2b̂1

(11 l )~k2!s~k1!s~k3!2b̂1
(11 l )~k3!s~k1!s~k2!2b̂0

( l )s~k1!s~k2!s~k3!, . . . ,
113009-15
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b̂n
(n1 l )~k1 , . . . ,kn!5Mn

(n1 l )~k1 , . . . ,kn!2(
j 51

n

b̂n21
(n211 l )~k1 , . . .kj 21 ,kj 11 , . . . ,kn!s~kj !

2 (
j 1, j 2

b̂n22
(2221 l )~k1 , . . .kj 121 ,kj 111 , . . .kj 221 ,kj 211 , . . . ,kn!s~kj 1

!s~kj 2
!•••

2 (
j 1, j 2

b̂2
(21 l )~kj 1

,kj 2
! )
sÞ j 1 , j 2

s~ks!2(
j 51

n

b̂1
(11 l )~kj !)

sÞ j
s~ks!2b̂0

( l ))
s51

n

s~ks!.
th
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e
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el-

io

de
,
pi
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-

so-
nt

c.

t

The above set of equations is a recursive rule, i.e.,

higher-orderb̂ ’s are constructed in terms of the lower-ord
ones. In practical calculations we do not go to infinite ord
but we stop at someO(a r) and the above set of equations

truncated forb̂n
(n1 l ) by the requirementn1 l<r . The above

truncation is harmless from the point of view of IR canc
lations, because we omit higher-orderb̂ ’s, which are IR fi-
nite. As a consequence of the above fixed-order truncat
Eq. ~57! takes the following form:

Mn
(r )~k1 ,k2 ,k3 , . . . ,kn!

5)
s51

n

s~ks!H b̂0
(r )1(

j 51

n b̂1
(r )~kj !

s~kj !
1 (

j 1, j 2

b̂2
(r )~kj 1

,kj 2
!

s~kj 1
!s~kj 2

!

1 (
j 1, j 2, j 3

b̂3
(r )~kj 1

,kj 2
,kj 3

!

s~kj 1
!s~kj 2

s~kj 3
!

1 (
j 1, j 2,•••, j r

b̂ r
(r )~kj 1

,kj 2
, . . . ,kj r

!

s~kj 1
!s~kj 2

! . . . s~kj r
! J , ~60!

where, contrary to Eq.~58!, we now allow only forr ,n; in
such a case the sum hasr 11 terms instead ofn.

The above formula represents the general finite-or
O(a r)exp case, while forr 50 only the first term survives
and in ourO(a2) case there are three terms. The CEEX s
amplitudes in our master formula@Eq. ~31!# represent the
cases ofr 50,1,2.

Just to give an explicit example, in the recursive calcu
tion of b̂ ’s in O(a3), we would need to calculateb̂0

( l ) , l

50,1,2,3;b̂1
(11 l ) , l 50,1,2; b̂2

(21 l ) , l 50,1; andb̂3
(3) . In the

present work, atO(a r), r 50,1,2, we shall employ the fol
lowing set of recursive definitions, based on Eqs.~59!:

b̂0
( l )S p

l D5M0
( l )S p

l D , l 50,1,2, ~61!

b̂1
(11 l )S pk1

ls1
D5M1

(11 l )S pk1

ls1
D2b̂0

( l )S p

l D ss1
~k1!, l 50,1,
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e

r

n,

r

n

-

b̂2
(2)S pk1k2

ls1s2
D5M2

(2)S pk1k2

ls1s2
D2b̂1

(1)S pk1

ls1
D ss2

~k2!

2b̂1
(1)S pk2

ls2
D ss1

~k1!

2b̂0
(0)S p

l D ss1
~k1!ss2

~k2!,

where theM amplitude is given by Eq.~49!. Here we re-
stored the spin indices but we still specialize to the nonre
nant case, and ourb̂ ’s do not have the partition-depende
X` argument as in theb̂ ’s of Eqs. ~31! to ~35!. We shall
provide a definition for theb̂ ’s in the resonant case in Se
III C 4.

4. IR cancellations in CEEX

At fixed-order O(a r)CEEX, and remembering tha
uexp(B4)u25exp(2RB4), we have obtained

s (r )5 (
n50

`
1

n! E dtn~p11p2 ;p3 ,p4 ,k1 , . . . ,kn!

3exp@2aRB4~pa , . . . ,pd!#

3
1

4 (
spin

uMn
(r )~k1 ,k2 , . . .kn!u2, ~62!

whereMn
(r ) is defined in Eq.~60! and we factorize out thes

factors

1

4 (
spin

uMn
(r )~k1 ,k2 ,k3 , . . . ,kn!u2 ~63!

5dn~k1 ,k2 ,k3 , . . . ,kn!)
s51

n

us~ks!u2,

dn~k1 ,k2 ,k3 , . . . ,kn!

5U b̂0
(r )1(

j 51

n b̂1
(r )~kj !

s~kj !
1 (

j 1, j 2

b̂2
(r )~kj 1

,kj 2
!

s~kj 1
!s~kj 2

!
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1 (
j 1, j 2, j 3

b̂3
(r )~kj 1

,kj 2
,kj 3

!

s~kj 1
!s~kj 2

!s~kj 3
!

1•••1 (
j 1, j 2,•••, j r

b̂ r
(r )~kj 1

,kj 2
, . . . ,kj r

!

s~kj 1
!s~kj 2

!, . . . ,s~kj r
!
U2

.

In the above, the functiondn(k1 ,k2 ,k3 , . . . ,kn) is IR finite
and we are allowed to setmg→0 in it. Apart from 2aRB4
the IR regulatormg still remains in alls(ki) factors and in
the lower phase-space boundary of all real photons
*d3k/2k0.

The above total cross section is perfectly IR finite, as c
be checked with a little bit of effort byanalytical partial
differentiation8 with respect the photon mass

]

]mg
s (r )5 (

n50

`
1

n! E dtn~P;p3 ,p4 ,k1 , . . . ,kn!

3exp~2aRB4!
]

]mg
$2aRB4%

3
1

4 (
spin

uMn
(r )~k1 ,k2 , . . . ,kn!u21 (

n51

`
1

n! (
s51

n

3E dtn21~P;p3 ,p4 ,k1 , . . . ,ks21 ,ks11, . . . ,kn!

3exp~2aRB4!
]

]mg
H E d3ks

~2p!32ks
0us~ks!u2J

3)
j Þs

us~kj !u2dn~k1 ,k2 , . . . ,ks , . . . ,kn!. ~64!

It is now necessary to notice that

]

]mg
H E d3ks

2ks
0 us~ks!u2J

is ad-like measure concentrated atks50 and we may there
fore use the limit

dn~k1 , . . . ,ks , . . . ,kn!

→dn~k1 ,k2 , . . . ,ks21,0,ks11 , . . . ,kn!

[dn21~k1 ,k2 , . . . ,ks21 ,ks11 , . . . ,kn!.

The above limit helps us to notice that all of the terms in
(s51

n are identical and we may sum them up~after formally
renaming the photon integration variables in the second
tegral! and rewrite Eq.~64! as follows:

8This method of validating the IR-finiteness was noted by G. B
gers@29#. The classical method of Ref.@8# relies on the technique
of the Fourier transform, which could also be used here.
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in

n

e

-

]

]mg
s (r )5 (

n50

`
1

n! E dtn~P;p3 ,p4 ,k1 , . . . ,kn!

3exp~2aRB4!
1

4 (
spin

uMn
(r )~k1 ,k2 , . . .kn!u2

3
]

]mg
H 2aRB41E d3ks

~2p!32ks
0us~ks!u2J 50,

~65!

where the independence onmg of the sum of the one-photon
real and virtual integrals is due to the usual cancellation
the IR divergences in the YFS scheme, shown explic
many times.

The integrals of Eqs.~46! and ~62! are perfectly imple-
mentable in the Monte Carlo form, with the smallmg being
the IR regulator, using a method very similar to that in R
@7#. Traditionally, however, the lower boundary on the re
soft photons is defined using the energy cut conditionk0

.«As/2 in the laboratory frame. The practical advantage
such a cut is the lower photon multiplicity in the MC simu
lation, and consequently a faster computer program.9 If the
above energy cut on the photon energy is adopted, then
real soft-photon integral between the lower LIPS~Lorentz
invariant phase space! boundary defined bymg and that de-
fined by« can be evaluated by hand and summed up rig
ously~the only approximation ismg /me→0), as we show in
the following.

5. Explicit IR boundary for real photons

A general notation for the IR domainV was already in-
troduced, see Eq.~36!. Let us now exclude theV domain
from the real-photon phase-space~integrate out analytically!.
Splitting the real-photon integration phase-space, we rew
Eq. ~62! as follows:

s (r )5 (
n50

`
1

n! )j 51

n H E d3kj

~2p!32kj
0 us~kj !u2Q~V,kj !

1E d3kj

~2p!32kj
0 us~kj !u2Q̄~V,kj !J

3E dt0S P2(
j 51

n

kj ;p3 ,p4D
3exp~2aRB4!dn~k1 ,k2 , . . . ,kn!. ~66!

After expanding the binomial product into 2n terms let us
consider for instance the sum of all (1

n)5n terms in which
one photon is inV and the other ones are not:

-

9The disadvantage of the cutk0.«As/2 is that in the MC simu-
lation it has to be implemented indifferentreference frames for ISR
and for FSR; this costs the additional delicate procedure of bring
these two boundaries together, see Ref.@1# and the discussion abou
the analogoust-channel case in Ref.@11#.
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1

n! (
s51

n E d3ks

~2p!32ks
0 us~ks!u2Q~V,ks!

3)
j Þs

n E d3kj

~2p!32kj
0 us~kj !u2Q̄~V,kj !

3E dt0S P2(
j 51

n

kj ;p3 ,p4D
3exp~2aRB4!dn~k1 ,k2 , . . . ,ks21,0,ks11 , . . . ,kn!

5
1

n! S n

1D E d3k

~2p!32k0 us~k!u2Q~V,k!

3E dtn21~P;p3 ,p4 ,k1 ,k2 , . . . ,kn21!

3 )
j 51

n21

Q̄~V,kj !us~kj !u2dn21~k1 ,k2 , . . . ,kn21!. ~67!

A similar summation is performed for the (s
n) terms wheres

photons are inV, giving rise to

s (r )5 (
n50

`
1

n! (
s50

n S n

sD S E d3k

~2p!32k0 us~k!u2Q~V,k! D s

3E dtn2s~P;p3 ,p4 ,k1 ,k2 , . . . ,kn2s!

3)
j 51

n2s

$us~kj !u2Q̄~V,kj !%

3exp~2aRB4!dn2s~k1 ,k2 , . . . ,kn2s!

5 (
n50

`
1

n! E dtn~P;p3 ,p4 ,k1 ,k2 , . . . ,kn!

3expS E d3kj

~2p!32kj
0 us~kj !u2Q~V,kj ! D

3exp@2aRB4~p1 , . . . ,p4!#

3)
j 51

n

$us~kj !u2Q̄~V,kj !%dn~k1 ,k2 , . . . ,kn!. ~68!

The additional overall exponential factor contains the we
known function

2aB̃4~p1 , . . . ,p4!5E d3kj

~2p!32kj
0 us~kj !u2Q~V,kj !

52a@Qe
2B̃2~p1 ,p2!1Qf

2B̃2~p3 ,p4!

1QeQfB̃2~p1 ,p3!1QeQfB̃2~p2 ,p4!

2QeQfB̃2~p1 ,p4!2QeQfB̃2~p2 ,p3!#,

~69!
11300
-

B̃2~p,q![2E d3k

~2p!22k0 Q~V,k!@ j p~k!2 j q~k!#2

[E d3k

k0 Q~V,k!
~21!

8p2 S p

kp
2

q

kqD 2

,

which forms together with 2aRB4(p1 , . . . ,p4) the conven-
tional YFS form factor

Y~V;p1 , . . . ,p4!52aB̃4~p1 , . . . ,p4!

12aRB4~p1 , . . . ,p4! ~70!

in our master Eqs.~31! and~32!. The dependence onmg in Y
cancels out. The photon mass gets effectively replaced by
size ofV in its role as the IR regulator. The YFS form-facto
Y can be decomposed into six dipole components, see
~37!, and can be calculated analytically in terms of logs a
Spence functions, see Refs.@30–32#, keeping exactly all fer-
mion masses.

As already indicated, in the MC with the YFS expone
tiation, it would be possible to do withoutV ~declaring it as
empty! and to rely uniquely on the IR regularization with
small photon massmg only @3#. In such a case the formula
~38! for the YFS form factor would include only the secon
virtual-photon integral part.

For the sake of the completeness of the discussion,
necessary to examine once again the IR cancellations in
total cross section, withV as the new IR regulator:

s (r )5 (
n50

`
1

n! E dtn~P;p3 ,p4 ,k1 ,k2 , . . . ,kn!

3)
j 51

n

$us~kj !u2Q̄~V,kj !%exp@B̃4~V;p1 , . . . ,p4!

12aRB4~p1 , . . . ,p4!#dn~k1 ,k2 , . . . ,kn!. ~71!

IR finiteness of the total cross section now simply transla
into its independence of theV domain~assuming, as usua
that the size ofV is very small!

d

dV
s (r )50. ~72!

The proof can be given along the same lines as the prev
one for the photon mass. Let us assume that we want to
V→V85V1dV, that is V̄85V̄2dV. Note thatV8 can
be much larger or smaller thanV, the only requirement is
that both be very small.10 We proceed as follows

10dV does not need to be infinitesimal with respect toV. Its size
should be much smaller thanAs.
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n50
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n! )j 51

n H E d3kj

~2p!32kj
0 us~kj !u2Q̄~V8,kj !1E d3kj

~2p!32kj
0 us~kj !u2Q~dV,kj !J

3E dt0S P2( kj ;p3 ,p4Dexp@2aB̃4~V;p1 , . . . ,p4!12aRB4~p1 , . . . ,p4!#dn~k1 ,k2 , . . . ,kn!

5 (
n50

`
1

n! (s50

n S n

sD H E d3k

~2p!32k0 us~k!u2Q~dV,k!J sE dtn2s~P;p3 ,p4 ,k1 , . . . ,kn2s!

3)
j 51

n2s

$us~kj !u2Q̄~V8,kj !%exp@2aB̃4~V;p1 , . . . ,p4!12aRB4~p1 , . . . ,p4!#dn2s~k1 ,k2 , . . . ,kn2s! ~73!
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n50
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n! E dtn~P;p3 ,p4 ,k1 , . . . ,kn!expF E d3k
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recovering the same expression as Eq.~71!, but with V8
instead ofV.

C. Narrow neutral resonance in CEEX

The main new feature of CEEX with respect to EEX
that the separation of the IR real singularities is done at
spin amplitude level; after squaring and spin-summing th
~numerically! the higher order terms are retained, while
EEX they are truncated. For a more detailed discussion,
Sec. IV C, where we explicitly show the relations betwe
the b̂ ’s of CEEX and b̄ ’s of EEX. Keeping the above in
mind, we still have at least three possible versions of CEE
In the following we shall describe them, concentrati
mostly on the third one, which is designed for the neut
s-channel resonances11 and which is the principal version
implemented in theKK Monte Carlo. Let us stress immed
ately that the resonance may be arbitrarily narrow. Howe
our approach works without any modification for any val
of the resonance width.

1. General discussion

We believe that CEEX is the only workable technique
the treatment of narrow resonances in the exclusive MC.
understand the essential difference between the three
sible formulations of CEEX, it is sufficient to limit the dis
cussion to the simplest case of theO(a0). The three possible
options are the following.

~A! The version for the nonresonant Born without par
tions:

11The simultaneous application of our CEEX methods to the p
duction and decay processes of pair-produced charged reson
such as theW6 resonances and of pair-produced charged unst

fermions such ast6, cc̄, bb̄, andt t̄ in e1e2 annihilation is not yet
covered in the literature.
11300
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Mn
(0)S pk1k2•••kn

ls1s2•••sn
D5)

i 51

n

@ss i

I ~ki !1ss i

F ~ki !#B[ba][ cd] .

~74!

~B! The version for the nonresonant Born with partition

Mn
(0)S pk1k2•••kn

ls1s2•••sn
D5 (

`P$I ,F%n
)
i 51

n

ss i

$` i %~ki !B[ba][ cd]~X`!.

~75!

~C! The version for the resonant Born:

Mn
(0)S pk1k2•••kn

ls1s2•••sn
D

5 (
`P$I ,F%n

)
i 51

n

ss i

$` i %~ki !
X`

2

~p31p4!2

3 (
R5g,Z

B[ba][ cd]
B ~X`!exp@aDB4

R~X`!#. ~76!

Let us immediately define the additional form factor for t
Z resonance@case~C!#:

aDB4
Z~X!5E d4k

k22mg
21 i e

i

~2p!3 JIm~k!

3@JF
m~k!#* S ~X!22M̄2

~X2k!22M̄2
21D , ~77!

whereM̄25MZ
22 iM ZGZ , the currentsJm are defined in Eq.

~50!, while for the nonresonant part we haveDB4
g(X)50.

TheDB4
Z(X) form factor sums up to infinite order the virtua

a ln(GZ /MZ) contributions; we postpone the discussion of
origin and importance to the latter part of this section.

-
ces
le
9-19



h

de

o
n

vi
h
t-
a

th
o
P
t

an
.
a
t

er
n
tt
on

o

ac

ro
e
tu
ai
ph

o
ro
S

r
o-

er
-
be

ctor
y is

f

is-
lto-

y,
te
ep-

te
u-
nce,

t to
nto

e
ite

I
r.
c-

iza-
nt
gator
e

s
f

S. JADACH, B. F. L. WARD, AND Z. WA̧S PHYSICAL REVIEW D63 113009
Coming back to the more elementary level, we see t
case~B! becomes case~A! if we can neglect the partition
dependence of the four momentum in the Born amplitu
B[ba][ cd] (X`)→B[ba][ cd] (P), where P5pa1pb or P5pc
1pd or any other choice that does not depend on the m
menta of the individual photons. This is thanks to the ide
tity:

)
i 51

n

@ss i

$F%~ki !1ss i

$I %~ki !#[ (
`P$I ,F%

)
i 51

n

ss i

$` i %~ki !. ~78!

Only case~C! is efficient for the resonant process, so ob
ously ~A! and~B! are limited to nonresonant processes. T
immediate question is the following: Which of them is be
ter? If ~A! does not sum the higher orders much better th
~B!, then it has the clear advantage of being simpler—
summation over partitions makes the computer code m
complicated and adds heavily to the consumption of C
time.12 The answer is that, although we did not investiga
quantitatively the differences between~A! and~B!, we think
that ~B! sums up the LL higher orders more efficiently th
~A! and is therefore better, even if there is no resonance
our case, since we want to cover the resonant process
way, it is a natural choice to use~B! for the nonresonan
background component of the spin amplitudes~off-shell g
exchange!, even if it is not vital. Once the summation ov
partitions is in place, it is the easiest to use it for the no
resonant background as well. The additional bonus of be
higher-order convergence provides an extra justificati
Summarizing, if~C! is implemented, then~B! comes for free.

Having discussed the differences between the three
tions, let us now concentrate on the option~C! for the reso-
nant process, remembering that for the nonresonant b
ground component it becomes automatically~B!. First of all,
for the narrow neutral resonance~the Z boson in our case!,
the photons emitted during the production and decay p
cesses are separated by a long time interval; they are th
fore completely independent and uncorrelated. In the per
bative QED this simple physical fact is reflected in a cert
specific class of cancellations between the ISR and FSR
tons on the one hand and the virtual and real corrections
the other. For inclusive observables such as the total c
section or charge asymmetry, the effects of the ISR-F
interference in the nonresonant case are of ordera/p, typi-
cally up to 1%, as can be seen from many examples
explicit O(a1) calculations. The IFI effect will be of orde
(a/p)(Emax/Ebeam), when the experimental cut on the ph
ton energy isEmax. Note that the IFI effect is not directly
enhanced by such big mass logarithms as lns/me

2;20. For
the resonant process the IFI effects in the inclusive obs
ables are of order (a/p)(G/M ) and are therefore often neg
ligible on the scale of the experimental error. It must

12We note that~A! is implemented in theKK MC and is a factor
of ;10 faster in evaluation than~B!; it can be economical for case
without resonances, like the small-angle Bhabha scattering or
A(s),MZ , where~B! is an overkill.
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remembered, however, that the additional suppression fa
G/M disappears if the experimental cut on photon energ
of the order of the resonance width,Emax/Ebeam;G/M, and
for an even stronger cutEmax,G the IFI effect becomes o
order (a/p)(Emax/G).

If G/M is extremely small, as for thet lepton, the IFI
cancellation can be taken for granted and the photon em
sion interference between production and decay can a
gether be neglected. In the case of theZ boson close to theZ
resonance~LEP1! the IFI effect is detectable experimentall
but it is small enough that it can be omitted in the Mon
Carlo programs used for correcting for the detector acc
tance only. In this caseKORALZ/YFS3 @10# with the EEX ma-
trix element was the acceptable solution.

The most convenient solution is the universal Mon
Carlo program in which the IFI is included, which can eval
ate the IFI effects near the resonance, far from the resona
for inclusive quantities, and for strong energy cutsEmax
;G. This is exactly what our CEEX offers.

2. Derivation of the resonance form factor

As we have already pointed out~following Refs.@22,23#!,
in the presence of narrow resonances it is not sufficien
sum up the real emissions coherently, taking properly i
account the energy shift in the resonance propagator~only
due to the ISR photons!. It is also necessary to do the sam
for the virtual emission, and also to sum them up to infin
order—this is why the resonance form factor exp(B4

Z) has to
be included, see Eqs.~76! and~77!. In the following we shall
derive Eq.~77! for B4

Z and show analytically that the IF
cancellations do really work, as expected, to infinite orde

Let us write again the formula for the standard YFS fun
tion in Eq. ~50! in a slightly modified notation

aB4~pa , . . . ,pd!5E d4k

k22mg
21 i e

i

~2p!3 S~k!,

S~k!5SI~k!1SF~k!1SInt~k!,
~79!

SI~k!5uJI~k!u2, SF~k!5uJF~k!u2,

SInt~k!522R@JI~k!•JF* ~k!#.

In the presence of the narrow resonance, the YFS factor
tion of the virtual IR contributions has to take into accou
the dependence of the scalar part of the resonance propa
on photon energies of orderG ~the numerator is treated in th
soft-photon approximation, as usual!. The relevant integrals
with n virtual photons look as follows:

I 5~P22M̄2! (
n50

`
1

n!

3 (
`PPn

)
i 50

n E i

~2p!3

d4ki

ki
22mg

2
S` i

~ki !
1

P`
22M̄2

,

~80!
or
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whereM̄25M22 iM G, andPn is a set of all 3n partitions
(`1 ,`2 , . . . ,̀ n) with ` i5I ,F,Int, and P`[P2(` i5Intki

includes only the momenta of the photons inSInt and not the
momenta of photons inSI or SF . The (P22M̄2) factor is
conventional, to make the integral dimensionless. We s
show that the above integral factorizes into the conventio
YFS form factor~dependent on the photon massmg) and the
additional non-IR factor due to the resonanceR5Z:

I 5exp@aB4
R~mg ,s,M̄ !#5exp@aB4~mg ,s!1aDB4

R~s,M̄ !#.
~81!

Our aim is to find the analytical form of the additional fun
tion DB4

R . In the current calculation, we use the followin
approximate formula, also used by Grecoet al. @22,23#,

aDB4
R~s8!522QeQf

a

p
lnS t

uD lnS M̄22s

M̄2 D
52

1

2
g Int lnS M̄22s

M̄2 D . ~82!

In the following, we shall derive the above approximate
sult and show explicitly that the above approximate virtu
interference part of the form factor cancels exactly with
corresponding real interference contributions.

Since the soft virtual photons entering intoSI and SF in
Eq. ~80! do not enter the resonance propagator, we m
therefore factorize and sum up the contributions withSI and
SF :

I 5 (
n150

`
1

n1! )i 150

n1 E i

~2p!3

d4ki 1

ki 1
2 2mg

2
SI~ki 1

! (
n250

`
1

n2!

3 )
i 250

n2 E i

~2p!3

d4ki 2

ki 2
2 2mg

2
SF~ki 2

!

3 (
n350

`
1

n3! )i 350

n3 E i

~2p!3

d4ki 3

ki 3
2 2mg

2
SInt~ki 3

!

3
1

S P2(
j 51

n3

kj D 2

2M̄2

~83!

[exp~aBI1aBF! (
n50

`
1

n!)i 50

n E i

~2p!3

d4ki

ki
22mg

2

3SIin~ki !
1

S P2(
j 51

n

kj D 2

2M̄2

.

Now we neglect the quadratic terms in the photon energ
O(kikj )
11300
ll
al

-
l
e

y

s

1

S P2(
j 51

n

kj D 2

2M̄2

.
1

P222P(
j 51

n

kj2M̄2

5
1

P22M̄2

1

12(
j 51

n
2Pkj

P22M̄2

.
1

P22M̄2)j 51

n
1

12
2Pkj

P22M̄2

.
1

P22M̄2)j 51

n
P22M̄2

~P2kj !
22M̄2

,

~84!

and this leads to

I 5exp~aBI1aBF!

3expS E i

~2p!3

d4k

ki
22mg

21 i e
SIin~k!

P22M̄2

~P2k!22M̄2D
5exp@aB4~mg!1aDB4

R~G!#, ~85!

aDB4
R~G!5E i

~2p!3

d4k

k2 SIin~k!S P22M̄2

~P2k!22M̄2
21D .

How solid is the above ‘‘derivation’’? Strictly speaking it i
justified in the limit where we follow Yennie, Frautschi, an
Suura in Ref.@8# and express thek→0 emission amplitude
as

M→ 1

k S «11O~k/M̄ !1
k

GZ
@«21O~k/M̄ !# D ,

where«1,2 are constants independent ofk, so that

u2Pkj /~P22M̄2!u!1,

that is, if photon energy is below the resonance width. T
restriction is thus entirely analogous to the usual YFS exp
sion into an IR-singular part and the rest. We note that Gr
et al. in Refs.@22,23# have also pointed out that the result f
DB4

R(G) in Eq. ~85! follows from the YFS expansion; we
show here how this happens in detail.

The best situation would be to have a more precise ev
ation of the integral of Eq.~80! ~the integral is probably
calculable analytically!. For the moment, however, following
Refs. @22,23#, we choose an easier ‘‘pragmatic’’ approac
based on the fact that the virtual and real contributions fr
the IFI for photons withEg.G do cancel, as a consequenc
of the time separation between the production and decay,
we shall check that the above cancellation really works.
this way we trade the analytical evaluation of the more d
ficult multiphoton virtual integral for an easier evaluation
the multiphoton real integral.
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3. Cancellation of the virtual form factor with the real emissions

Let us therefore examine analytically the real multiphoton emission contribution from the IFI.13 The starting point is the
integral in which thetotal photon energyK5( j 51

n kj is kept belowEmax5vmaxAs, whereG,Emax!As:

s5 (
n50

`
1

n! E )
i 51

n
d3ki

~2p!32ki
0 (

s1•••sn
U (

`P$I ,F%n
)
j 51

n

s[ j ]
$` j %

1

X`
22M̄2

exp@aB4
R~X`!#U2

QS Emax2(
j 51

n

kj D
5 (

n50

`
1

n! EK0,vAs
)
i 51

n
d3ki

~2p!32ki
0 (

s1•••sn
(

`,`8P$I ,F%n
)
j 51

n

s[ j ]
$` j %s

[ j ]
* $` j8% exp@aB4

R~X`!#

X`
22M̄2 S exp@aB4

R~X`8!#

X`8
2

2M̄2 D *

5 (
n50

`
1

n! EK0,vAs
)
i 51

n
d3ki

2ki
0 (

`,P$I 2,F2,IF ,FI %n
)

` j 5I 2
2S̃I~kj ! )

` j 5F2
2S̃F~kj ! )

` j 5IF
2S̃Int~kj ! )

` j 5FI
2S̃Int~kj !

3
exp@aB4

R~P2KI2KIF !#

~P2KI2KIF !22M̄2 S exp@aB4
R~P2KI2KFI !#

~P2KI2KFI !
22M̄2 D *

, ~86!

where we have simplified the Born amplitude to the level of the scalar part of the resonance propagator and we wri

2~2p!3S̃I~kj !5(
s j

us[ j ]
$I %u2, 2~2p!3S̃F~kj !5(

s j

us[ j ]
$F%u2,

2~2p!3S̃Int~kj !5(
s j

s[ j ]
$I %~s[ j ]

$F%!* 5(
s j

s[ j ]
$F%~s[ j ]

$I %!* ,

KI 25 (
` j 5I 2

kj , KF25 (
` j 5F2

kj , ~87!

KIF5 (
` j 5IF

kj , KFI5 (
` j 5FI

kj ,

K5KI 21KF21KIF1KFI .

As we see, the product of two sums, each over 2n partitions `,`8P$I ,F%n, is now replaced by the single sum over 4n

partitions`P$I 2,F2,IF ,FI %n, where theIF ,FI represent the interference terms.
Keeping track of the dependence of the propagators onKI 2, KIF , andKFI , the summation over the number of photons c

be reorganized, leading us back to the following factorized formula:

s~vmax!5 (
n150

`
1

n1! E )
i 151

n1 d3ki 1

2ki 1
0

2S̃I~ki 1
! (
n250

`
1

n2! E )
i 251

n2 d3ki 2

2ki 2
0

2S̃F~ki 2
! (
n350

`
1

n3! E )
i 351

n3 d3ki 2

2ki 3
0

2S̃Int~ki 3
!

3
exp@aB4

R~P2KI 22KIF !#

~P2KI 22KIF !22M̄2 (
n450

`
1

n4! E )
i 451

n4 d3ki 4

2ki 4
0

2S̃Int~ki 4
!

3S exp@aB4
R~P2KI 22KFI !#

~P2KI 22KFI !
22M̄2 D *

Q~Emax2KI 2
0

2KF2
0

2KIF
0 2KFI

0 !, ~88!

whereKI 25( i 1
ki 1

, KF25( i 2
ki 2

, KIF5( i 3
ki 3

, andKFI5( i 4
ki 4

. The sums over the pure initial- and final-state contributio
and over the interference contributions, are now well factorized and can be performed analytically. As a first step, we
and sum up contributions from the very soft photons below«As, similarly to what was shown in Ref.@7#:

13In the practical CEEX calculation, the contribution from the IFI is evaluated numerically, inside the MC program.
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s~vmax!5E
0

Emax
dE8E

0

Emax
d~E82EI2EF2EInt!dEIdEFdEIFdEFI (

n150

`
1

n1! )i 151

n1 E
ki 1

0
.«E

d3ki 1

2ki 1
0

2S̃I~ki 1
!

3exp@2aB̃I~«E!12aRBI #dS EI2(
i 1

ki 1
0 D (

n250

`
1

n2! )i 251

n2 E
ki 2

0
.«E

d3ki 2

2ki 2
0

2S̃F~ki 2
!

3exp@2aB̃F~«E!12aRBF#dS EF2(
i 2

ki 2
0 D (

n350

`
1

n3! )i 351

n3 E
ki 3

0
.«E

d3ki 3

2ki 3
0

2S̃Int~ki 3
!
exp@aDB4

R~P2KI 22KIF !#

~P2KI 22KIF !22M̄2

3exp@aB̃Int~«E!1aRBInt#dS EIF2(
i 3

ki 3
0 D (

n450

`
1

n4! )i 451

n4 E
ki 4

0
.«E

d3ki 4

2ki 4
0

2S̃Int~ki 4
!S exp@aDB4

R~P2KI 22KFI !#

~P2KI 22KFI !
22M̄2 D *

3exp@aB̃Int~«E!1aRBInt#exp~2aRDB4
R!dS EFI2(

i 4
ki 4

0 D , ~89!

where E5As/2. The integration over the photon momenta can be performed without any approximation, leading
following result ~here,g Int5g IF5gFI):

s~vmax!5E
0

vmax
dvd~v2v I2vF2v IF2vFI !E dv IF~g I !g Iv I

g I21 exp@2aB̃I~E!12aRBI #

3E dvFF~gF!gFvF
gF21 exp@2aB̃F~E!12aRBF#

3E dv IFFS g Int

2 D1

2
g Intv IF

(1/2)g IF21S exp$aDB4
R@s~12v I !~12v IF !#%

s~12v I !~12v IF !2M̄2 D exp@aB̃Int~E!1aRBInt#

3E dvFIFS g Int

2 D 1

2
g IntvFI

(1/2)gFI21S exp$aDB4
R@s~12v I !~12vFI !#%

s~12v I !~12vFI !2M̄2 D *
exp@aB̃Int~E!1aRBInt#, ~90!
c
l

or
he
ro

th

f
he
re-
ity

the
which is explicitly free of any IR divergences.
The essential question is whether we have perfect can

lations of the ln(G/MZ) terms in the interference subintegra

I Int5RE
0

vmax2v I2vF2vFI
dv IFFS g IF

2 D
3

1

2
g IFv IF

(1/2)g Int21 exp$aDB4
R@s8~12v IF !#%

s8~12v IF !2M̄2
.

~91!

We omit from consideration the constant IR-finite fact
exp@aB̃Int(E)1aRBInt#, because it does not depend on t
resonance parameters. The bulk of the integral comes f
the neighborhood ofv IF50 and the integrand is;1/v2 at
large v, due to the resonance; we can therefore extend
11300
el-

m

e

integration limit to *0
`dv Int , at the expense of an error o

O(G/MZ). One possible evaluation method is to use t
standard techniques of the complex functions. First, we
formulate the integral as an integral over the discontinu
C1 along the real axis14

I Int5FS g IF

2 Dexp@aDB4
R~s8!#

1

i sin~p 1
2 g Int!

3E
C1

dz
1

2
g Int~2z!(1/2)g Int21

1

s82M̄22s8z
. ~92!

14We have also pulled out of the integral the exp(aDB4
R) factor,

because most of the integral comes from the neighborhood of
singularity atv IF50.
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Since the contour can be closed in a standard way with
big circle, the integral is given by the value of the residue
z512M̄2/s8:

I Int5FS g IF

2 Dexp@aDB4
R~s8!#

p 1
2 g Int

sin~p 1
2 g Int!

3S M̄22s8

s8
D g Int21

1

s8

5
1

M̄22s8
FS g Int

2 D p 1
2 g Int

sin~p 1
2 g Int!

exp@aDB4
R~s8!#

3S M̄22s8

s8
D (1/2)g Int

5
1

M̄22s8
@11O~g Int!#. ~93!

The above is true because

aDB4
R~s8!522QeQf

a

p
lnS t

uD lnS M̄22s8

M̄2 D
52

1

2
g Int lnS M̄22s8

M̄2 D . ~94!

We have therefore proved the full cancellation of the dep
dence on the resonance parameters for the integrated
section.

4. Definitions of b̂ ’s with partitions

The O(a r), r 50,1,2, b̂-functions for the variant of the
CEEX with the summation over the partitions, as in E
~31!–~35!, are derived with the recursive relations of Eq
~59! @similar to those of Eqs.~61!#. The only additional com-
plication is that we must keep track of the indices, which s
whether an external real photon is of the ISR or FSR ty
and of the total photon momentum after emission of the I
photons~the one that enters the resonance propagator, if s
a resonance is present!:

b̂0
( l )S p

l
;PD5M0

( l )S p

l
;PD , l 50,1,2, ~95!

b̂1$I %
(11 l )S pk1

ls1
;P2k1D5M1$I %

(11 l )S pk1

ls1
;P2k1D

2b̂0
( l )S p

l
;P2k1D ss1

$I %~k1!,

l 50,1,
11300
e
t

-
oss

.
.

y
,

R
ch

b̂1$F%
(11 l )S pk1

ls1
;PD5M1$F%

(11 l )S pk1

ls1
;PD2b̂0

( l )S p

l
;PD ss1

$F%~k1!,

l 50,1,

b̂2$v1 ,v2%
(2) S pk1k2

ls1s2
;XvD5M2$v1 ,v2%

(2) S pk1k2

ls1s2
;XvD

2b̂1$v1%
(1) S pk1

ls1
;XvD ss2

$v2%
~k2!

2b̂1$v2%
(1) S pk2

ls2
;XvD ss1

$v1%
~k1!

2b̂0
(0)S p

l
;XvD ss1

$v1%
~k1!ss2

$v2%
~k2!,

where Xv5P2(v i5Iki , P5pa1pb . Introduction of the

partition indexv i defining whether a photon belongs to th
ISR or the FSR is in a sense not such a deep and g
complication—it is now just another~third! attribute of the
photon similar to its helicity.

Let us look closer into the structure of terms lik
b̂1$v1%

(1) (ls1

pk1 ;Xv)ss2

$v2%(k2). For example, ifv15F and v2

5I , it readsb̂1$F%
(1) (ls1

pk1 ;P2k2)ss2

$I %(k2), that is, the total shift

in X in b̂ (1) depends not only on the typev1 of ‘‘its own
photon,’’ but also on the typev2 of the photon in thes$v2%

factor that multiplies it.
The M amplitude in Eq.~95! is given essentially by Eq

~49!, with the form factor including the resonance part~if
present!:

Mn$v%
(r )R S pk1

ls1
•••

kn

sn
;XvD

5 H exp@2aB42aDB4
R~Xv!#

3M n$v%
(r )R S pk1

ls1
•••

kn

sn
;XvD J U

O(ar )

. ~96!

As we see the typeR5g,Z of the ‘‘resonance’’ form factor
B4

R has to be adjusted to the type of the component inM (r )R

~we have temporarily introduced an explicit indexR into M
andM, andg is essentially a ‘‘resonance’’ of zero width!.

D. Virtual corrections, no real photons

We now start to accumulate the actual formulas for theb̂
functions entering the CEEX amplitudes of in Eqs.~31!–~35!
with the case of no real photons and up to two virtual ph
tons. The ‘‘raw materials’’ are theM amplitudes from the
Feynman diagrams, which are turned into theb̂ functions
using the recursive relations of Eqs.~95!.
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1. Photonic corrections

Let us start with the simple case of theO(a1) spin amplitudes with one virtual and zero real photons coming directly f
the Feynman diagrams, which will be used to obtain the first orderb̂0

(1) . The relevant spin amplitudes are

M 0
(1)S p

l
;XD5BS p

l
;XD @11Qe

2F1~s,me ,mg!#@11Qf
2F1~s,mf ,mg!#1M box

(1)S p

l
;XD , ~97!

where F1 is the standard electric form factor regularized with a photon mass, see Fig. 3. We omit, for the mome
magnetic form factorF2; this is justified for light final fermions. It will be restored in the future. InF1 we keep the exact fina
fermion mass. If not stated otherwise, the four-momentum conservationpa1pb5pc1pd holds.

In the present work we use the spin amplitudes forg-g andg-Z boxes in the small mass approximationme
2/s→0, mf

2/s
→0, see Fig. 3, following Refs.@33,34#:

M Box
(1) S p

l
;XD52ie2 (

B5g,Z

gla

B,eg2la

B, f Tlcla
Tlbld

8 1gla

B,egla

B, fUlclb
8 Ulald

X22MB
21 iGBX2/MB

3dla ,2lb
dlc ,2ld

a

p
QeQf@dla ,lc

f BDP~M̄B
2 ,mg ,s,t,u!2dla ,2lc

f BDP~M̄B
2 ,mg ,s,u,t !#, ~98!

where~here, BDP refers to Brown, Decker, and Paschos in Ref.@34#!

f BDP~M̄B
2 ,mg ,s,u,t !5 lnS t

uD lnS mg
2

~ tu!1/2D 22 lnS t

uD lnS M̄B
22s

M̄B
2 D 1Li2S M̄B

21u

M̄B
2 D 2Li2S M̄B

21t

M̄B
2 D

1
~M̄B

22s!~u2t2M̄B
2 !

u2 H lnS 2t

s D lnS M̄B
22s

M̄B
2 D 1Li2S M̄B

21t

M̄B
2 D 2Li2S M̄B

22s

M̄B
2 D J

1
~M̄B

22s!~M̄B
22s!

us
lnS M̄B

22s

M̄B
2 D 1

M̄B
22s

u
lnS 2t

M̄B
2 D , ~99!

FIG. 3. First-order diagrams.
es

n
x

ac
M̄Z
25MZ

22 iM ZGZ , M̄g
25mg

2 , and the functionf BDP is that
of Eq. ~11! of Ref. @34#. The standard Mandelstam variabl
s, t, and u are defined as usual:s5(pa1pb)2, t5(pa

2pc)
2, u5(pa2pd)2. Since in the rest of our calculatio

we do not usemf
2/s→0, we intend to replace the above bo

spin amplitudes with the finite-mass results15 that were given
in Ref. @35#.

15For theg-g box we can use the spin amplitudes with the ex
final fermion mass. It seems, however, that theg-Z box for the
heavy fermion is missing in the literature.
11300
Now using Eq.~96! we determine

b̂0
(1)S p

l
;XD5BS p

l
;XD @11dVirt

(1)e~s!#@11dVirt
(1) f~s!#

1RBox
(1) S p

l
;XD , ~100!

where

dVirt
(1)e~s!5Qe

2F1~s,me ,mg!2Qe
2aB2~pa ,pb ,mg!

5Qe
2 a

p

1

2
L̄e , ~101!

t
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FIG. 4. Second-order vertex diagrams.
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dVirt
(1) f~s!5Qf

2F1~s,mf ,mg!2Qf
2aB2~pc ,pd ,mg!

5Qf
2 a

p

1

2
L̄ f ,

L̄e5 lnS s

me
2D 1 ip21, L̄ f5 lnS s

mf
2D 1 ip21.

Note that we departed in Eq.~100! from the strictO(a1) by
retaining thedVirt

(1)e(s)dVirt
(1) f(s) term, i.e., by replacing the

‘‘additive’’ form 1 1dVirt
(1)e(s)1dVirt

(1) f(s) with the ‘‘factor-
ized’’ form @11dVirt

(1)e(s)#@11dVirt
(1) f(s)#. The above does no

need really much justification—it is obviously closer to t
reality of the higher-orders, so the ‘‘factorized’’ form is pre
erable. The only question is whether the above method d
not disturb the IR cancellations. It does not, as is seen f
the definitions ofdVirt

(1)e(s) anddVirt
(1) f(s).

The IR subtraction inM Box
(1) using Eq. ~96! at O(a1)

leads to the IR-finiteRBox . The above subtraction is equiva
lent to the following substitution:

f BDP~M̄B
2 ,mg ,s,t,u!→ f BDP~M̄B

2 ,mg ,s,t,u!2 f IR~mg ,t,u!,
~102!

where

f IR~mg ,t,u!5
2

p
B2~pa ,pc ,mg!2

2

p
B2~pa ,pd ,mg!

5 lnS t

uD lnS mg
2

Atu
D 1

1

2
lnS t

uD , ~103!

and the additional resonance factor exp@2aDB4
Z(s)# in Eq.

~96! induces the additional subtraction in theg-Z box part:

f BDP~s,t,u!→ f BDP~s,t,u!2aDB4
Z~s!; ~104!

see Eq.~82! for the definition ofaDB4
Z .
11300
es
m

Our O(a2) expressions forb̂0
(2) are still incomplete. We

base them on the graphs depicted in Fig. 4 in which
omitted some trivial transpositions of the diagrams. Follo
ing again Eq.~96!, we obtain

b̂0
(2)S p

l
;XD5BS p

l
;XD @11dVirt

(2)e~s,me!#@11dVirt
(2) f~s,mf !#

1RBox
(2) S p

l
;XD . ~105!

In the present calculation we neglect the two-loop doub
box contributions inRBox

(2) , depicted in the first row in Fig. 5
and the vertex-box type of diagrams, see the example
diagrams in the second row of Fig. 5.16 In fact we keep only
the first-order box contributionRBox

(1) in our incomplete
O(a2)-type matrix element.

Two remarks: in spite of the temporary lack of the abo
contribution, we are not stuck because what we neglect is
finite. This statement is not as trivial as it may look becau
in the calculation without exponentiation, neglecting su
contributions would violate IR cancellations, and correcti
for such a violation would be rather complicated and phy
cally dangerous. Secondly, what we neglect is expected t
numerically small, ofO(a2L1), and therefore it does not d
much harm to our overall physical precision.

Coming back to theO(a2) corrections to the electric
form factor from the diagrams in Fig. 4, they are well know
since they were calculated in Refs.@18,37–39# and they con-
tribute as follows:

dVirt
(2)e~s,me!5dVirt

(1)e~s!1S a

p D 2F L̄e
2

8
1L̄eS 3

32
2

3

4
z21

3

2
z3D G ,

16In fact the two-loop double-box contribution became known
cently @36#, so there is a chance of including it in the future.
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FIG. 5. Missing second-order diagrams.
le
al

he

ti

ok-
-

s

-

pli-
sen-
dVirt
(2) f~s,mf !5dVirt

(1) f~s!1S a

p D 2F L̄ f
2

8
1L̄ f S 3

32
2

3

4
z21

3

2
z3D G .

~106!

In the above we kept terms ofO(a2L2) andO(a2L1), and
neglected the known@39,40# negligible terms ofO(a2L0).

2. Electroweak corrections

In the not-so-interesting case of the absence of the e
troweak~EW! corrections, the couplings of the two neutr
bosonsg andZ are defined in a conventional way:

Gl
Z, f5gV

Z, f2lgA
Z, f , Gl

g, f5gV
Z, f , l51,25R,L,

gV
g,e5Qe521, gV, f

g 5Qf , gA
g,e50, gA, f

g 50,

gV
Z,e5

2Te
324Qe sin2uW

16 sin2uW cos2uW
, gV

Z, f5
2Tf

324Qf sin2uW

16 sin2uW cos2uW
,

gA
Z,e5

2Te
3

16 sin2uW cos2uW
, gA

Z, f5
2Tf

3

16 sin2uW cos2uW
,

~107!

whereTf
3 is the isospin of the left-handed component of t

fermion f (Td
3521/2,Te

3521/2).
The actual implementation of EW corrections is prac

cally the same as inKORALZ @10#. It goes as follows: theg
11300
c-

-

andZ propagators are multiplied by the corresponding ho
functions ~scalar form factors! due to the vacuum polariza
tion:

Hg→Hg3
1

22Pg
,

HZ→HZ316 sin2uW cos2uW

GmMZ
2

aQED8pA2
rEW. ~108!

In addition the vector couplings of theZ get multiplied by
the respective extra form factors. First of all we replace

gV
Z,e5

2Te
324Qe sin2uW

16 sin2uW cos2uW
→

2Te
324Qe sin2uWFEW

e ~s!

16 sin2uW cos2uW

,

gV
Z, f5

2Tf
324Qf sin2uW

16 sin2uW cos2uW
→

2Tf
324Qf sin2uWFEW

f ~s!

16 sin2uW cos2uW

,

~109!

whereFEW
e (s) andFEW

f (s) are the electroweak form factor
provided by theDIZET package@14#, which is a part of the
ZFITTER semianalytical code@5# and corresponds to the elec
troweak vertex corrections.

The electroweak box diagrams require a more com
cated treatment. In the Born spin amplitudes we have es
tially two products of the coupling constants
gl
Z,eg2l

Z, f 5~gV
Z,e2lgA

Z,e!~gV
Z, f1lgA

Z, f !5gV
Z,egV

Z, f2lgA
Z,egV

Z, f1lgV
Z,egA

Z, f2gA
Z,egA

Z, f ,

gl
Z,egl

Z, f5~gV
Z,e2lgA

Z,e!~gV
Z, f2lgA

Z, f !5gV
Z,egV

Z, f2lgA
Z,egV

Z, f2lgV
Z,egA

Z, f1gA
Z,egA

Z, f . ~110!

In the above the following modification is done for the doubly-vector component:

gV
Z,egV

Z, f5.
4Te

3Tf
328Te

3QfFEW
f ~s!28Tf

3QeFEW
e ~s!116QfQfFEW

e f ~s,t !

~16 sin2uW cos2uW!2
, ~111!
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where the new form factorFEW
e f (s,t) corresponds to elec

troweak boxes and is angle-dependent. The Born spin am
tudes modified in the above way are also used in the c
when a single and multiple real photons are present, see
next sections.

E. One real photon

We start the discussion of theb̂1 tensors corresponding t
the emission of a single real photon with the tree-level c
~zero virtual photons!. The starting point is the well-known
O(a1) split amplitude for the single bremsstrahlung, whi
we shall reconsider separately first in the case of the em
sion from the initial-state beams and later for emission fr
the final-state fermions. This will be the ‘‘raw material’’ fo
obtainingb̂1

(0) using Eqs.~95!.
The first-order, one-photon, ISR matrix element from t

Feynman diagrams depicted in Fig. 6 reads

M1$I %S pk1

ls1
D

5eQev̄~pb ,lb!M $I %

p” a1m2k” 1

22k1pa
e”s1
* ~k1!u~pa ,la!

1eQev̄~pb ,lb!e”s1
* ~k1!

2p” b1m1k” 1

22k1pb
M $I %u~pa ,la!,

~112!

where

M $I %5 ie2 (
B5g,Z

PB
mn~X!Ge,m

B ~Gf ,n
B ! [cd] ~113!

is the annihilation scattering spinor matrix, including t
final-state spinors. We split the above expression into
soft IR parts17 proportional to (p”6m) and the non-IR parts
proportional tok” 1. Employing the completeness relations
Eq. ~A14! in the Appendix to those parts we obtain:

M1$I %S pk1

ls1
D52

eQe

2k1pa
(

r
BFpbpa

lbra
G

[cd]

UF pak1pa

ras1la
G

1
eQe

2k1pb
(

r
VF pbk1pb

lbs1rb
GBFpbpa

rbla
G

[cd]

1
eQe

2k1pa
(

r
BFpbk1

lbr G
[cd]

UFk1k1pa

rs1la
G

2
eQe

2k1pb
(

r
VFpbk1k1

lbs1r GBFk1pa

rla
G

[cd]

.

~114!

17This kind of separation was already exploited in Ref.@21#. We
thank E. Richter-Wa¸s for attracting our attention to this method.
11300
li-
se
he

e
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e

The summation in the first two terms gets eliminated by
diagonality property ofU and V, see Eq.~A21! in the Ap-
pendix, and leads to

M 1$I %S pk1

ls1
D5ss1

$I %~k1!BF p

l G1r $I %S pk1

ls1
D ,

r $I %S pk1

ls1
D51

eQe

2k1pa
(

r
BFpbk1

lbr G
[cd]

UFk1k1pa

rs1la
G

2
eQe

2k1pb
(

r
VFpbk1k1

lbs1r GBFk1pa

rla
G

[cd]

,

~115!

ss1

$I %~k1!52eQe

bs1
~k1 ,pa!

2k1pa
1eQe

bs1
~k1 ,pb!

2k1pb
.

The soft part is now clearly separated and the remain
non-IR part, necessary for the CEEX, is obtained.

The case of final-state, one-real-photon emission, see
7, can be analyzed in a similar way. The first-order FS
one-photon, matrix element is

M1$F%S pk1

ls1
D5eQfū~pc ,lc!e”s1

* ~k1!

3
p” c1m1k” 1

2k1pc
M $F%v~pd ,ld!

1eQfū~pc ,lc!M $F%

2p” d1m2k” 1

2k1pd

3e”s1
* ~k1!v~pd ,ld!, ~116!

where

FIG. 6. ISR diagrams.

FIG. 7. FSR diagrams.
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M $F%5 ie2 (
B5g,Z

PB
mn~X!~Ge,m

B ! [ba]Gf ,n
B ~117!

is the spinor matrix for annihilation scattering, including t
initial spinors. Similarly, the expansion into soft and non-
parts for the FSR spin amplitudes is done in a way co
pletely analogous to the ISR case:

M1$F%S pk1

ls1
D5ss1

$F%~k1!BS p
l D1r $F%S pk1

ls1
D ,

r $F%S pk1

ls1
D5

eQf

2k1pc
(

r
UFpck1k1

lcs1r GB[ba]Fk1pd

rld
G

2
eQf

2k1pd
(

r
B [ba]Fpck1

lcr
GVFk1k1pd

rs1ld
G ,

ss1

$F%~k1!5eQf

bs1
~k1 ,pc!

2k1pc
2eQf

bs1
~k1 ,pd!

2k1pd
.

~118!

For the purpose of the following discussion of the rema
ing non-IR terms, it is useful to introduce an even mo
compact tensor notation:

UF pfkikj

l fs is j
G[U [ f ,i , j ] , BF pbpa

lbla
GF pcpd

lcld
G[B[ba][ cd] ,

~119!

etc. For the ‘‘primed’’ indices we understand contraction
for instance

U [a,i , j 8]V[ j 8, j ,b][ (
s j856

UF pakikj

las is j8
GVF kjkj pb

s j8s jlb
G .

~120!

Using the above notation, the completeO(a1) spin am-
plitude for the one-photon ISR1FSR, coming directly from
the Feynman diagrams, with the explicit split into IR a
non-IR parts, and ISR and FSR parts, reads

M1
(1)S pk1

ls1
D5M1$I %

(1) S pk1

ls1
D ~P2k1!1M1$F%

(1) S pk1

ls1
D ~P!

5s[1]
$I % BS p

l
;P2k1D1r $I %S pk1

ls1
;P2k1D

1s[1]
$F%BS p

l
;PD1r $F%S pk1

ls1
;PD , ~121!

r $I %S pk1

ls1
;XD5

eQe

2kpa
B[b18cd]~X!U [181a]

2
eQe

2kpb
V[b118]B[18acd]~X!
11300
-

-

,

r $F%S pk1

ls1
;XD5

eQf

2kpc
U [c118]B[ba18d]~X!

2
eQf

2kpd
B[bac18]~X!V[181d] .

In the lowest order, the Born spin amplitudesB are defined
in Eq. ~44!, and we show explicitly as an argument the fou
momentumX that enters the propagator of thes-channel ex-
change. Note that the formulas here differ by an overall s
from those of Ref.@3#.

First- and second-orderb̂1

Now we employ the tree-level,O(a1) variant of Eqs.~95!
obtaining the following results:

b̂1$I %
(1) S pk1

ls1
;P2k1D[r $I %S pk1

ls1
;P2k1D

b̂1$F%
(1) S pk1

ls1
;PD[r $F%S pk1

ls1
;PD

1S ~pc1pd1k1!2

~pc1pd!2 21DBS p

l
;XD .

~122!

The ‘‘context-dependent’’ reduced total momentumX ~the
total four-momentum in the resonance propagator, if pres!
is in the above definition uniquely defined asX5P2k1 in
the case of the ISR, andX5P in the case of the FSR. In th
general context of the CEEX amplitude of Eqs.~31!–~35!,
that is in the presence of the additional ‘‘spectator’’ IS
photons in a given term,X is also defined quite unambigu
ously: X` includes not onlyk1 but also all additional ISR
momenta in the process. For the pseudoflux factor ther
some ambiguity, however. In the presence of the additio
‘‘spectator’’ ISR photons it can be defined either as (pa
1pb2k1)2/(pa1pb)2 or (pc1pd1k1)2/(pc1pd)2. We are
free to choose either of them and we opted for the sec
choice~it seems to lead to more stable MC weights!.

The one-loop level,O(a2) case ofb̂1
(2) is quite interest-

ing, because this is the first time that we deal with the n
trivial case of the simultaneous emission of virtual and r
photons. It is therefore instructive to write the formal defin
tions of b̂1

(2) following Eqs. ~96! and ~95! in this particular
case:

M1$v%
(2) S pk1

ls1
;XvD5 H exp[2aB4

2aDB4
R~Xv!]M 1$v%

(2) S pk1

ls1
;XvD J U

O(a2)

,

v5I ,F, R5g,Z, ~123!
9-29
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b̂1$I %
(2) S pk1

ls1
;P2k1D5M1$I %

(2) S pk1

ls1
;P2k1D

2ss1

$I %~k1!b̂0
(1)S p

l
;P2k1D ~124!

b̂1$F%
(2) S pk1

ls1
;PD5M1$F%

(2) S pk1

ls1
;PD2ss

$F%~k1!b̂0
(1)S p

l
;PD .

What is at present available from the Feynman diagram
For the moment we have at our disposal the amplitudes
responding to vertexlike diagrams in Fig. 8, and we m
diagrams of the ‘‘5-box’’ type shown in the third~bottom!
row in Fig. 5. More precisely, after applying the IR virtu
subtraction of Eq.~123! we expand in the number of loops
keeping track of the initial- and final-state attachment of
virtual photon:

M1$v%
(2) S pk1

ls1
;XD5M1$v%

(1) S pk1

ls1
;XD1aQe

2M1$v%,I 2
[1] S pk1

ls1
;XD

1aQf
2M1$v%,F2

[1] S pk1

ls1
;XD

1aQeQfM1$v%,Box5
[1] S pk1

ls1
;XD . ~125!
11300
?
r-
s

e

In the above expression the first term describes the alre
discussed tree-level single bremsstrahlung, the next two
respond to the vertexlike diagrams in Fig. 8, and the last
represents the ‘‘5-box’’-type diagrams in the third row
Fig. 5. In the present version we temporarily omit from t
calculation the contribution tob̂1

(2) from the last, ‘‘5-box’’
term, which looks as follows:

b̂1$v%,Box5
(2) S pk1

ls1
;XD5aQeQfM1$v%,Box5

[1] S pk1

ls1
;XD

2s[1]
$I } RBox

(1) S p

l
;XD2s[1]

$F} RBox
(1) S p

l
;XD .

~126!

As we see, the trivial IR part, which we remove, is propo
tional to the ordinary box contributions discussed before.
expect the above to contribute in the integrated cross sec
at most ofO(a2L1), and in the resonance scattering it w
be suppressed by an additionalG/M factor.

Limiting ourselves to the pure ‘‘vertexlike’’ diagrams o
Fig. 8, for one real ISR (v5I ) photon we obtain from the
Feynman rules the followingO(Qe

2a2) result:
FIG. 8. One-loop corrections
to single bremsstrahlung.
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b̂1$I %
(2) S pk1

ls1
;XD[r $I %S pk1

ls1
;XD @11dVirt

(1)e~s!

1rVirt
(2)e~s,ã1 ,b̃1!#@11dVirt

(1) f~s!#

1BS p

l
;XD ss1

$I %~k1!rVirt
(2)e~s,ã,b̃ !

~127!

where

rVirt
(2)e~s,ã,b̃ !5

a

p
Qe

2 1

2
@V~s,ã,b̃ !1V~s,b̃,ã !#,

V~s,ã,b̃ !5 ln~ ã !ln~12b̃ !1Li2~ ã !2
1

2
ln2~12ã !

1
3

2
ln~12ã !1

1

2

ã~12ã !

@11~12ã !2#
~128!

and we use the Sudakov variables

ã i5
2kipb

2papb
, b̃ i5

2kipa

2papb
. ~129!

Let us make a number of observations concerning Eq.~127!:
The terms ofO(a4) like uss

$I %rVirt
(2)eu2 in the cross section

although beyondO(a2), are not rejected, as would be th
case in an ordinaryO(a2) calculation without exponentia
tion. They are included in the process of numerical eval
tion of the differential cross sections out of spin amplitud
~It is essential that they be IR finite.!

The term r $I %dVirt
(1)e contributes toO(a2L2) to the inte-

grated cross section: oneL1 is explicit ~from the virtual pho-
ton! and anotherL1 is from the integration over the angle o
the real photon.

The term ; ln(ã)ln(12b̃) contributes a correction o
O(a2L2) to the integrated cross section, with the doub
logarithmL2 resulting directly from the integration over th
angle of the real photon:

E dk3

k0 R@rVirt
(2)e~k!$b̂0ss

$I%~k!%* ];Qe
2a2E

me
2/s

dã

ã
ln~ ã !

;Qe
2a2 ln2

s

me
2 .

The other terms inb̂1$I %
(2) contribute at mostO(a2L1).

The FSR virtual corrections are included multiplicative
through the factor@11dVirt

(1) f(s)# and are not included addi
tively like @11dVirt

(1)e(s)1dVirt
(1) f(s)#. This is our deliberate

choice.
The subleading termã(12ã)/@11(12ã)2# has in fact a

more complicated spin structure than that of the Born am
tude ~it should be restored in the future!. The unpolarized
integrated cross section is however correct inO(a2L1).
11300
-
.

i-

The analogousO(Qf
2a2) contribution for one real FSR

(v50) photon is

b̂1$F%
(2) S pk

ls
;XD[r $F%S pk

ls
;XD @11dVirt

(1)e~s!#@11dVirt
(1) f~s!

1rVirt
(2) f~s,ã8,b̃8!#

1BS p

l
;XD ss

$F%~k!rVirt
(2) f~s,ã8,b̃8!

1BS p

l
;XD ss

$F%~k!@11dVirt
(1)e~s!#

3@11dVirt
(1) f~s!#S 12

~pc1pd1k!2

~pc1pd!2 D
~130!

where

rVirt
(2) f~s,ã8,b̃8!5

a

p
Qf

2 1

4
L̄ f@ ln~12ã9!1 ln~12b̃9!#,

ã85
2kpd

2pcpd
, b̃85

2kpc

2pcpd
, ã95

ã8

11ã81b̃8
,

b̃95
b̃8

11ã81b̃8
. ~131!

In the above FSR amplitudes we keep only the LL pa
averaged over the photon angles, much as in EEX. This
responds to the present status of our CEEX amplitu
implemented in theKK MC version 4.13, and we expect th
to be improved in the future.

F. Two real photons

In theO(a2), the contributions from two real photons a
completely at the tree level, without virtual corrections@in
the futureO(a3) version we shall include the virtual correc
tions to the double bremsstrahlung in the LL approximatio#.
The double bremsstrahlung is considered in three sepa
cases: two ISR photons, two FSR photons, and one ISR
one FSR photon. The corresponding spin amplitudes will
given without any approximation, in particular we do not u

FIG. 9. Feynman diagrams of the ISR double bremsstrahlun
9-31
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the small-mass approximationmf /As!1. The main problems to be solved will be~a! to write all spin amplitudes in a form
that will be easy for numerical evaluation, that is in terms of theU andV matrices,~b! to extract theb̂2 functions by removing
IR-singular parts.

1. Two real ISR photons

The second-order, two-photon, ISR matrix element from the Feynman rules, see Fig. 9, reads as follows:

M 2$II %
(2) S papbk1k2

lalbs1s2
;P2k12k2D5 ie2 (

B5g,Z
PB

mn~P2k12k2!~Gf ,n
B ! [cd]~eQe!

2v̄~pb ,lb!

3H Ge,m
B ~p” a1m!2k” 12k” 2

22k1pa22k2pa12k1k2
e”s1
* ~k1!

~p” a1m!2k” 2

22k2pa
e”s2
* ~k2!

1e”s1
* ~k1!

~2p” b1m!1k” 1

22k1pb
e”s2
* ~k2!

~2p” b1m!1k” 11k” 2

22k1pb22k2pb12k1k2
Ge,m

B

1e”s1
* ~k1!

~2p” b1m!1k” 1

22k1pb
Ge,m

B ~p” a1m!2k” 2

22k2pa
e”s2
* ~k2!1~1↔2!J u~pa ,la!. ~132!

We shall use Eq.~95!, which in this case reads

b̂2$II %
(2) S pk1k2

ls1s2
;P2k12k2D5M2$II %

(2) S pk1k2

ls1s2
;P2k12k2D2b̂1$I %

(1) S pk1

ls1
;P2k12k2D ss2

$I %~k2!

2b̂1$I %
(1) S pk2

ls2
;P2k12k2D ss1

$I %~k1!2b̂0
(0)S p

l
;P2k12k2D ss1

$I %~k1!ss2

$I %~k2!. ~133!

We shall proceed similarly to the way we used in the one-photon case, isolating from the above expression the group
containing two factors of (p”1m), then the group containing a single factor of (p”1m), and finally the rest. Such a spl
represents almost exactly the split in Eq.~60! into a contribution with twos factors~the double IR singularity!, with a single
s factor ~the single IR singularity!, and the IR-finite remnantb̂2

(2) , which is our primary goal. In other words, we decompo
M2$II %

(2) into several terms or parts, as described above, and we apply the IR subtraction of Eq.~133! term by term.
Let us first discuss the doubly IR-singular part proportional to two factors of (p”1m). To simplify maximally the discus-

sion, let us neglect for the moment 2k1k2 in the propagator. Using the completeness relations of Eq.~A14! and the diagonality
property of Eq.~A21! in the Appendix, we can factorize the soft factors exactly and completely:

~eQe!
2v̄~pb ,lb!H Ge,m

B ~p” a1m!

2k1pa12k2pa
e”s1
* ~k1!

~p” a1m!

2k2pa
e”s2
* ~k2!1e”s1

* ~k1!
~2p” b1m!

2k1pb
e”s2
* ~k2!

~2p” b1m!

2k1pb12k2pb
Ge,m

B

1e”s1
* ~k1!

~2p” b1m!

2k1pb
Ge,m

B ~p” a1m!

2k2pa
e”s2
* ~k2!1~1↔2!J u~pa ,la!

5~Ge,m
B ! [ba]~eQe!

2H bs1
~k1 ,pa!

2k1pa12k2pa

bs2
~k2 ,pa!

2k2pa
1

bs1
~k1 ,pb!

2k1pb

bs2
~k2 ,pb!

2k1pb12k2pb
2

bs1
~k1 ,pb!

2k1pb

bs2
~k2 ,pa!

2k2pa
1~1↔2!J

5~Ge,m
B ! [ba]ss1

$I %~k1!ss2

$I %~k2!, ~134!

where the identity

1

2k1pa12k2pa

1

2k1pa
1

1

2k1pa12k2pa

1

2k2pa
5

1

2k1pa

1

2k2pa
~135!

was instrumental.
If we restore the terms 2k1k2 in the propagator, the corresponding analog of Eq.~134!, M 2$II %

Double IR, leads to
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b̂2$II %
(2)DoubleF pk1k2

ls1s2
G5M 2$II %

Double IRF pk1k2

ls1s2
G

2ss1

$I %~k1!ss2

$I %~k2!BF p

l G
5~s[1]

(a)s[2]
(a)Da1s[1]

(b)s[2]
(b)Db!BF p

l G ,
~136!

ss i

(a)~ki ![s[ i ]
(a)52eQe

bs1
~ki ,pa!

2kipa
,

ss i

(b)~ki ![s[ i ]
(b)51eQe

bs1
~ki ,pb!

2kipb
,

ss i

$I %~ki ![s[ i ]
(a)1s[ i ]

(b)[ss i

(a)~ki !1ss i

(b)~ki !,
11300
D f5
2k1pf12k2pf

2k1pf12k2pf72k1k2
21

5
62k1k2

2k1pf12k2pf72k1k2
,

f 5a,b,c,d,

and the upper sign should be taken forf 5a,b. Obviously,
b̂ (2)Double is IR finite because of theD f factor. In the above
we have introduced a more compact notation for thes fac-
tors. In addition, from now on we shall use the followin
shorthand notation

r i f 52ki•pf , r i j 52ki•kj , f 5a,b,c,d,

i , j ,51,2, . . . ,n. ~137!

The next class of terms that we are going to consi
carefully is the one in which we sum terms with a sing
(p”1m); more precisely, let us include terms that may lead
a single IR singularity~if k1!k2 or k2!k1), that is, with
(p”1m) next to a spinor, at the end of the fermion line:
M 2$II %
Single IRF pk1k2

ls1s2
G5 ie2 (

B5g,Z
PB

mn~X!~Gf ,n
B ! [cd]~eQe!

2v̄~pb ,lb!H Ge,m
B 2k” 12k” 2

2r 1a2r 2a1r 12
e”s1
* ~k1!

~p” a1m!

2r 2a
e”s2
* ~k2!

1e”s1
* ~k1!

~2p” b1m!

2r 1b
e”s2
* ~k2!

k” 11k” 2

2r 1b2r 2b1r 12
Ge,m

B 1e”s1
* ~k1!

~2p” b1m!

2r 1b
Ge,m

B 2k” 2

2r 2a
e”s2
* ~k2!

1e”s1
* ~k1!

k” 1

2r 1b
Ge,m

B ~p” a1m!

2r 2a
e”s2
* ~k2!1~1↔2!J u~pa ,la!. ~138!

Using the compact notation, already introduced when~re!calculating the single bremsstrahlung, we expressM 2$II %
Single IR in a

form that will make numerical evaluation easy, that is in terms ofU andV matrices:

M 2$II %
Single IRS pk1k2

ls1s2
D5eQe

2B[b18][ cd]U [181a]2B[b28][ cd]U [281a]

2r 1a2r 2a1r 12
s[2]

(a)1eQes[1]
(b) V[b228]B[28a][ cd]1V[b218]B[18a][ cd]

2r 1a2r 2a1r 12

2eQes[1]
(b)B[b28][ cd]

U [282a]

2r 2a
1eQe

V[b118]

2r 1b
B[18a][ cd]s[2]

(a)1~1↔2!. ~139!

On the other hand, the single-IR part to be eliminated is

b̂1(1)[1]
(1) s[2]

$I % 1b̂1(1)[2]
(1) s[1]

$I % 5r [1]
$I % s[2]

$I % 1r [2]
$I % s[1]

$I %

5S eQeB[b18][ cd]

U [181a]

r 1a
2eQe

V[b118]

r 1a
B[18a][ cd] D s[2]

$I % 1~1↔2!. ~140!

Altogether we get
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b̂2$II %
SingleS pk1k2

ls1s2
D5M 2$II %

Single IRS pk1k2

ls1s2
D2b̂1(1)[1]

(1) s[2]
$I % 2b̂1(1)[2]

(1) s[1]
$I %

52eQeB[b28][ cd]

U [281a]

2r 1a2r 2a1r 12
s[2]

(a)1eQes[1]
(b) V[b218]

2r 1a2r 2a1r 12
B[18a][ cd]

2eQeB[b18][ cd] S U [181a]

2r 1a2r 2a1r 12
2

U [181a]

2r 1a
D s[2]

(a)

1eQes[1]
(b)S V[b228]

2r 1a2r 2a1r 12
2

V[b228]

2r 2b
DB[28a][ cd]1~1↔2!. ~141!

It is rather straightforward to see that the above is IR finite.
Finally, we have to include all of the remaining terms from Eq.~134!, which have not yet been included inb̂2$II % . They are

IR finite ~in the case of only soft-photon energy! and they read

b̂2$II %
Rest S pk1k2

ls1s2
D5 ie2 (

B5g,Z
PB

mn~X!~Gf ,n
B ! [cd]~eQe!

2v̄~pb ,lb!H Ge,m
B ~p” a1m!2k” 12k” 2

2r 1a2r 2a1r 12
e”s1
* ~k1!

2k” 2

2r 2a
e”s2
* ~k2!

1e”s1
* ~k1!

k” 1

2r 1b
e”s2
* ~k2!

~2p” b1m!1k” 11k” 2

2r 1b2r 2b1r 12
Ge,m

B

1e”s1
* ~k1!

k” 1

2r 1b
Ge,m

B 2k” 2

2r 2a
e”s2
* ~k2!1~1↔2!J u~pa ,la!. ~142!

Using tensor notation in the fermion helicity indices, the above can be expressed in terms of theU andV matrices as follows:

b̂2$II %
Rest S pk1k2

ls1s2
D5~eQe!

2
B[ba8][ cd]U [a8129]2B[b18][ cd]U [18129]2B[b28][ cd]U [28129]

2r 1a2r 2a1r 12

2U [292a]

2r 2a

1~eQe!
2

V[b119]

2r 1b

2V[192b8]B[b8a][ cd]1V[19218]B[18a][ cd]1V[19228]B[28a][ cd]

2r 1b2r 2b1r 12

1~eQe!
2

V[b118]

2r 1b
B[1828][ cd]

2U [282a]

2r 2a
1~1↔2!. ~143!

The total ISRb̂2$II % is the sum of the three,

b̂2$II %S pk1k2

ls1s2
D5b̂2$II %

DoubleS pk1k2

ls1s2
D1b̂2$II %

SingleS pk1k2

ls1s2
D1b̂2$II %

Rest S pk1k2

ls1s2
D . ~144!

2. Two-real FSR photons

The case of final-state double real photon emission can be analyzed in a similar way. The second-order FSR, two
matrix element is

M 2$FF%
(2) S pk1k2

ls1s2
;PD5 ie2 (

B5g,Z
PB

mn~P!~Ge,m
B ! [ba]~eQf !

2ū~pc ,lc!H e” @1#
*

~p” c1m!1k” 1

2k1pc
e” @2#
*

~p” c1m!1k” 11k” 2

2k1pc12k2pc12k1k2
Gf ,n

B

1Gf ,n
B ~2p” d1m!2k” 12k” 2

2k1pd12k2pd12k1k2
e” @1#
*

~2p” d1m!2k” 2

2k2pd
e” @2#
*

1e” @1#
*

~p” c1m!1k” 1

2k1pc
Gf ,n

B ~2p” d1m!2k” 2

2k2pd
e” @2#
* 1~1↔2!J v~pd ,ld!. ~145!

Similarly, the expansion into soft and non-IR parts for the FSR spin amplitudes is done in a way completely analogou
ISR case. The subtraction formula is now
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b̂2$FF%
(2) S pk1k2

ls1s2
;PD5M2$FF%

(2) S pk1k2

ls1s2
;PD2b̂1$F%

(1) S pk1

ls1
;PD ss2

$F%~k2!2b̂1$F%
(1) S pk2

ls2
;PD ss1

$F%~k1!2b̂0
(0)S p

l
;PD ss1

$F%~k1!ss2

$F%~k2!.

~146!

First we obtain the contribution from terms with two (p”2m) factors:

b̂2$FF%
(2)DoubleF pk1k2

ls1s2
G5M 2$FF%

Double IRF pk1k2

ls1s2
G2s[1]

$F%s[2]
$F%B[ba][ cd]

~pc1pd1k11k2!2

~pc1pd!2

5~Dcs[1]
(c)s[2]

(c)1Dds[1]
(d)s[2]

(d)!B[ba][ cd]2s[1]
$F%s[2]

$F%BFF pbpa

lbla
G S ~pc1pd1k11k2!2

~pc1pd!2 21D ; ~147!

ss i

(c)~ki ![s[ i ]
(c)51eQf

bs i
~ki ,pc!

r ic
,

ss i

(d)~ki ![s[ i ]
(d)52eQf

bs i
~ki ,pd!

r id
,

ss i

$F%~ki ![ss i

(c)~ki !1ss i

(d)~ki ![s[ i ]
(c)1s[ i ]

(d) ,

which is explicitly IR finite. The second group of terms with only one (p”2m) factor at the end of the fermion line is

M 2$FF%
Single IRS pk1k2

ls1s2
D5 ie2 (

B5g,Z
PB

mn~X!~Ge,m
B ! [ba]~eQf !

2ū~pc ,lc!H e” @1#
*

~p” c1m!

r 1c
e” @2#
*

k” 11k” 2

r 1c1r 2c1r 12
Gf ,n

B

1Gf ,n
B 2k” 12k” 2

r 1d1r 2d1r 12
e” @1#
*

~2p” d1m!

r 2d
e” @2#
* 1e” @1#

*
~p” c1m!

r 1c
Gf ,n

B 2k” 2

r 2d
e” @2#
*

1e” @1#
*

k” 1

r 1c
Gf ,n

B ~2p” d1m!

r 2d
e” @2#
* 1~1↔2!J v~pd ,ld!, ~148!

and it translates, in the matrix notation~in the fermion spin indices!, into

M 2$FF%
Single IRS pk1k2

ls1s2
D5eQfs[1]

(c) U [c218]

r 1c1r 2c1r 12
B[ba][1 8d]1eQfs[1]

(c) U [c228]

r 1c1r 2c1r 12
B[ba][2 8d]1eQfB[ba][ c18]

2V[181d]

r 1d1r 2d1r 12
s[2]

(d)

1eQfB[ba][ c28]

2V[281d]

r 1d1r 2d1r 12
s[2]

(d)1eQfs[1]
(c)B[ba][ c28]

2V[282d]

r 2d
1eQf

U [c118]

r 1c
B[ba][1 8d]s[2]

(d)1~1↔2!.

~149!

On the other hand, the single-IR part to be eliminated is

b̂1(0)[1]
(1) s[2]

$F%1b̂1(0)[2]
(1) s[1]

$F%5r [1]
$F%s[2]

$F%1r [2]
$F%s[1]

$F%

5S 1eQeB[ba][1 8d]

U [c118]

r 1c
2eQe

V[181d]

r 1d
B[ba][ c18] D s[2]

$F%

1~1↔2!2B[ba][ cd] S ~pc1pd1k1!2

~pc1pd!2 21D s[1]
$F%s[2]

$F%1~1↔2!. ~150!

Altogether we get
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b̂2$FF%
SingleS pk1k2

ls1s2
D5M 2$FF%

Single IRS pk1k2

ls1s2
D2b̂1(0)

(1) S pk1

ls1
D s$F%F k2

s2
G2b̂1(0)

(1) S pk2

ls2
D s$F%F k1

s1
G

5eQfs[1]
(c) H S U [c228]

r 2c1r 1c1r 12
2

U [c228]

r 2c
DB[ba][2 8d]1

U [c218]

r 2c1r 1c1r 12
B[ba][1 8d] J

1eQf HB[ba][ c18] S 2V[181d]

r 1d1r 2d1r 12
2

2V[181d]

r 1d
D1

2V[281d]

r 1d1r 2d1r 12
B[ba][ c28] J s[2]

(d)

1B[ba][ cd] S ~pc1pd1k1!2

~pc1pd!2 21D s[1]
$F%s[2]

$F%1~1↔2!. ~151!

Finally we include the remaining terms in Eq.~145!,

M 2$FF%
Rest S pk1k2

ls1s2
D5 ie2 (

B5g,Z
PB

mn~X!~Ge,m
B ! [ba]~eQf !

2ū~pc ,lc!H e” @1#
*

k” 1

r 1c
e” @2#
*

~p” c1m!1k” 11k” 2

r 1c1r 2c1r 12
Gf ,n

B

1Gf ,n
B ~2p” d1m!2k” 12k” 2

r 1d1r 2d1r 12
e” @1#
*

2k” 2

r 2d
e” @2#
* 1e” @1#

*
k” 1

r 1c
Gf ,n

B 2k” 2

r 2d
e” @2#
* 1~1↔2!J v~pd ,ld!, ~152!

which in the programmable matrix notation looks as follows:

b̂2$FF%
Rest S pk1k2

ls1s2
D5M 2$FF%

Rest S pk1k2

ls1s2
D

5~eQf !
2

U [c119]

r 1c

U [192c8]B[ba][ c8d]1U [19218]B[ba][1 8d]1U [19228]B[ba][2 8d]

r 1c1r 2c1r 12

1~eQf !
2
2B[ba][ cd8]V[d8129]2B[ba][ c18]V[18129]2B[ba][ c28]V[28129]

r 1d1r 2d1r 12

2V[292d]

r 2d

1~eQf !
2

U [c118]

r 1c
B[ba][1 828]

2V[282d]

r 2d
1~1↔2!. ~153!

The total contribution from the double FSR real photon emission is

b̂2$FF%S pk1k2

ls1s2
D5b̂2$FF%

DoubleS pk1k2

ls1s2
D1b̂2$FF%

SingleS pk1k2

ls1s2
D1b̂2$FF%

Rest S pk1k2

ls1s2
D . ~154!

3. One-real ISR and one-real FSR photon

As we have seen in the previous cases of the double-real emission, most of the complications are due to the sim
emission from one fermion ‘‘leg.’’ The case of one-real ISR and one-real FSR photon is easier, because there is at m
photon on one leg:

M 2$IF %
(2) S papbpcpdk1k2

lalblclds1s2
;P2k1D5 ie2 (

B5g,Z
PB

mn~P2k1!eQev̄~pb ,lb!

3S Ge,m
B p” a1m2k” 1

22k1pa
e” @1#
* 1e” @1#

*
2p” b1m1k” 1

22k1pb
Ge,m

B Du~pa ,la!eQfū~pc ,lc!

3S Gf ,n
B 2p” d1m2k” 2

2k2pd
e” @2#
* 1e” @2#

*
p” c1m1k” 2

2k2pc
Gf ,n

B D v~pd ,ld! ~155!

and the subtraction formula is now
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b̂2$IF %
(2) S pk1k2

ls1s2
;P2k1D5M2$IF %

(2) S pk1k2

ls1s2
;P2k1D2b̂1$I %

(1) S pk1

ls1
;P2k1D ss2

$F%~k2!

2b̂1$F%
(1) S pk2

ls2
;P2k1D ss1

$I %~k1!2b̂0
(0)S p

l
;P2k1D ss1

$I %~k1!ss2

$F%~k2!. ~156!

The simplicity of this contribution is manifest in the fact thatb̂2$IF % is obtained by the simple subtraction~omission! of all
terms proportional to one or two (p”2m) factors

b̂2$IF %S pk1k2

ls1s2
;XD5 ie2 (

B5g,Z
PB

mn~X!eQev̄~pb ,lb!S Ge,m
B 2k” 1

2r 1a
e” @1#
* 1e” @1#

*
k” 1

2r 1b
Ge,m

B D
3u~pa ,la!eQfū~pc ,lc!S Gf ,n

B 2k” 2

r 2d
e” @2#
* 1e” @2#

*
k” 2

r 2c
Gf ,n

B D v~pd ,ld!. ~157!

In the computation-friendly matrix notation it reads

b̂2$IF %S pk1k2

ls1s2
;XD5 ie2 (

B5g,Z
PB

mn~X!eQeeQf S ~Ge,m
B ! [b18]

2U [181a]

2r 1a
1

V[b118]

2r 1b
~Ge,m

B ! [18a] D
3S ~Gf ,n

B ! [c28]

2V[282d]

r 2d
1

U [c228]

r 2c
~Gf ,n

B ! [28d] D
5eQeeQf S B[b18][ c28]~X!

2U [181a]

2r 1a

2V[282d]

r 2d

1
U [c228]

r 2c
B[b18][2 8d]~X!

2U [181a]

2r 1a
1

V[b118]

2r 1b
B[18a][ c28]~X!

2V[282d]

r 2d
1

V[b118]

2r 1b

U [c228]

r 2c
B[18a][2 8d]~X! D .

~158!
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IV. RELATIONS BETWEEN CEEX AND EEX

Having shown the CEEX and EEX schemes in detail,
would like to compare certain important and interesting f
tures of both schemes in more detail. In particular we wo
like to show how the two examples of the EEX scheme c
be obtained as a limiting case of the CEEX, and to show
exact relation between theb̄ ’s of the EEX and theb̂ ’s of the
CEEX. From these considerations it will be clear that t
CEEX scheme is more general than the EEX scheme.

A. Neglecting partition dependence

Let us first examine the interesting limit of the CEEX
which we drop the dependence on the partition indexX`

→P, whereP5pa1pb , for example. Note that it is not in
the EEX class. In this limit, in the simplest case of theO(a0)
exponentiation, we have

(̀
PP

eaB4(X`)
X`

2

scd
BS p

l
;X`D)

i 51

n

s[ i ]
$` i %

⇒eaB4BS p

l
;PD)

i 51

n

~s[ i ]
$I %1s[ i ]

$F%!, ~159!

because of the identity~78!. Note that in the above transitio
we keep the ISR̂ FSR interference contribution.
11300
e
-
d
n
e

e

B. Neglecting IFI

The second important case we would like to discuss is
case of the very narrow resonances, when the ISR^ FSR
interference contribution to any physical observable is
small that it can be altogether neglected. This correspond
a well-defined limit in the CEEX scheme. In this limit, in th
simplest case of theO(a0) exponentiation we have

uM n
(0)u25 (̀

PP (
`8PP

exp@aB4~X`!#

3exp@aB4~X`8!#* BS p

l
;X`DBS p

l
;X`8D *

3)
i 51

n

s[ i ]
$` i %)

j 51

n

s
[ j ]
$` i8%*

⇒exp@2aRB2~pa ,pb!#exp@2aRB2~pc ,pd!#

3 (̀
PP

UBS p

l
;X`D U2

)
i 51

n

us[ i ]
$` i %u2. ~160!

What we did in the above transition is to neglect the IS
^ FSR interferences entirely, by dropping the nondiago
terms `Þ`8 in the double sum over partitions, and to r
9-37



tr

e
A
.

e

in

h

r
th
-
-

ls
s

r-
ari-

a
EX

al-
or
te-
in-
of
we
in

nte
he

the
- or

-

ter
ited

:
e

ays

that

cal
t-
s

the
ch
pre-

the
g
ple
but
he
n
for

ts

ata
ntly

S. JADACH, B. F. L. WARD, AND Z. WA̧S PHYSICAL REVIEW D63 113009
place the resonance-type form factor by the sum of the
ditional YFS form factors for the ISR and the FSR~no inter-
ference!. In this way we have theO(a0)EEX , which at this
order is identical toO(a0)CEEX. At O(a r)CEEX, r 51,2, in
order to get fromO(a r)CEEX to O(a r)EEX , we have in ad-
dition to truncate theb̂ ’s down to b̄ ’s, as will be shown in
the next subsection.

TheO(a r)EEX , r 51,2, neglecting the ISR̂FSR interfer-
ences was used in theYFS2/3 @7,9# of KORALZ @10# and it is
well justified close to theZ resonance position at LEP1; se
also the relevant numerical results in the next section.
LEP2 the above approximation can no longer be justified

C. Relation amongb̄ ’s for EEX and b̂ ’s of CEEX

For the sake of completeness of the discussion, it is n
essary to find out the relation between theb̂ ’s defined at the
amplitude level and the older EEX/YFSb̄ ’s defined at the
level of the differential distributions. Let us suppress all sp
indices, understanding that for every term likeu•••u2 or
R@AB* # the appropriate spin sum or average is done. T
traditional b̄ ’s of the YFS scheme at theO(a2) level are

b̄0
( l )5uM0

( l )u(a l )
2 , l 50,1,2,

b̄1
( l )~k!5uM1

( l )~k!u(a l 11)
2

2b̄0
( l )us~k!u2, l 50,1,

~161!

b̄2
(2)~k1 ,k2!5uM1

(2)~k1 ,k2!u22b̄1
(1)~k1!us~k2!u2

2b̄1
(1)~k2!us~k1!u2

2b̄0
(0)us~k1!u2us~k2!u2,

where the subscriptu(ar ) means a truncation toO(a r). Now
for eachMn

(n1 l ) we substitute its expansion in terms ofb̂ ’s
according to Eq.~58!, getting the following relation:

b̄0
( l )5ub̂0

( l )u(a l )
2 , l 50,1,2,

b̄1
( l )~k!5ub̂1

( l )~k!u212R@b̂0
( l )$b̂1

( l )~k!%* # (a l 11) , l 50,1,
~162!

b̄2
(2)~k1 ,k2!5ub̂2

(2)~k1 ,k2!u212R@b̂1
(1)~k1!s~k2!

3$b̂1
(1)~k2!s~k1!%* #12R@b̂2

(2)~k1 ,k2!

3$b̂1
(1)~k1!s~k2!b̂1

(1)~k2!s~k1!

1b̂1
(0)s~k1!s~k2!%* #.

As we see, the relation is not completely trivial; there a
some extra terms on the rhs, which are all IR finite. From
above exercise it is obvious thatb̄ ’s are generally more com
plicated objects than theb̂ ’s and that, for example, the in
clusion of the spin density matrix formalism into theb̄ ’s
would be quite a nontrivial exercise—the great advantage
the CEEX scheme is that this is done numerically. It is a
seen that in theb̄0 and b̄1 some higher-order virtual term
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areunnecessarilytruncated, which probably worsens the pe
turbative convergence of the EEX/YFS scheme in comp
son with that of the CEEX. The above formula shows in
most clear and clean way the difference between the E
and CEEX exponentiation schemes.

V. SEMIANALYTICAL APPROACH

This section is devoted to the so-called semianalytical c
culations. Their role in this work is to reproduce and/
cross-check our Monte Carlo numerical results for the in
grated cross sections and asymmetries. In the following
troduction we characterize briefly the well-known features
semianalytical methods. In the main part of this section
derive unpublished semianalytical formulas mainly with
O(a2)prag , and occasionally up toO(a3)prag . Numerical
comparisons of these semianalytical results with the Mo
Carlo results will be presented either immediately or in t
following sections.

In the semianalytical approach an integration over
phase-space is done analytically, leaving the last one
two-dimensional integrations for numerical treatment~usu-
ally non-Monte-Carlo!. Well-known examples of semiana
lytical programs areZFITTER and TOPAZ0 @5,41#. Semiana-
lytical programs are generally faster in terms of compu
CPU time than MC programs and are therefore better su
for fitting the standard model to experimental data.18 Semi-
analytical calculations have also important disadvantages~a!
they are able to provide predictions only for quite primitiv
or absent experimental cutoffs, in practice they are alw
used in combination with the MC event generators;~b! they
are rather complicated beyond the three-body final state,
is they are limited practically toO(a1) calculations~the
single photon emission in the fermion pair production!.

In the testing of the Monte Carlo programs semianalyti
calculations can~a! check the technical/numerical correc
ness of the phase-space integration,~b! check the correctnes
of the implementation of the SM matrix element, and~c!
give an estimate of some unaccounted higher orders. In
following we shall illustrate all possible examples of su
tests. In particular, we shall see the test of the technical
cision of theKK MC at the 231024 level, based on the
semianalytical formula obtained in this section.

The role of semianalytical calculations as a test of
Monte Carlo programs is seriously limited in the followin
sense: a numerical problem may show up not for the sim
kinematical cuts accessible for the semianalytical code,
rather for a more realistic/complicated event selection. T
ultimate testof the MC calculation is always the compariso
of two independent MC programs, because it can be done
arbitrary cutoffs.19 One may argue that the two-MC test cos

18It is definitely possible to fit SM parameters to experimental d
with the help of the Monte Carlo event generators, as it is curre
done in the measurements of theW-pair process in LEP2.

19This kind of test was for instance done for the first modern
O(a1) Monte Carlo event generatorMUSTRAAL of Refs. @16,17#,
with the very high precision at that time of 1%.
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COHERENT EXCLUSIVE EXPONENTIATION FOR . . . PHYSICAL REVIEW D 63 113009
too much work to realize in practice. However, our past
perience shows that at the subpermille precision level
amount of work required to obtain the semianalytical form
las and to test the corresponding code is probably the s
as the amount of work necessary in the development of
other Monte Carlo code. The above remark does not con
dict the fact that the semianalytical calculations will alwa
be very useful, especially when the precision requiremen
not excessive and when the observables do not involve c
plicated experimental cuts.

A. Inclusive exponentiation: IEX

The meaning of ‘‘exponentiation’’ in the literature i
strongly context dependent. Following the unpublished p
sentation of Ref.@4# we call an ‘‘ad hocexponentiation’’ the
exponentiation of the typical semianalytical approach. T
essence of thead hocexponentiation is to take as a startin
point an analytical result for a certain one- or tw
dimensionalinclusive distribution from a QED finite-order
calculation,O(a) or O(a2), and to ‘‘improve’’ this result in
a ratherad hocway, such that the soft limit~no hard pho-
tons! agrees with the result of the Yennie, Frautschi, a
Suura@8#.

The well-known examples of thead hocexponentiation
are presented in Refs.@42,43# and later in Ref.@44# for the
initial-state bremsstrahlung ine1e2 annihilation; it was also
practiced in many QED calculations for the deep inelas
and Bhabha scattering processes. With some effort, thead
hocexponentiation procedure may be improved gradually
taking into account missing higher-order effects. For e
ample, theO(a) procedure of Ref.@42# was extended to
O(a2) in Ref. @43# and later toO(a3) in Ref. @44#. How-
ever, the upgrade to higher orders is rather an art tha
science, i.e., thead hocapproach is not systematic—it has
be ‘‘reinvented’’ again and again for each perturbative or
and for each inclusive observable.20

The important practical question is therefore the follo
ing: Is there any better and more systematic way of reform
lating the ad hoc exponentiation, such that it applies to a
inclusive distribution at any perturbative order?It would be
also desirable to have a direct connection to the exclu
YFS exponentiation of the EEX or CEEX type, both
which are discussed and implemented in this work. The
vious hint as to which direction to go in is the followin
well-known fact: when all photons are soft, the followin
exactanalytical formula for the multiphoton phase-space
tegral is available@8#:

f ~g,V!5exp~g ln «! (
n50

`
1

n!)i 51

n E
k0.2«As/2

d3ki

ki
0

3S̃~p1 ;p2 ;ki !dS V2
1

s
~p11p2!•S (

i 51

n

ki D D
20For instance it is still not known how to do inclusive expone

tiation for the acollinearity distribution.
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5
exp~2Cg!

G~11g!
gVg215F~g!gVg21,

C50.577 215 66 . . . .

We propose to include hard photons in the game, and fr
now on we define the ‘‘YFS inclusive exponentiation
~IEX! in a straightforward way as the result of theanalytical
phase-space integration of the distributions of the YFS
clusive exponentiation:

YFS inclusive exponentiation

[Analytical integration of YFS multiphoton integrals

We do not need any ‘‘recipes’’ for IEX at higher orders, an
what we only need to know is how to integrate~analytically!
the phase-space.

One may argue, however, that with the above definition
IEX we are replacing one difficult problem by another o
that is even more difficult—the analytical integration overn
real photon phase-space. We shall see in the present se
that this approach can really work in practice. Our metho
of the analytical evaluation of the phase-space integrals
follow the following general rule: in spite of the use of ce
tain approximations, all of our approximate methods will
alwaysexact in the soft-photon limit. The soft-photon pa
will be integrated exactly and only the remaining noninfrar
~non-IR! contribution will be calculated using approxima
methods, typically the leading-logarithmic collinear appro
mation. The LL approximations in non-IR parts may conce
both the phase-space and the matrix element.21

In the following subsections we shall show explicitly th
analytical integrations leading to theO(a2)prag IEX results.
We shall compare the Monte Carlo with the EEX matr
element and the IEX formulas, both in theO(a2)prag class.
Their difference will be then necessarily ofO(a3)prag , i.e.,
up to a factor of 10 smaller thanO(a2)prag—quite a strong
test of both calculations. On one occasion, we shall go t
more difficult level of theO(a3)prag , in which case the
difference between the MC and IEX is of orderO(a4)prag .

Finally, let us note that the set of IEX formulas present
in this section was used over many years as a basic, a
unpublished, test of the precisions of theYFS2 @7# and
KORALZ/YFS3 @9,10# programs. Only very limited example
of the IEX results were already shown~without derivation!
in Refs.@7# and@4#. Most of the IEX results for ours-channel
process are presented here for the first time. In the mean
the analogous set of IEX results was obtained and publis
for the t-channel-dominated Bhabha process@13#. In fact
Ref. @13# describes a case of the IEX at theO(a3)prag that is
even more sophisticated than theO(a2)prag example pre-
sented here. With the experience of Ref.@13# it would defi-
nitely be possible to do anO(a3)prag IEX calculation for our
s-channel process, both for the ISR and the FSR.

21Let us note that the LL evaluation of the phase-space inte
was already employed to some extent in the original YFS work@8#.
At that time, because of the lack of fast computers, it was the o
accessible method.
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B. Semianalytical formulas for ISR

We shall start the construction of IEX expressions w
the ISR case, first showing the basic techniques in work
out the example with theO(a0) EEX matrix element. In this
case the multiphoton differential distribution is just the Bo
cross section times the real-soft factors. While for the ot
IEX formulas the phase-space will be integrated basically
theO(a2)prag , we shall make more effort in the case of th
O(a0)EEX and do it in theO(a3)prag , as it is done in Ref.
@13#. Let us call the attention of the reader to the fact that
have the matrix element in theO(a0)EEX and the phase
space integration is in theO(a2)prag or the O(a3)prag .
There is no contradiction in this, as we shall see in the
lowing.

1. Baseline high-precision results forO(a(0))EEX

The completeO(a2)prag calculation/exponentiation ac
cording to the rules laid down at the beginning of this sect
will be rather involved; let us therefore illustrate our calc
lational methods with the simplest possible example. E
this simple example features some non-trivial technical f
tures and we shall therefore present two versions of the
culation.

The basic example discussed in the following is t
O(a0) initial-state YFS inclusive exponentiation. In th
master equation~4! we set the charge of the final fermion
zero,Qf50, and we replace the sum ofb̄ ’s with theO(a0)
version of b̄0 that is proportional to the Born differentia
cross section:

b̄0
(0)~q1 ,q2!5

2

b f

dsBorn

dV
„~q11q2!2,q…,

b f5@124mf
2/~q11q2!2#1/2,

~163!

where the normalization is such that

E d3q1

q1
0

d3q2

q2
0 d (4)~X2q12q2!b̄0

(0)~q1 ,q2!

5sBorn
„~q11q2!2

…. ~164!

The initial-stateO(a0) YFS formula reads

s05 (
n50

`
1

n! E d3q1

q1
0

d3q2

q2
0 )

i 51

n E d3ki

ki
0 S̃I~ki !

3QS ki
02

1

2
«AsD d (4)S p11p22q12q22(

j
kj D

3exp@YI~«!#b̄0
(0)
„~q11q2!2,q0…. ~165!

Integration over the final-state fermion two-body pha
space is done trivially, leading to

s05E
0

1

dvsBorn@s~12v !#exp~dYFS!r0~v !, ~166!
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where the essential multiphoton integral

r0~v !5exp~g ln «! (
n50

`
1

n! E d3q1

q1
0

d3q2

q2
0 )

i 51

n E
ki

0
.«As/2

3
d3ki

ki
0 S̃I~ki !dX12v2

1

s S p11p22(
j

kj D 2C
~167!

is the main object of our interest. Note that we have s
YI(«)5g ln «1dYFS.

In this simplified case, the QED matrix element is tota
absent beyond the soft photon integral. The inclusive Y
exponentiation, as defined above, amounts to calcula
analytically the multiphoton phase-space integral forr0(v).
As explained above, we shall do it in theO(a2)prag , but we
shall keep the proper soft limit undestroyed. Let us note fi
that in the soft limitv→0 the functionr0(v) coincides with
the soft integral of Eq.~163!, i.e., r(v)→ f (g,v). Since the
most singular part in this limit is known, we isolate it and w
expect theO(a2)prag result to be in the form

r0~v !5 f ~g,v !@11vg f 1~v !#, ~168!

where f 1(v) is nonsingular. How does one find the functio
f 1(v)? Let us inspect the difference

d0~v !5r~v !2 f ~g,v !

5
1

2!E d3k1

k1
0 S̃I~k1!E d3k2

k2
0 S̃I~k2!

3FdX12v2
1

s S p11p22(
j

kj D 2C
2dXv2

1

s
~p11p2!•S (

i 51

n

ki D CG . ~169!

This new object has rather interesting properties. First of
the O(a1) integrals cancel exactly and the first nontrivi
integral is ofO(a2). This second-order integral is not, how
ever, IR divergent. According to our general rules we a
therefore allowed, without any danger of spoiling the s
limit, to calculate it in the LL approximation.

Let us now present our first of two methods of calculati
r0(v). In the LL approximation we replace the collinea
singularities in the photon angleqg50,p by d-like peaks

E d3ki

ki
0 S̃I~ki !

5
a

2p2E
0

1dxi

xi
E

21

1

dci

si
2

~12be
2ci

2!2E
0

2p

df i

→E
0

1dxi

xi
E dciF1

2
gd~ci21!1

1

2
gd~ci11!G

~170!
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where

be5~124me
2/s!1/2, ci5cosu i , si5sinu i , i 51,2,

and using the above LL substitution we get

d0~v !5 lim
«→0

g2

4 E
«

1dx1

x1
E

«

1dx2

x2
@d„v2~12x1!~12x2!…

2d~v2x12x2!#. ~171!

Two immediate remarks are in order: out of the four terms
the product @d(c121)1d(c111)#@d(c221)d(c211)#
only two contribute, those with two anticollinear photo
c151,c2521, andc1521,c251. The result of the inte-
gration depends critically on careful regularization and
this reason we explicitly keep the« IR regulator. A quick
careless calculation gives a zero value for the integral
very similar phenomenon is present in the calculation
f (g,v), where a naive calculation up to second order giv
the vg21 factor only. The remainingF(g)512(p2/12)g2

1••• factor comes from careful consideration of thek0

.«As/2 condition for two photons. With our proper regula
ization we obtain

d0~v !52
g2

4

ln~12v !

v
, ~172!

which is finite in thev→0 limit.
Now we present the second calculational method, wh

will often be employed in the following. In this variant w
take into account the influence of additional soft photons~in
addition to the two hard ones!. They do not change the
second-order result, but provide the proper IR regulation
replacing the former« regulator. The LL treatment of the
phase-space will be a little different. Starting from Eq.~163!
we split ~in the CMS frame! the photon integration into its
forward and backward hemisphere parts:

E d3k

k0 5E
u.p/2

d3k

k0 1E
u,p/2

d3k

k0

and after changing the summation order we get

f ~g,v !5exp~g ln «!(
n

(
n8

1

n!

1

n8!

3)
i 51

n E
u i.p/2

d3ki
1

ki
10

S̃I~ki
1!QS ki

10

2«As

2D )
j 51

n8 E
u j ,p/2

d3kj
2

kj
20

S̃I~kj
2!QS kj

20

2«As

2D dS v2
2

s
P•~K11K2! D , ~173!

where
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P5p11p2 , K15(
i 51

n

ki
1 , K25(

j 51

n8

kj
2 .

The above sum of integrals factorizes into two sums. Eac
the sums can be evaluated exactly, leading to the follow
simple convolution

f ~g,v !5E dv1dv2d~v2v22v1! f S g

2
,v1D f S g

2
,v2D .

~174!

This identity holds for the integration result anyway, but w
have also obtained it through the direct phase-space inte
tion. So far all calculations were exact and we only reorg
nized the phase-space integration, which will be useful in
next step. Let us consider thed0(v) difference again

d0~v !5exp~g ln «!(
n

(
n8

1

n!

1

n8!
)
i 51

n E
u i.p/2

d3ki
1

ki
10

3S̃I~ki
1!QS ki

102«As

2D
3)

j 51

n8 E
u j ,p/2

d3kj
2

kj
20

S̃I~kj
2!QS kj

202«As

2D
3FdS v211

1

s
~P2K12K2!2D

2dS v2
2

s
P•~K11K2! D G . ~175!

As before, the whole integral is finite in thev→0 limit and
it gets the first nonzero contribution in the second ord
From the previous exercises we know that the essen
second-order LL contribution comes from two anticolline
photons—this is why we divided the photon phase-space
two hemispheres. Now, the LL approximation is realized
substituting in the firstd

K6m5~K60,0,0,6uK60u!.

Note that, contrary to the previous calculation, we did n
modify the S̃ factors, we did not introduce collineard ’s in
the photon angular distribution, and we kept an infinite nu
ber of photons. In spite of the apparent increase of the c
plication level, the integral reduces to a nice form

f ~g,v !5*dv1dv2@d~v2v22v11v1v2!

2d~v2v22v1!# f S g

2
,v1D f S g

2
,v2D ,

~176!

which is calculable analytically. Neglecting termsO(g3) we
obtain
9-41
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d0~v !52
exp~2Cg!

G~11g!
gvg21

1

4
g ln~12v !. ~177!

Note that since in the present variant of the calculation
have treated the soft photons in a more friendly way,
recovered the proper soft factorf (g,v) as a factor in the
solution.

Summarizing, theO(a2)prag phase-space integration re
sult is

r0~v !5
exp~2Cg!

G~11g!
gvg21S 12

1

4
g ln~12v ! D , ~178!

and the corresponding cross section reads

s0~vmax!5exp~dYFS!
exp~2Cg!

G~11g!
E

0

vmax
dvsBorn@s~12v !#

3gvg21S 12
1

4
g ln~12v ! D . ~179!

The above integration methods provide us with t
O(a2)prag phase-space integration result for any of theb̄0
contributions as listed in Eq.~9!. For example, the contribu
tion from b̄0

(2) reads

s0
(2)5E

0

1

dvsBorn@s~12v !#r0
(2) ,

r0
(2)5F~g!exp~dYFS!gvg21~11d I

(2)!

3S 12
1

4
g ln~12v ! D . ~180!

From now on, we shall not restrict ourselves to t
O(a0)prag EEX matrix elements, but rather consider t
complete EEX classO(a2)prag matrix elements as defined i
Sec. II. The practical significance of the IEX formula of E
~180! is rather important. The biggest terms neglected in
are ofO(g3) andO(ag), and we expect them to stay belo
0.1%.~This will be true provided there are no extra enhan
ment factors, see the discussion below.! In other words we
expect, for theb̄0

(2) contribution in the EEX matrix elemen
in Sec. II, that the result of the Monte Carlo phase-sp
integration will agree with the formula~180! to within about
0.1% for an arbitrary cutvmax.

Let us check the above conjecture with a numerical ex
cise. In the numerical test we shall already include at t
moment not only the ISRb̄0

(2) contribution of Eq.~180!, see

also Table I, but also the analogous FSRb̄0
(2) contribution,

which will be calculated22 in the next subsection, see E

22We could present results of the numerical tests~which we have
done! for the ISR alone. However, they look very much like th
simultaneous ISR and FSR results, so we decided not to pre
them as figures.
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~204! and Table II. We consider the total cross section w
the cut on the total photon energy defined byvmax as follows:

sb̄
0
(2)

^ b̄
0
(2)

(2)
5E

0

vmax
dvE

0

v/(12umax)

dusBorn
f

3@s~12u!~12v !#r I b̄
0
(2)

(2)
~v !rFb̄

0
(2)

(2)
~u!.

~181!

In order to get a clearer picture about the magnitude of
discrepancy between the EEX MC and the IEX formula
use the artificially flat Born cross-sectionsBorn

f @s(12u)(1
2v)#→sBorn

f (s) in both. The results of the comparison a
presented in Fig. 10. Following our expectation, the diffe
ence is well below 0.1% for the entire range of the phot
energy cutoffvmax.

The situation does not look as good when we switch
the s dependence in the Born cross section. In Fig. 11~a! we
see the relevant comparison. At the CMS energy of 189 G
the position of theZ radiative return is atv50.75 and we
clearly see a worsening there with respect to the previ
case in Fig. 10 where the discrepancy is now almost 0.
~0.4% in terms ofsBorn). The situation is even more dra
matic in the last bin, which corresponds tovmax5124mm

2/s
and here the discrepancy between theO(a2)prag IEX and the
O(a2)prag MC EEX is 22% of the total cross section, tha
is 27% in terms of the Born cross section. This is,
nt

FIG. 10. The comparison between theKK MC and the
O(a2)prag IEX formula of Eq. ~181! for the constant Born cross
section~200 GeV!. The difference between theKK MC in the EEX
mode and the semianalytical formula divided by the Born cr
section is plotted with a dotted line, as a function of thevmax cutoff
on the total energy of all of the ISR and FSR photons. We a
include the integrated cross section divided by the Born cross
tion, and multiplied by a factor of 1022, as dots for the IEX and a
line for the MC.
9-42
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COHERENT EXCLUSIVE EXPONENTIATION FOR . . . PHYSICAL REVIEW D 63 113009
course, due to theZ resonance and 1/s behavior of the Born
cross section at very lows ~especially for the case of themm̄
channel shown in Fig. 11!. In order to be sure that the abov
effect is not due to some technical problem in the MC in
gration, we had to improve our IEX formula and upgrade
analytical phase-space integration for the ISR to the leve
O(a3)prag . We show the comparison with theO(a3)prag
IEX for the same EEXO(a2)prag MC in Fig. 11~b!. Now the
difference is reduced to less than 0.1% everywhere, an
the last bin it is reduced from22% to10.2%, as expected
th

11300
-
e
f

in

The additional terms of theO(L1a2) and O(L3a3) are
shown in Table I at the end of this section. We do not sh
the details of the phase-space integration that provides t
two additional terms. The method is generally rather sim
to the one used in this section and in Ref.@13#.

2. Beta-bar-one:b̄1

In the following step our aim is to calculate analytical
the ISR contribution to the total cross section fromb̄1I

(2) as
given by
s5 (
n50

`
1

n! E d3q1

q1
0

d3q2

q2
0 E )

j 51

n
d3kj

kj
0 S̃I~p1 ,p2 ;kj !@12Q~V I ;kj !#exp@Y~V I !#

3(
j 51

n

b̄1I
(2)~X,p1 ,p2 ,q1 ,q2 ,kj !/S̃I~kj !d

(4)S p11p22q12q22(
j 51

n

kj D
5 (

n50

`
1

n! E d3q1

q1
0

d3q2

q2
0 E )

j 51

n
d3kj

kj
0 S̃I~p1 ,p2 ;kj !@12Q~V I ;kj !#exp@Y~V I !#

d3k

k0

3@12Q~V I ;k!#d (4)S p11p22q12q22k2(
j 51

n

kj D b̄1I
(2)~q11q2 ,p1 ,p2 ,q1 ,q2 ,k!. ~182!
We start again from the EEXO(a2)prag matrix element for
the initial-state bremsstrahlung and we shall perform
phase-space integration also in theO(a2)prag . We integrate
first over the final-state fermion four-momenta:

E d3q1

q1
0

d3q2

q2
0 d (4)~p11p22q12q22k!

3b̄1I
(2)~q11q2 ,p1 ,p2 ,q1 ,q2 ,k!

5B1
(2)~p1 ,p2 ,k!sBorn@~q11q2!2#, ~183!
e
where

B1
(2)~p1 ,p2 ,k!5

a

4p2

2p1p2

~kp1!~kp2!
We~ â,b̂ !

3@11D I
(1)~ â,b̂ !#

1

2
$~12â !21~12b̂ !2%

2S̃I~p1 ,p2 ,k!~11d I
(1)!, ~184!

and obtain
9

e

d

FIG. 11. The comparison between theKK
MC and the IEXO(a2)prag formula of Eq.~181!
for the s-dependent Born cross section at 18
GeV. The difference between theKK MC in the
EEX mode and the IEX formula divided by th
IEX formula is plotted as a function of thevmax

cutoff on the total energy of all of the ISR an
FSR photons.
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s5E
0

1

dvexp~dYFS1g ln «! (
n50

`
1

n! Ekj
0
.«As/2

)
j 51

n
d3kj

kj
0 S̃I~p1 ,p2 ;kj !

3E
kj

0
.«As/2

d3k

k0 B1
(2)~p1 ,p2 ,k!sBorn@s~12v !#dXv2

1

s S P2(
j

kj2kD 2C
[E

0

1

dvr1
(2)~v !sBorn@s~12v !#. ~185!

In the calculation ofr1
(2) we could follow the first of the methods employed forb̄0. Let us describe it briefly, without going

into the details of the calculation. We calculate the first two nonzero integrals that areO(a) andO(a2). The first one ofO(a)
has to be calculated keeping both the leadingO(La) and the subleading termO(L0a). This can be done following the
well-known O(a) analytical calculations@15#. The O(a2) integral with two real photons can be treated in the LL appro
mation, i.e., keeping only theO(L2a2) terms. This can be done by introducing collinear peaks in the photon angle
demonstrated in the case ofb̄0. Both integrals are connected due to the infrared regulation with«. The first one is proportiona
to exp(g ln «).11g ln «, and the termg ln « from the first one cancels the IR divergence in the second one~independently of
the LL approximation!. As it is in the case ofb̄0 one has to pay attention to the subtle ‘‘edge effects’’ in the« regularization.23

Let us describe in detail the second method in which the soft photons provide the convenient IR regulation. The maO(a)
contribution comes from the configuration in which we havek0.vAs/2 and one or more soft photons. This part has to
calculated exactly inO(a). We split, as before,

r1
(2)~v !5 f 1

(2)~v !1d1
(2)~v ! ~186!

in such a way thatd1
(2)(v) vanishes inO(a)—it can therefore be calculated in the second-order LL whilef 1

(2)(v) is simple
enough to be calculated exactly in theO(a). We define

f 1
(2)~v !5exp~dYFS!E d3k

k0 exp~g ln «! (
n50

`
1

n! Ekj
0
.«As/2

)
j 51

n
d3kj

kj
0 S̃I~kj !dXv2

2

s
P•S (

j
kj1kD CB1

(1)~p1 ,p2 ,k!

5exp~dYFS!E d3k

k0 f S g,v2
2

s
P•kDB1

(1)~p1 ,p2 ,k!, ~187!

where

B1
(1)~p1 ,p2 ,k!5

a

4p2

2p1p2

~kp1!~kp2!
We~ â,b̂ !

1

2
$~12â !21~12b̂ !2%2S̃I~p1 ,p2 ,k!. ~188!

The remarkable feature off 1
(2) is that we could integrate over the spectator photons exactly. Note that the« regulator has

disappeared from thek integral. In the next step we integrateexactlyover photon angles following the oldO(a) calculations
and we are left with a single integral over the photon energyx52k0/As, with the strongest singularity (v2x)g21 being nicely
regularized by the soft photons

f 1
(2)~v !5exp~dYFS!F~g!E

0

v
dxg~v2x!g21gF211

1

2
xG

5exp~dYFS!F~g!gvgF211
1

2
v2

1

2
gvG1O~g3!. ~189!

Now we shall calculate the remaining partd1
(2) of r1

(2) . Since it vanishes atO(a) we may calculate it in the LL approxi

mation. Although it is not strictly necessary, we treat the photons gently~as in theb̄0 example!, so that we do not use the crud
collinear approximation. As before, we split the photon angular integration into the forward and backward hemispheres
integrate immediately over the final fermion momenta

23Generally, the calculation forb̄1 is more difficult than forb̄0 and b̄2, because this is the only case inO(a2) where we deal with the
simultaneous emission of real and virtual photons.
113009-44



s

:

COHERENT EXCLUSIVE EXPONENTIATION FOR . . . PHYSICAL REVIEW D 63 113009
d1
(2)~v !5exp~g ln «!(

n
(
n8

1

n!

1

n8!
2E

u,p/2

d3k

k0
exp~dYFS!)

i 51

n E
u i.p/2

d3ki
1

ki
10

S̃I~ki
1!QS ki

102«As

2D
3)

j 51

n8 E
u j ,p/2

d3kj
2

kj
20

S̃I~kj
2!QS kj

202«As

2D H FdS v211
~P2k2K12K2!2

s D
2dS v2

2P•~k1K11K2!

s D GB1
(1)~p1 ,p2 ,k!1dS v211

1

s
~P2k2K12K2!2D @B1

(2)~p1 ,p2 ,k!

2B1
(1)~p1 ,p2 ,k!#J . ~190!

Using the collinear replacementK65(K60,0,0,6uK60u) in d ’s allows us to integrate over the spectator multiple photon

d1
(2)~v !5E

0

1

dv1E
0

1

dv2E
u,p/2

d3k

k0
exp~dYFS! f S g

2
,v1D f S g

2
,v2D $@d„v211~12x2v1!~12v2!…

2d„v2x2v12v2…#B1
(1)~p1 ,p2 ,k!1d„v211~12x2v1!~12v2!…@B1

(2)~p1 ,p2 ,k!2B1
(1)~p1 ,p2 ,k!#%,

~191!

wherex52k0/As and the other notation is the same as it is in theb̄0 case. Integration over the photon angles leads to

d1
(2)~v !5E

0

1

dv1E
0

1

dv2E
0

1

dx exp~dYFS! f S g

2
,v1D f S g

2
,v2D $@d„v211~12x2v1!~12v2!…2d„v2x2v12v2…#gb1~x!

1d„v211~12x2v1!~12v2!…g2b2~x!%,

b1~x!5211
1

2
x, b2~x!5211

1

2
x2

1

8
@11~12x!2#

ln~12x!

x
. ~192!

Let us quickly show the calculation of the part proportional to the difference of thed’s, which is somewhat more tricky. We
convoluteb1 first with the photons in the same hemisphere and next with the photons from the opposite hemisphere

d1A
(2)~v !5E dVdv2@d„v211~12V!~12v2!…2d„v2V2v2…#exp~dYFS! f S g

2
,v2D

3E dxdv1d~V2x2v1! f S g

2
,v1Dgb1~x!

5exp~dYFS!F
2S g

2Dgvg21E
0

1

dyy(1/2)g~12y!(1/2)g21$~12vy!2(1/2)g21%F211
vy

2 S 12
g

2D G
5exp~dYFS!F~g!gvgS 211

1

2
v D S 2

1

2
g ln~12v ! D1O~g3!. ~193!
is
The remaining part ofd1
(2) is easier to calculate because it

explicitly of O(g2):

d1B
(2)~v !5exp~dYFS!F~g!gvggH 1

2 S 211
1

2
v D

2
1

8
@11~12v !2#

ln~12v !

v J 1O~g3!.

~194!
11300
The contribution from the initial-stateb̄1 with anO(a2)prag
QED matrix element and with anO(a2)prag analytical inte-
gration over the multiphoton phase-space~see Fig. 12! reads

r1
(2)~v !5exp~dYFS!F~g!gvg21H 1

2S 211
1

2
v D

1gF2
1

2
v2

1

4
v21

1

8
@2113~12v !2# ln~12v !G J

1O~g3!. ~195!
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FIG. 12. The comparison between the results of theKK MC and the IEXO(a2)prag formulas for the integrated cross section as
function of the cutoff parametervmax on the ISR and FSR photons. Presented are theKK MC ~solid line! and the IEX~line with open circles!

results for:~a! the ISRb̄1I
(2) and the FSRb̄0F

(2) , ~b! the FSRb̄1F
(2) and the ISRb̄0I

(2) , multiplied by a factor of 0.1~in order to fit into the scale!.
The difference between theKK MC and the IEX results is shown as a dotted curve. The center-of-mass energy is 189 GeV. The fin
fermion is a muon.
e

ly

us

o-
The contribution with anO(a1)prag QED matrix element
and with an analyticalO(a2)prag multiphoton phase-spac
integration is obtained by retaining onlyd1A

(2) and it reads

r1
(1)~v !5exp~dYFS!F~g!gvg21H 1

2 S 211
1

2
v D

1gF2
1

2
v22

1

2S 211
1

2
v D ln~12v !G J 1O~g3!.

~196!

3. Beta-bar-two:b̄2

In the following step, our aim is to calculate analytical
the contribution to the total cross section fromb̄2I

(2) as given
by
11300
s25 (
n50

`
1

n! E d3q1

q1
0

d3q2

q2
0 E )

j 51

n
d3kj

kj
0 S̃I~p1 ,p2 ;kj !

3@12Q~V I ;kj !#exp@Y~V I !#

3 (
n> j .k>1

b̄2II
(2)~X,p1 ,p2 ,q1 ,q2 ,kj ,kk!

S̃I~kj !S̃I~kk!
d (4)

3S p11p22q12q22(
j 51

n

kj D . ~197!

This contribution is in a sense more trivial than the previo
two: since it is pureO(a2), it has no IR singularity in the
two-photon phase-space integral.

We can calculate the contribution fromb̄2 with the same
methods as in the case ofb̄0 or b̄1. The integral is reorga-
nized easily such that the integration over the photon m
toff
FIG. 13. The comparison between theKK MC and the IEXO(a2)prag formulas for the integrated cross section as a function of the cu
parametervmax on the ISR and FSR photons. Presented are theKK MC ~solid line! and IEX ~line with open circles! results for:~a! the ISR

b̄2I
(2) and the FSRb̄0F

(2) , ~b! the FSRb̄2F
(2) and the ISRb̄0I

(2) ~c! the ISRb̄1I
(2) and the FSRb̄1F

(2) . The difference between theKK MC and the
IEX results is also included~dots!. The center-of-mass energy is 189 GeV. The final-state fermion is a muon.
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menta in theb̄2II
(2) is isolated and we are able to integrate ov

final-state fermion momenta, bringing the integral to t
standard form

s25E
0

1

dvr2
(2)~v !sBorn@s~12v !#. ~198!
he
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ith
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th

t.
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11300
r The functionr2
(2)(v) can be calculated in the LL approx

mation with either of our two methods~keeping an additiona
spectator photon or not!; after integration over the photo
angles, the integral boils down to the following integral ov
the longitudinal photon momenta, separately for the ca
with two collinear and two anticollinear photons
r2
(2)~v !5E

0

1

dv2dv1

g2

4
d~v2v12v2!F 1

2v1v2
x~v1!xS v2
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G1E

0

1

dv2dv1
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4
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3F 1

v1v2
x~v1!x~v2!2

1

v1
v~v2!2

1

v2
v~v1!2

1

v1v2
G

5g2
1

4
v, ~199!
s-

C

X

n
e

rom
wherex(x)5@11(12x)2#/2 andv(x)5211x/2.
Eventually, by keeping the additional soft photons in t

calculation, we obtain our final result for the initial-sta
O(a2)prag contribution fromb̄2 in a more elegant form

r2
(2)~v !5exp~dYFS!F~g!gvg21H 1

4
gv2J 1O~g3!.

~200!

We have compared numerically the above formula w
theKK MC in the case that the FSR is switched off and ha
found an agreement to better than 0.1%. In Fig. 13~a! we
present the comparison in which, as it is in the case of
previousb̄ ’s, the FSR is switched on. In Fig. 13~a! we com-
pare the convolution of the ISRb̄2I

(2) and the FSRb̄0F
(2) :

sb̄
2
(2)

^ b̄
0
(2)

(2)
5E

0

vmax
dvE

0

v/(12umax)

dusBorn
f @s~12u!

3~12v !#r I b̄
2
(2)

(2)
~v !rFb̄

0
(2)

(2)
~u!. ~201!

The above IEX result is compared with theKK MC results,
and they agree within 0.2%. In Fig. 13~b! we show the analo-
gous comparison for the convolution of the FSRb̄2F

(2) and the

ISR b̄0I
(2) ~anticipating the IEX results for FSRb̄2F

(2) to be
found in the next section! and we find a similar agreemen
Finally, there is another, more trivial contribution in theb̄ (2)

family, which corresponds to the case with one real pho
emitted in the initial state and one real photon emitted in
final state. This case does not require a separate analy
phase-space integration effort, because the relevant IEX
e

e

n
e
cal
r-

mula involves the convolution of the already known expre
sion for the ISRb̄1I

(2) and the FSRb̄1F
(2) . The corresponding

numerical comparison of the IEX formula and the EEX M
is shown in Fig. 13~c!. In fact the IEX matrix element was
deliberately constructed in such a way~factorizing virtual
corrections! that it results in the above convolution-type IE
formula.

4. Summary on IEX for ISR

The entire initial-stateO(a2)prag-integrated cross sectio
is obtained by combining the contributions from all of th
threeb̄ ’s, and it reads

s I
(2)5E

0

1

dvr I
(2)~v !sBorn@s~12v !#,

r I
(2)~v !5exp~dYFS!F~g!gvg21H 11

g

2
1

g2

8

1vS 211
1

2D
1gF2

v
2

2
113~12v !2

8
ln~12v !G J

1O~g3!1O~ga!. ~202!

This ISR formula has been obtained as a result of thead hoc
exponentiation~interpolation! in Ref. @7# and was used there
as a numerical parametrization/test of the cross section f
the Monte Carlo programYFS2. It is now derivedstarting
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TABLE I. Contributions to the functionr I(v)5dS1DH(v) from b̄k ,k50,1,2. The ISR matrix elemen
is at O(a r)prag with YFS/EEX exponentiation,r 50,1,2, as marked in the first column. The phase-sp
integration is done analytically always withinO(a2)prag , except for theO(a0)prag case in the first row,
where the phase-space integration is done inO(a3)prag .

dS DH(v)
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4
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2
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2
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from YFS exclusive exponentiation by means of dire
phase-space integration.24

Summarizing our IEX calculations for the ISR, we ha
obtained through the analytical integration over the ISR m
tiphoton phase-space the inclusive exponentiated cross
tion for the IEX matrix elements in theO(a0)prag ,
O(a1)prag , and O(a2)prag for each b̄ i , (i 50,1,2) sepa-
rately. The phase-space integration was always done ana
cally within theO(a2)prag . All results from the above ex
tensive study are summarized in Table I, where we h
listed the two functionsdS andDH(v) in the following for-
mula ~the notation is recalled for the convenience of t
reader!:

s I5E
0

1

dvr I~v !sBorn@s~12v !#, ~203!

r I~v !5exp~dYFS!F~g!gvg21@dS1DH~v !#,

24Ad hocexponentiation is of course easier to do and, in Ref.@44#,
even theO(a3)prag formula for the initial-state bremsstrahlung wa
given, but the derivation method presented here is much be
founded and the result does not depend on any kind of interpola
or guesswork.
11300
t

l-
ec-

ti-

e

dYFS5
g

4
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p S 2
1

2
1

p2

3 D ,

g52
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p S ln
s

me
2 21D , F~g!5

exp~2Cg!

G~11g!
.

C. Semianalytical formulas for FSR

The calculation of theO(a2)prag IEX formula for the
FSR, with theumax cutoff, that isu512s8/s,umax, is quite
similar to that in the ISR case and we do not enter into
details. We only discuss the basic differences between
ISR and FSR cases and present the final result.

If we switch off the ISR completely, then the FSR
integrated cross section for theO(a r)prag , r 50,1,2, EEX
matrix element reads

sF~umax!5sBornE
0

umax
durF~u!,

rF~u!5exp~dYFS!F~g f !g fu
g f21@dS81DH8 ~u!#,

er
n
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TABLE II. Contributions to the functionrF(u)5dS81DH8 (u) from b̄k ,k50,1,2. The FSR matrix elemen
is at O(a r)prag with YFS/EEX exponentiation,r 50,1,2, as marked in the first column. The phase-sp
integration is done analytically, always inO(a2)prag .
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dYFS8 5
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4
2
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3 D ,

g f52
a

p S ln
s
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2 21D , ~204!

where the functionsdS8 andDH8 (u), obtained with an analyti-
cal integration of the phase-space using theO(a2)prag ap-
proximation, are listed in Table II.

The main difference and complication in the phase-sp
analytical integration with respect to the case of ISR are
the YFS form factordYFS8 depends in the case of the FSR
the integration variableu. This is why the terms ofO(L2a2)
are different in the two cases. In Table II we show separa
the contributions from eachb̄. Note that in the case of th
FSR we did not integrate the phase-space forb̄0 at the
O(a3)prag analytically, as we did in the case of the ISR.~It
was not necessary in order to reach the precision leve
0.2%.! We have checked numerically the agreement of
KK MC with Eq. ~204! separately for each type ofb̄, with
the ISR switched off~plots are not shown!. We have already
presented, in this section, the complete set of numerica
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sults in the case that the ISR is switched off for each co
bination of the ISR and FSRb̄ ’s.

D. Semianalytical IEX for ISR and FSR

The last numerical test, which we show in Fig. 14, is t
case in which we switch on all of the ISR and FSRb̄ ’s listed
in both Tables I and II:

s tot5E
0

vmax
dvE

0

v/(12umax)

du

3sBorn
f @s~12u!~12v !#rF~u!r I~v !. ~205!

It is done for the constant Born cross section, the case w
the variable cross section will be shown in the next secti
We use the IEX formula of the pureO(a2)prag type@without
O(a3)prag improvements for the ISR#. The overall agree-
ment between the IEX formula and theKK MC is within the
advertized 0.2%. When looking into all previous figures
this and the previous subsection, it is interesting to note
this difference does not come from one particular combi
tion of the ISR and FSRb̄ ’s, but from several of them.

The reader may wonder why we elaborate so much in
section on the IEX semi-analytical formula, which is relat
9-49
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S. JADACH, B. F. L. WARD, AND Z. WA̧S PHYSICAL REVIEW D63 113009
to the EEX type of matrix element in theKK MC if in fact
the main matrix element in theKK MC is now CEEX. One
reason is that historically the EEX was the first availa
example of exclusive exponentiation, and the IEX sem
analytical formula was developed in parallel, providing
valuable cross-check of the MC. Another reason is tha
this stage, as we shall see in the next section, both the
and the EEX provide a reference calculation and valua
test for the CEEX. The precision of the presentO(a2)prag
IEX is limited, but it could be improved to the ful
O(a3)prag if necessary. A more important limitation in th
presentO(a2)prag IEX as a test of the CEEX model is th
absence of the ISR̂FSR interference. We believe that th
effect can be included in the semianalytical IEX
necessary.25 Thead hocvariant of theO(a1) exponentiation,
including the ISR̂ FSR interference, is already available
Refs.@22,23#.

VI. NUMERICAL RESULTS AND TESTS

In this section we shall mainly present the numerical
sults from theKK MC in which the standard model ampl
tudes for the processe2e1→ f f̄ 1ng of the Secs. II~EEX!
and III ~CEEX! are implemented. The analytical results
Sec. V will also be exploited to obtain numerical results fro

25See the following section for a simple semianalytical formu
for the ISR̂ FSR interference in the soft limit.

FIG. 14. The comparison between theKK MC and the IEX
O(a2)prag formula. The difference between theKK MC in EEX
mode and the IEX formula divided by the Born cross section
plotted with the dotted line, as a function of the cutoffvmax on the
total energy of the ISR and FSR photons. Included also is 122

3s(vmax)/sBorn, as the dotted line for the IEX formula and th
solid line for the MC.
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the semianalytical programKKsem. These results are main
for them2m1 final state. For more results on the quark fin
states and other interesting numerical results from theKK
MC we refer the reader to the forthcoming proceedings
the LEP2 Monte Carlo Workshop@45#.

The general structure of theKKMC code is depicted in
Fig. 15. The program is divided into two distinct parts~lev-
els!: ~a! the phase-space Monte Carlo integration engine w
common-importance sampling for the entire family of QE
distributions~EEX and CEEX!; ~b! the collection~library! of
programs for the SM/QED spin amplitudes and different
distributions, at various orders, with various styles of exp
nentiation. In this work we do not enter into a description
the MC integration algorithm in the universal MC integratio
engine. The Monte Carlo method of phase-space integra
is fully documented~for the first time! in Ref. @1#, and some
aspects of the phase-space parametrization are docum
in the forthcoming Ref.@46#. Here we regard this low-leve
MC program as a black box, capable to integrate the pha
space exactly~up to a statistical error!.

Life, however, is not that simple, and a numerical pr
gram, which ‘‘in principle’’ is doing something ‘‘exactly/
rigorously,’’ may still give imprecise results because of pr
gramming bugs and numerical instabilities, especially wh
they are in a program as complicated as theKK MC is. This
is why we always introduce the concept of thetechnical
precision of a given program/calculation~see below!. The
basic aim of the numerical exercises we present in this s
tion is the determination of the totaltheoretical precision
associated with our calculation of standard model predicti
for experimental observables~although we limit the discus-
sion to the QED part of the SM for most of our discussio!.
As far as observables are concerned, we shall concen
mainly on the total cross section and charge asymmetr
LEP1, LEP2, and linear collider energies.

What are the technical and physical precisions? We de

s

FIG. 15. General structure of theKK Monte Carlo program.
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FIG. 16. Evaluation of the
technical precision of theKK
Monte Carlo using a simplified
QED multiphoton distribution.
The difference of theKK MC re-
sult and semianalytical result di
vided by the semianalytical resu
is plotted as a function ofvmax

512s8min /s. Results are shown
for the m1m2 final state atAs
5189 GeV. In case~a! the phase-
space limit vmax5124mm

2/s is
taken; the last bin represents th
entire phase-space. In case~b!
vmax50.999.
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the technical precisionas the total uncertainty related to pu
numerical problems such as programming bugs, numer
instabilities, numerical approximation, etc. In our case
question of the technical precision will mainly concern t
MC integration engine. It is important to determine it at
early stage of the work and it should be generally mu
better than the physical precision. On the other hand,
physical precision is the total uncertainty related to the
glected higher orders in the coupling constanta or in other
expansion parameters such as the inverse of the big-logL,
or the ratio of the width to the massG/M for a narrow
resonance. For the physical precision we note that the ab
truncations are done in the spin amplitudes and/or the dif
ential cross section. If some of them are done in the pha
space integration, we tend to associate them with the tec
cal precision ~as phase-space integration is a techni
problem!.

We start this section with the basic discussion of the te
nical precision; we then proceed to a subsection elabora
on the physical precision for the EEX matrix element, bas
on the comparisons between theKK MC and semianalytica
results; later, we discuss the physical precision for the c
of the full CEEX matrix element. In this section we als
present numerical results and a rather complete discussio
the effects due to the ISR-FSR interference in the fermi
pair production process.

We note that it would be good to include also more n
merical tests at lower energies,;10 GeV, and at very high
energies;1 TeV, and some more tests specific to spin
fects. However, the basic pattern of the spin correlations
the doublet decay was already cross-checked in Ref.@2#.

A. Basic test of the technical precision

The best way to determine the technical precision is
compare the results of two or even more independent ca
lations that implement the same physics model but diffe
the technical details of the actual implementation like
method of phase-space integration, independent coding,
The two best possible methods are~a! to compare two inde-
pendent Monte Carlo calculations or~b! to compare Monte
Carlo results with results of a semi-analytical calculatio
11300
al
e

h
e
-

ve
r-
e-
ni-
l

-
g

d

se

of
-

-

-
in

o
u-
n
e
tc.

.

Method ~a! is generally better, because it can be done
arbitrary kinematical selections~cuts! and for the simplified
QED matrix element, while method~b! is limited to a simple
or absent kinematical selection. In the following we shall u
method~b!.

For our basic test of the technical precision we use
simplest possible variant of the QED model, that is of t
typeO(a0)EEX defined in Sec. II. For this type of QED ma
trix element we were able to integrate analytically the to
cross section in Sec. V. The relevant formula can be r
from the first row in Tables I and II. For the sake of com
pleteness we write down the complete expression explic

sSAN
f 5E

0

vmax
dvsBorn

f @s~12u!~12v !#r I
(0)~v !rF

(0)~u!,

r I
(0)~v !5F~ge!expF1

4
ge1

a

p S 2
1

2
1

p2

3 D Ggev
ge21

3S 12
1

4
ge ln~12v !2

1

2

a

p
ln2~12v !10 ge

2D ,

~206!

rF
(0)~u!5F~g f !expF1

4
g f2

1

2
g f ln~12u!

1
a

p S 2
1

2
1

p2

3 D Gg fu
g f21S 12

1

4
g f ln~12u! D .

As we remember the coefficient in front of theO(L3a3)
term is zero, as marked explicitly. It was essential to cal
late analytically and introduce the ISR term ofO(L1a2) be-
cause it amounts numerically to several percent for the c
section located close tov51.

In Fig. 16 we present the comparison of theKK MC with
the semianalytical formula of Eq.~206!. The difference be-
tween the MC result and the semianalytical result is divid
by the semianalytical result and, as we see, the differenc
remarkably small. The comparison is done for them1m2
9-51
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final state atAs5189 GeV, as a function ofvmax. In the last
point ~bin! the entire phase-space is covered,vmax51
24mm

2/s.
The conclusion from the above exercise is that we con

the phase-space integration at the level of 231024 for
vmax,0.999, including theZ radiative return, and at the leve
of 331023 for no cuts at all.

The possible loophole in this estimate of the precision
that it may break down when we cut on the transverse m
menta of the real photons, or switch to a more sophistica
QED model. The second circumstance is very unlikely as
phase-space and the actual SM model matrix element
split into completely separate modules in the program. T
question of cuts on the transverse momenta of the real p
tons requires further discussion. Here, it has to be stre
that in our MC the so-called big-logarithm

L5 lnS s

mf
2D 21 ~207!

is the result of the phase-space integrationand if this inte-
gration were not correct then we would witness the bre
down of the IR singularity cancellation and the fermion ma
singularity cancellation for the FSR. We do not see anyth
like that at the 0.02% precision level. In addition there is
wealth of comparisons with manyindependent codesof the
phase-space integration forng51,2,3 real photons, with and
without cuts on the photonpT . It should be remembered tha
the multiphoton phase-space integration module/code in
KK MC has been unchanged for the last 10 years. For
ISR it is based on theYFS2 algorithm of Ref.@7# and for the
FSR on theYFS3 algorithm of Ref.@9#; these modules/code
were part of theKORALZ @10# multiphoton MC from the very
beginning, already at the time of the LEP1 1989 worksh
@40#, and they were continuously tested since then. T
phase-space integration forng51 was tested very early b
the authors ofYFS2/YFS3 against the older MC program
MUSTRAAL @16# andKORALB @35# and with analytical calcu-
lations, at the precision level of,0.1%, with and without
cuts on the photonpT . The phase-space integration forng
52,3 with cuts on the photonpT was tested very many time
over the years by the authors ofYFS2/YFS3/KORALZ, and in-
dependently by all four LEP Collaborations, using other
tegration programs such asCOMPHEP, GRACE @61,62# and
others, in the context of the search of the anomalous 2g and
3g events. Another important series of tests was done in R
@47# for the ISRng51,2 photons~with cuts sensitive to the
pT of the photons!, comparingKORALZ/YFS2 with the other
independent MC’s for thenn̄g(g) final states. Typically,
these tests, in which the QED matrix element was p
grammed in several independent ways, showed agreeme
the level of 10% for the cross section forng52, which was
of the order of 0.1% of the Born cross section, or 0.2–0.5
for ng51, which was of the order of 1% of the Born cro
section, so they never invalidated our present technical
cision of 0.02% in terms of the Born cross section~or the
total cross section in terms of theZ-inclusive cut!.
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We therefore conclude that the technical precision of
KK MC due to the phase-space integration is 0.02% of
integrated cross section, for any cuts on the photon energ
Z inclusive and Z exclusive, stronger than26 Minv( f f̄ )
.0.1As and any mild cut on the transverse photon energ
due to any typical realistic experimental cuts. For the cr
sections with a single photon tagged, it is about 0.2–0.5
and with two photons tagged it is;10% of the correspond
ing integrated cross section. These conclusions are base
the comparisons with at least six other independent code

B. Physical precision, the case of EEX

We now start the presentation of the numerical resu
from the KK MC run in the EEX mode with the semiana
lytical calculations based on the results in Sec. V. Note t
the EEX matrix element of Sec. II is very similar to~basi-
cally the same as! the one implemented since many years
the KORALZ program@10#. We do this for two reasons:~a!
these tests were historically the first~they existed, unpub-
lished, for many years, giving us confidence that t
KORALZ/YFS3 program provides correct results! and ~b! they
are now still useful as a reference calculation for the new
CEEX scheme. They will also allow us to introduce som
notations and to introduce gradually the reader to the sub
of the discussion on the theoretical precision of our resu
Of course, we shall remember that in the case of the EEX
do not include the ISR-FSR interferences~IFI!.

In Fig. 17 we show the dependence of the total cro
section on the cut on the total photon energy (ISR1FSR).
The comparison is done for them1m2 final state atAs
5189 GeV, as a function ofvmax. In the last point~bin! the
entire phase-spaceis covered, i.e.,vmax5124mm

2/s. The very
striking ~and well-known! phenomenon is that the total cros
section due to the huge ISR correction is almost three tim
the Born cross section, in the absence of any kinemat
cuts. Part of this ISR contribution is located close tov51,
s8;4mm

2 /s; let us call it thegg* process. This amounts to a
much as the Born cross section itself,sgg* ;sBorn, while
the dominant part of the cross sectionsZRR;2sBorn is con-
centrated close tov512MZ

2/s;0.75, and is associated wit
the so-called ‘‘Z radiative return’’~ZRR! process, that is the
resonant production of theZ, after the emission of a rathe
hard ISR photon, which is usually lost in the beam pipe.
the experiment thegg* process is almost always eliminate
from the data, and the ZRR process is also not very of
included in the data sample. The typical experimental cu
situated somewhere in the range 0.1,vmax,0.3. As we see
in Fig. 17~a!, the total QED correction@s(vmax)2sBorn#/
sBorn is in this case quite close to zero, in fact it is slight
negative.

In Fig. 17~b! we compare theKK MC calculation with
the semianalytical expression based on the phase-s
integration in Sec. V. In the MC calculation we use t

26It downgrades to 0.5% forMinv(mm̄)>2mm , i.e., for full
phase-space.
9-52
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FIG. 17. The processe2e1

→ f f̄ , for f 5m2, at As
5189 GeV. ISR and FSR are on
IFI5ISR3FSR interference is
off, EW corrections are off. The
total cross-sections(s8.s8min)
wheres85mf f̄
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second-order EEX type of QED model EEX
[O(1,a,aL,a2L2)EEX , defined in Sec. II. The semianalyt
cal formula used in Fig. 17~b! is also in the class EEX2. It is
defined as follows:

sSAN
f 5E

0

vmax
dvsBorn

f @s~12u!~12v !#r I
(2)~v !rF

(2)~u!,

~208!

where the distributionsr I
(2) andrF

(2) are from Tables I and II.
What kind of lesson can we draw from Fig. 17~b!? We

treat the result in Fig. 17~b! as an indication that the contr
bution from the QED~non-IFI! photonic corrections to the
combined physical and technical precision in the EEX2-cl
integrated cross section for the standard cutvmax;0.2 is
about 0.2%, for the ZRR process it is 0.7%, and for thegg*
process it is 3%. We are here talking about the techn
precision of the coding of the EEX2 matrix element, n
associated with the phase-space integration~covered in the
previous section!.

In Fig. 18 we make an attempt at estimating the phys
precision of the QED model in the EEX class. Specifica
we look into the difference between the EEX2~as defined
above! and the EEX1, with the EEX1 being theO(a1)EEX of
Sec. II, EEX1[O(1,a,aL)EEX . This is plotted in Fig. 18~a!
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both from theKK MC and the semianalytical formula. Tak
ing conservatively~see the discussion below! half of the dif-
ference between the EEX2 and the EEX1 as an estimat
the physical precision of the EEX2, we arrive at similar e
timates of about 0.2% for the standard cutvmax;0.2, 0.7%
for the ZRR process and up to 3% for thegg* process.

The other useful piece of information comes from F
18~b!, where we plot the difference EEX32EEX2, with
EEX3[O(1,a,aL,a2L2,a3L3)EEX ; this provides direct in-
sight into the neglected third-order LL contributions. As w
see it is always below 331024. ~This estimate will also be
useful for the case of CEEX.! If the O(L3a3) correction is of
this size, then the main contribution to the above estimate
the theoretical error necessarily comes from theO(L1a2)
corrections.

In fact the absence of theO(a2L1) corrections in both the
EEX2 and the EEX1 is the main deficiency of the abo
tests, so that they cannot directly pin down the size of t
contribution. Keeping this limitation in mind, from the te
above we nevertheless estimate tentatively the comb
physical and technical precision in the integrated EEX3-cl
cross section of theKK MC to be 0.2% for the standard cu
vmax;0.2, 0.7% for the ZRR process, and about 1.5%
thegg* process. The caveat of this exercise is that we kn
r

f

FIG. 18. An attempt at esti-
mating the physical precision fo
EEX: O(a2) and O(a3). The
process, energy, and definition o
cuts are the same as in Fig. 17.
9-53
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retrospectively the QED non-IFI component of the precis
on theKORALZ/YFS3 Monte Carlo at LEP2 energies becau
the EEX ofKORALZ and the EEX of theKK MC are practi-
cally the same.27 The above exercise does help indeed,
spite of the fact that the neglected IFI contribution to t
integrated cross section is of the order of 1%, beca
KORALZ in the nonexponentiatedO(a) mode can calculate
the IFI separately; see the discussion in the following s
sections.

Let us finally make an ultimate effort to estimate the to
precision, staying all the time within the EEX model. As w
have already noted the most important missing contribu
seems to be theO(L1a2), most probably the ISR part of it
In the semianalytical formula for the total cross section
are able to add it, since it is known from Ref.@18#. We may
add theO(L3a3) corrections as well and, in this way, w
replace ther I

(2) by the r I
(3) of Ref. @44#, which is the true

O(a3)prag for the ISR ~according to the terminology
explained in the Introduction! and O(a2)prag for
the FSR ~non-IFI!. Let us call it EEX3best
[O(1,a,aL,a2L2,a2L1,a3L3)EEX . The difference between
the semianalytical EEX3best and the EEX3 from theKK
MC is plotted in Fig. 19. As we see, this final test confirm
the previous estimate of the physical precision of the E
type of matrix element.

C. Physical precision, the case of CEEX

The quantitative determination of thephysical precision
should be based on the comparison of calculations in

27The version 4.02 ofKORALZ and its earlier versions have EE
implemented differently fromKK MC.

FIG. 19. The final attempt at estimating the physical precis
for EEX3: the difference between EEX3 from theKK MC and the
semi-analytical EEX3best, see the definition in the text. The p
cess, energy and definition of the cuts are the same as in Fig.
11300
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consecutive orders in the expansion parameters, for insta
by comparing results from theO(a r) andO(a r 21) calcula-
tions, or theO(Lran) versus theO(Lr 21an) calculations,
etc. For example, when only the Born andO(a1) results are
available, one should take the difference between the two~or
some fraction of it! as an estimate of the physical precisio
The above conservative recipe gives a solid estimate of
physical precision and we shall employ it as our ba
method in the following. In most cases in the literature, ho
ever, authors try toestimatethe uncalculatedhigher order
effects with some ‘‘rule of thumb.’’ For instance in the ca
when Born and O(a1) results are known, they tak
1
2 L(a/p) as an estimate of the missing/uncalculatedO(a2)
corrections. This has to be done with care because one
easily overlook some ‘‘enhancement factor.’’ For examp
the cross section close to a resonance can be modifie
additional powers of the big logarithm lnG/M. In most cases
these ‘‘enhancement factors’’ are already seen in theO(a1)
calculation so it is not difficult to trace them.

We are in a rather comfortable situation because for
QED ‘‘photonic’’ corrections we have at our disposal th
O(a0), O(a1), andO(a2) calculations~at least for the ISR,
where they are the biggest!. We can therefore afford to tak
half of the difference between theO(a1) andO(a2) calcu-
lations as a conservative estimate of the physical precis
due to QED ‘‘photonic’’ corrections. We also profit from th
fact that the exponentiation considerably speeds up the
vergence of the perturbative series by the ‘‘advanced s
mation’’ of certain classes of corrections to infinite orde
and by not introducing additional spurious cutoff paramet
dividing real emissions into soft and hard ones, which
typical of the calculations without exponentiation~see the
discussion on the famousk0 parameter in the 1989 LEP
workshop@40#!.

Let us mention that we omit, in our estimates of the phy
cal precision, from the discussion theO(a2) effects due to
an additional fermion pair, either real or virtual. We do
because:~a! there are many MC programs that implement t
production of the four-fermion final states~often with the
additional ISR! and ~b! in the experiment this contribution
can be eliminated at an early stage from the data in the
perimental data analysis aimed at single fermion-pair p
duction, see for example Ref.@48#. In fact this point is still
under debate; see the proceedings of the LEP2 Monte C
workshop@45#. It was proposed that in the final combine
LEP2 data the so-called nonsinglet initial-state and final-s
secondary pair contribution will be kept in the data, as it
done byOPAL, see Refs.@49–51#. We have recently included
the virtual corrections of the ‘‘vacuum polarization’’ typ
with the fermionic bubble in theO(a2) photonic contribu-
tions to the vertex corrections in the yet unpublished vers
4.14 of theKK MC. This is done while keeping in mind th
combined results of theKK MC with those of the other MC
programs for the four-fermion production process, such
KORALW @52#. The tandem of theKK MC andKORALW pro-
grams will be able to realize any possible scenario of
treatment of the soft/light pair corrections in the LEP2 da

In Fig. 20 we present the numerical results on which
base our quantitative estimate of the physical precision

n

-
7.
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FIG. 20. Evaluation of the physical precision for the total cross section and charge asymmetry. The difference between theO(a2)CEEX

andO(a1)CEEX is plotted as a function ofvmax512s8min /s. Results are shown for them1m2 final state atAs5189 GeV.
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to the photonic QED corrections. In this figure, we plot t
difference between theO(a2)CEEX and theO(a1)CEEX re-
sults for the total cross section and charge asymmetry at
GeV as a function of the cut on the total energy emitted
all ISR and FSR photons in them1m2 final state. The cut is
formulated with thes8.s8min or equivalentlyv,vmax con-
dition, wheres8 is the effective mass squared of them1m2

pair andv512s8/s, as usual. One should remember that
actual experimental cut is aroundvmax;0.2 ~eliminating the
Z radiative return! in the case of the standard data analys
and sometimes aroundvmax;0.9 in the case when theZ ra-
diative return is admitted in the data. The ‘‘kink’’ aroun
vmax;0.75 is at the position of theZ radiative return. In
either case, whether we admit or eliminate theZ radiative
return, that is forvmax;0.9, the difference between th
O(a2)CEEX andO(a1)CEEX results for the total cross sectio
is below 0.4%, and the corresponding difference is be
0.002 for the charge asymmetry.

Taking conservativelyhalf of this difference between th
O(a2)CEEX and theO(a1)CEEX results as an estimate of th
neglectedO(a3)CEEX and higher orders we conclude that t
physical precision due to the photonic QED corrections
our O(a2)CEEX calculation, for all possible cutoffs in the
,vmax,0.9 range, is 0.2% in the total cross reaction a
0.001 in the charge asymmetry. This estimate would even
a factor of 2 better, if we restricted ourselves to the m
typical cutoff range of 0.1,vmax,0.3. The above estimat
will be confirmed by more auxiliary tests in the following.

As we see, we have improved on the physical precis
estimate with respect to the previous estimates for the E
model—in addition we do include IFI all of the time. For th
respective precision of the ZRR process we now quote,
the integrated cross section, 0.2% instead of the prev
0.7%, and for the analogousgg* process precision we hav
something like 0.3% instead of the previous 1.5%. These
interpret as the results of the inclusion of theO(La2) ISR
correction in our CEEX spin amplitudes.
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We have to stress very strongly that the estimate of
physical precision depends on the type of observable~we
took s andAFB), the type of final state~we took them pair
final state; for the quark-pair final states, the QED FSR
fects are smaller, because of the smaller electric charge
quarks!, and on many other input parameters, for examp
on the total CMS energy. The great thing about the Mo
Carlo is that the type of evaluation we proposed and imp
mented in this section@half of differenceO(a2)2O(a1)#
can be repeated for any observable, any final state, and
energy. For example, in Fig. 21 we repeat our evaluation
the physical precision fors andAFB at a linear collider en-
ergy of 500 GeV. As we see the resulting precision is wor
negligibly for a mild cut of the order ofvmax,0.5 and sig-
nificantly by a factor of almost 2 for theZ radiative return,
which is now placed close tov50.95.

D. Absolute predictions, more on the physicalÕtechnical
precision

In this section we shall present the SM absolute pred
tions for the total cross section and charge asymmetry
LEP2 ~189 GeV! and at the linear collider~500 GeV!. We
compare them with our own semianalytical programKKsem,
with KORALZ @10#, and in some cases withZFITTER @5#. They
may not improve our basic estimates of the technical a
physical precision from the previous sections, but they c
confirm them~or disprove them!.

In Table III we show numerical results for the total cro
sections(vmax) and charge asymmetryAFB(vmax) as a func-
tion of the cutvmax on the total photon energy~the cutoff
parametervmax is defined as in the previous subsection!.
Generally, in Table III we show results with the ISR-FS
interference~IFI! switched on and off. TheKKsem semiana-
lytical program~part of theKK MC package! provides the
reference resultsfor s and AFB , see the first column in
Table III, which are without the IFI and are obtained fro
using the EEX3best formula defined in Sec. VI B. For t
9-55
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FIG. 21. Evaluation of the physical precision for the total cross section and charge asymmetry atAs5500 GeV. The difference betwee
O(a2)CEEX andO(a1)CEEX is plotted as a function ofvmax512s8min /s in the m1m2 final state.
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charge asymmetry we use the convolution-type se
analytical formula of Eq.~208!. ~In fact we use this formula
separately for the cross section in the forward and backw
hemispheres and then we calculateAFB from these partial
integrals.! The results from theKK MC in Table III are
shown for two types of QED matrix element: theO(a2)CEEX
with and without IFI. In addition, the results we include fro
KORALZ are for theO(a1) matrix element with and withou
IFI, which will be discussed in the next section.

As tables with lists of numbers are difficult to compr
hend, we present the essential results of Table III in Fig.
where they are all plotted as a difference with thereference
results of our semianalytical programKKsem. ~In other
words the results fromKKsem are exactly on thex axis.!
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i-

rd

2,

In the case with the IFI switched on,KKsem cannot be
used as a cross-check of theKK MC. Remembering that the
IFI in KORALZ in the O(a1) mode~without exponentiation!
is very well tested, we combine theO(a1) IFI contribution
with the CEEX result without the IFI. Such a hybrid solutio
denoted in Fig. 22 as ‘‘CEEX21IFI at O(a1)’’ is used as
our primary test of the full CEEX matrix element with IF
switched on. The above procedure is done separately
cross sections in the forward and backward hemispheres
that the prediction for charge asymmetry is also available

It is worth mentioning that the above hybrid solution w
already successfully used in Refs.@53,54# for the study of the
IFI contribution at theZ peak, imposing a strong acollinea
ity cut. It is also implemented in a semianalytical form
as input
TABLE III. Absolute predictions for the total cross section and charge asymmetry. They are for them1m2 final state atAs5189 GeV.
The results are plotted as a function of the cutoff on the total photon energyvmax512s8min /s. The ‘‘reference’’s andAFB in first column
are from theKKsem semi-analytical program. We have used a Higgs boson mass of 100 GeV and a top mass of 175 GeV
parameters.

vmax KKsem refer. O(a3)EEX3 O(a2)CEEX int OFF O(a2)CEEX KORALZ KORALZ interf.
s(vmax) @pb#, KK MC andKORALZ 1st order

0.01 1.671260.0000 1.668760.0020 1.669060.0020 1.767960.0024 0.963960.0009 0.161060.0009
0.10 2.519860.0000 2.516460.0023 2.517060.0023 2.596760.0027 2.191960.0010 0.088060.0010
0.30 3.061660.0000 3.056560.0024 3.058160.0024 3.119060.0029 2.769060.0010 0.054560.0010
0.50 3.374760.0000 3.368260.0025 3.371360.0025 3.420360.0029 3.056560.0010 0.038560.0010
0.70 3.722560.0000 3.713160.0025 3.720060.0025 3.759660.0030 3.364960.0010 0.024660.0010
0.90 7.143460.0000 7.090460.0024 7.149660.0024 7.178960.0030 6.355860.0010 0.021060.0010
0.99 7.614560.0000 7.551160.0024 7.625460.0024 7.654260.0029 6.700460.0010 0.021360.0010

AFB(vmax), KK MC andKORALZ 1st order
0.01 0.565460.0000 0.565060.0014 0.565060.0014 0.611160.0016 0.576560.0013 0.120160.0013
0.10 0.566460.0000 0.566060.0011 0.566060.0011 0.592260.0012 0.578460.0006 0.0032460.0006
0.30 0.569260.0000 0.568760.0009 0.568660.0009 0.585660.0011 0.581860.0005 0.016460.0005
0.50 0.574460.0000 0.573860.0009 0.573760.0009 0.586360.0010 0.586860.0005 0.011260.0005
0.70 0.586460.0000 0.585260.0008 0.585260.0008 0.594760.0009 0.597260.0004 0.007860.0004
0.90 0.310560.0000 0.311560.0004 0.309660.0004 0.317060.0005 0.326060.0002 0.003760.0002
0.99 0.285160.0000 0.286760.0004 0.284360.0004 0.291260.0004 0.303960.0002 0.002460.0002
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FIG. 22. Absolute predictions for the total cross section and charge asymmetry. They are for them1m2 final state atAs5189 GeV. The
results are plotted as a function of the cutoff on the total photon energyvmax512s8min /s.
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ZFITTER 6.x. On general grounds, we expect this recipe to
rather good, because the IFI correction itself atO(a1) does
not contain any large mass logarithms, is relatively sm
and can be handled additively.

In Fig. 22 we also show the numerical results from t
KK MC in the EEX3 mode~no IFI! and fromKORALZ in the
EEX2 mode~no IFI!, which are not included in Table III.

Let us now comment on the results in Fig. 22. The EE
from theKK MC differs from the EEX3best of theKKsem
~no IFI in either! by about 0.7% for the ZRR process, as w
have already seen, and we interpret this difference as
result of the missingO(L1a2). The EEX2 ofKORALZ 4.03 is
closer to the EEX3best of theKKsem for the ZRR
process—we do not see any contradiction in this since
implementations of the EEX inKORALZ and theKK MC
differ in the details@causing a difference ofO(L1a2) in the
integrated cross section#.

In the case with the IFI switched off, the CEEX2 resu
corresponding exactly to theO(a2)CEEX, defined in Sec. III,
as implemented in theKK MC 4.13, agrees very well with
the EEX3best of theKKsem. This result is compatible wit
the total theoretical precision of 0.2% for the integrated cr
section, even including the ZRR process.

In the case with the IFI switched on, the hybrid soluti
‘‘CEEX21IFI at O(a1)’’ also agrees with the full CEEX2
result, confirming the total theoretical precision of 0.2%
the integrated cross section, including the ZRR process.

For the charge asymmetry in Fig. 22, the situation is qu
similar. The IFI effect is up to 4% for strong cuts. In the ca
with the IFI switched off, the CEEX2 result agrees with t
EEX3best of theKKsem to within 0.2%. When the IFI is
included, the CEEX2 agrees with the hybrid solution rath
well, to within 0.4%. Note that in the above Monte Car
exercise we have used the symmetric definition of the s
tering angleu • of Ref. @55# ~which is close to what is used i
the LEP experiments!.

Summarizing, the numerical results in Fig. 22 establ
our basic estimate of the theoretical precision of theKK MC,
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due to QED effects, at LEP2 energies of about 0.2% for
total cross section and 0.2–0.4 %~depending on the cutoffs!
for the charge asymmetry. Finally, we examine the ana
gous results from theKK MC at 500 GeV in Fig. 23. In this
case we include only results from theKK MC andKKsem.
The pattern of agreement is, up to a factor of 2, the sam
at 189 GeV.

E. Initial –final-state interference

The control of the initial–final-state interference corre
tion down to the precision of 0.2% in the integrated cro
section and in the charge asymmetry is rather importan
this is why we dedicate this section to a more detailed st
of this QED correction. In particular we would like to answ
the following questions.

~1! How big is the ISR̂ FSR interference ins tot , AFB?
~2! Do we know the ISR̂ FSR atO(a1)?
~3! Do we know the ISR̂ FSR beyondO(a1)?
~4! How sensitive is the ISR̂FSR to cutoff changes?
KORALZ is the best starting point and reference for t

problem of calculating the ISR̂FSR. In Fig. 24 we show
results from theO(a1) KORALZ ~no exponentiation! for the
m1m2 final state atAs5189 GeV. The angular distribution
from KORALZ, in pureO(a1) ~without exponentiation!, were
verified very precisely at the level of;0.01% using a spe-
cial analytical calculation, see Ref.@55#, so we know the
ISR^ FSR at O(a1) very precisely. As we see, the IS
^ FSR contribution to the integrated cross section is ab
3% and its contribution is about 0.03 toAFB . This is defi-
nitely above the ultimate experimental error tag for the co
bined LEP2 data at the end of the LEP2 operation. The
ergy cut on the total photon energy is fixed in the results
Fig. 24 to just one value,v,vmax50.1 ~where vmax51
2s8/s is defined as usual!. This is close to the usual value i
the experimental LEP2 data analysis. We introduce also
angular cutucosuu,cosumax and vary the value of cosumax,
see Fig. 24~b!, where the value used in the experimen
9-57
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FIG. 23. Total cross section and charge asymmetry for them1m2 final state atAs5500 GeV. The results are analogous to tho
in Fig. 22.
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LEP2 data analysis is around cosumax50.9; this corresponds
to two bins before the last one in Fig. 24~b! ~the last point in
the plot is for cosumax51). In this way we have alread
answered the first two questions from the above list.

In Fig. 25 we present similar results from theKK MC,
which will help us to answer whether we know the IS
^ FSR beyondO(a1) and to inspect in more detail the de
pendence on cutoffs. In Fig. 25~a!,~b! we essentially repea
the exercise of Fig. 24, finding out the ISR^ FSR contribu-
tion to the angular distribution andAFB for the same energy
cut usingKK MC instead ofKORALZ. As we see, the result
change slightly, the ISR̂FSR effect is about 20–30 %
smaller. We attribute this mainly to~a! a different ~better!
treatment of the ISR in theKK MC and ~b! the exponentia-
tion of the ISR̂ FSR effect in theKK MC. As is well
known, in O(a1), the ISR̂ FSR contributes like
4QeQf(a/p)ln(12cosu)/(11cosu) to the angular
distribution—this even causes the angular distribution to
negative close to cosu521. In the CEEX exponentiation th
above singularity is summed up to infinite order and
angular distribution nearucosuu51 is no longer singular.
11300
e

e

~This kind of exponentiation will be implemented in the ne
version ofZFITTER, see@45# for the first numerical results.!
The typical experimental cutucosuu,0.9 eliminates most of
the above trouble anyway—what is probably more import
is the correct ‘‘convolution’’ of the IR-finiteO(a1) ISR
^ FSR with theO(a2) ISR. In theKK MC, this is done in a
maximally clean way from the theoretical/physical point
view ~at the amplitude level! while in the semianalytical pro-
grams likeZFITTER @5# this is done in a moread hocmanner.
Let us remind the reader that we still lack the genuine
finite O(a2) corrections in the ISR̂ FSR class from dia-
grams like 2-boxes and 5-boxes, see Sec. III. These co
butions are most likely negligible, of the order ofO(L1a2)
at most.

In Fig. 25~c!,~d! we make the energy cut looser,vmax
50.9, thus admitting the ZRR into the available phase-spa
As a result, the relative ISR̂FSR decreases by a factor of
simply because it gets ‘‘diluted’’ in the integrated cross se
tion, which is larger by a factor of 3 while ZRR does n
contribute to the ISR̂ FSR because of its narrow-resonan
character, as we already discussed at length in Sec. III.
FIG. 24. Results from the
O(a1) KORALZ ~no exponentia-
tion! for the m1m2 final state at
As5189 GeV. The energy cut is
on s8/s, wheres85mf f̄

2 . The an-
gular cut isucosuu,cosumax. The
scattering angle is theu5u • of
Ref. @55#.
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FIG. 25. Results from theO(a2) KK MC for the m1m2 final state atAs5189 GeV. The energy cut is ons8/s, wheres85mf f̄
2 . The

angular cut isucosuu,cosumax. The scattering angle is theu5u • of Ref. @55#.
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fact that the ZRR does not contribute to the ISR^ FSR can
be seen explicitly in Fig. 26 where we plot the ISR^ FSR
contribution toAFB ‘‘binperbin,’’ that is calculated in each
bin separately. As we see the contribution from the ZR

FIG. 26. The ISR̂ FSR contribution toAFB ‘‘binperbin.’’
11300
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which at this energy~189 GeV! is located atv50.75, is very
small, smaller than the contributions from all of the otherv ’s
where there is noZ resonance.

In the above exercises, and also in the following, we
ways use the energy cut on thev512s8/s variable defined
in terms of the effective mass of the ‘‘bare’’ final fermion
that is without any attempt at combining them with the c
linear FSR photons. This is experimentally well justified f
the m-pair final states but not fort-pairs or quarks. It is
possible, and in fact rather easy, to define a ‘‘propagator’
‘‘reduced’’ sp8 that takes into account the loss of energy d
to ISR but not FSR. In other words, thesp8 effective mass-
squared sums up FSR photons. One can ask the follow
legitimate question: If we would cut not on the ‘‘bare’’ fina
fermion variables8, but instead on the ‘‘propagator’’sp8 ,
would perhaps the estimate of the ISR^ FSR contribution
then be dramatically different, for instance would it be mu
smaller? In Fig. 27 we show a numerical exercise in wh
we employ the energy cut in terms ofvp512sp8/s. One can
construct such ansp8 by looking into the angles of the outgo
ing fermions. This type of variable was used in Ref.@55#. In
Fig. 27 we use the definition ofsp8 of ALEPH @56#. As we see
in this figure, the result is not dramatically different fro
9-59
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FIG. 27. Results from theO(a1) KK MC for them1m2 final state atAs5189 GeV. The energy cut is onvp512s8/s, wheres8 is an
estimate of the ‘‘propagator eff. mass’’ as defined byALEPH. The angular cut isucosuu,cosumax. The scattering angle is theu5u • of Ref.
@55#.
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what we have seen in Fig. 25. The magnitude of the I
^ FSR contribution is close to what we could see if we a
plied the same value of the energy cut for the ‘‘bare’’s8 ~as
we have checked independently!.

We shall now examine the dependence of the ISR^ FSR
contribution on the energy cutvmax in more detail. In Fig. 28
we show the ISR̂ FSR contribution toAFB as a function of
the energy cutvmax at two energies~a! 189 GeV and~b!
As5MZ at theZ peak. No cut is applied on cosu. In addition
to theKK MC results, we show the results from theO(a1)
mode ofKORALZ and fromZFITTER.28 At 189 GeV and for
the typical energy cut 0.2,vmax,0.3, all three programs
agree very well. This cut is relatively ‘‘inclusive,’’ so tha
exponentiation effects are not so important and the ISR
eliminated in a ‘‘gentle’’ way~the total cross section is clos
11300
R
-

is

to the Born value!. For stronger cutsvmax,0.2 we see a large
~factor of 2! discrepancy between the results from theKK
MC and bothKORALZ and ZFITTER, because of the lack o
exponentiation inKORALZ and ZFITTER ~in ZFITTER the ISR
^ FSR is taken without exponentiation and combined w
the ISR ‘‘additively’’!. We also observe the discrepancy
about 0.2% for the ZRR between theKK MC on the one
hand and bothKORALZ and ZFITTER on the other hand. Ou
guess is that it is due to the difference in the method
combining the ISR̂ FSR with the second-order ISR~of
course, we believe that the CEEX method of doing it at
amplitude level is the best one can do!. In Fig. 28~b! we see,
first of all, the well-known phenomenon of the strong su
pression of the ISR̂ FSR contribution at the resonance, e
pecially for a loose cutoff. Even for a strong cut,vmax
FIG. 28. The s8-cut depen-
dence ofdAFB . No u-cut.

28We thank D. Bardin for providing us the results fromZFITTER.
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FIG. 29. The s8-cut depen-
dence ofds. No u-cut.
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50.1, the ISR̂ FSR contribution is about 0.01, a factor
about 30 smaller than it is in the off-resonance case. H
the KK MC agrees rather well withKORALZ and ZFITTER.
The differences are generally29 up to 0.0015.

In Fig. 29~a! we examine the ISR̂FSR contribution to
the integrated cross section as a function of the energy
vmax. At 189 GeV and for the typical energy cut 0.1,vmax
,0.6, all three programs agree reasonably well,KORALZ and
ZFITTER are generally closer to each other than to theKK
MC. After admitting the ZRR,vmax.0.8, all three programs
agree even better. For a very strong cut,vmax,0.1, KORALZ

andZFITTER differ dramatically from theKK MC because of
the lack of exponentiation inKORALZ and ZFITTER for the
IFI. In Fig. 29~b!, we see again the strong suppression of
ISR^ FSR contribution at the resonance, especially for
loose cutoff. The suppression is cutoff dependent and ge
ally stronger forKORALZ andZFITTER than for theKK MC.
Most of the comments that we made on the ISR^ FSR con-
tribution to AFB apply also here.

Finally, in Fig. 30 we go back to the vicinity of theZ peak
~LEP1! and we show the magnitude of the ISR^ FSR contri-
bution to the integrated cross section as a function of
CMS energy, for them2m1 final state and for all five quark
final states taken together~the so-called hadronic cross se
tion! from the KK Monte Carlo. No angular cut or energ
cut is applied~the full phase-space!. For the m2m1 final
state, we also include results from theO(a1) KORALZ and
ZFITTER/TOPAZ0 @5,41#. The results on quarks are multiplie
by a factor of 10 to be visible, because the ISR^ FSR con-
tribution in this case is small. It is not only suppressed by
smallness of the quark charge, but we also have partial
cellation among the up- and down-type quarks, see Ref.@55#.
However, the ISR̂ FSR contribution to the hadronic cros
section has to be known much more precisely~a factor;3)
because it is measured much more precisely, thanks to hi
statistics. In Fig. 30 we see that the suppression of the

29The difference betweenKORALZ andZFITTER should perhaps be
smaller, since both areO(a1)? The difference could be due to th
angle definition.
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^ FSR is much weaker as we go away from the center of
resonance, and it changes the resonance curve in such a
that it affects the fitted mass of theZ. The actual size of the
shift of MZ was studied in Ref.@57#, and it was found to be
0.15 MeV. Results of theKK MC are smaller by abou
10–20 % than theO(a1) estimates ofKORALZ andZFITTER,
away from theZ peak. This is compatible with the 10–20 %
size of the O(L2a2) ISR corrections with respect to
O(L1a1) corrections, which are included in theKK MC and
are not included inKORALZ, and apparently are also not in
cluded in ZFITTER/TOPAZ0 ~which agree very well with
KORALZ!. Our last comment concerns the reliability of o
estimate for the ISR̂ FSR contribution in the absence of th
correct implementation of the simultaneous emission of
FSR photon and the FSR gluon. We think that through
usual arguments, see Ref.@57#, we can neglect considerin
the emission of the FSR single gluon, as long as we stic
a very inclusive cross section, such as the total cross sec
in Fig. 30. For stronger angular cuts, or events with a defin
jet multiplicity, we would need to improve our calculation

We summarize the results of this section on the I
^ FSR as follows.

FIG. 30. Back on theZ peak.
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~1! For a typical experimental energy cut of 0.3 the IS
^ FSR interference is about 1.5% ins tot andAFB .

~2! For the energy cut of 0.1, it is a factor of 2 larger.
~3! The cutucosuu,0.9 makes it 25% smaller.
~4! TheO(a1) ISR^ FSR interference is under total con

trol, usingKORALZ andKK Monte Carlo for arbitrary cuts.
~5! Effects beyondO(a1) are negligible@,20% of the

O(a1)#, except when the energy cut is stronger than 0.1
~6! The ISR̂ FSR interference at theZ radiative return is

very small, as expected.
~7! Changing froms8 to the propagatorQ2 in the energy

cut has no effect.

F. Total theoretical precision

Let us summarize the total theoretical precision.
~1! For the most typical cutoff range 0.1,vmax,0.3, ex-

cluding theZ radiative return, we quote for CEEX a tota
precision of 0.2% for LEP2 and for the LC at 0.5 TeV.

~2! For a cutoff including ZRR we quote 0.2% total pr
cision for LEP2 and 0.4% total precision for the LC at 0
TeV.

~3! For gg* we quote 0.3% at LEP2~there is no firm
result for the LC!.

In the above estimates the technical component of
error was significantly below the physical one. The restr
tions to be applied are as follows: no light-fermion pa
~pure photonic QED!; no EW component.

VII. OUTLOOK AND SUMMARY

The most important new features in the present CEEX
the ISR-FSR interference, the second-order subleading
rections, and the exact matrix element for two hard photo
This already makes CEEX a unique source of SM pred
tions for the LEP2 and the LC physics programs. Note t
for these programs the electroweak correction library ha
be reexamined at LC energies. The most important omis
in the present version is the absence of the neutrino
electron channels. Let us stress that the present program
excellent starting platform for the construction of the seco
order Bhabha MC generator based on CEEX exponentiat
We hope to be able to include the Bhabha and neutrino ch
nels soon, possibly in the next version. The other import
directions for the development are the inclusion of the ex
matrix element for three hard photons, together with virt
corrections up toO(a3L3) and the emission of the light fer
mion pairs. The inclusion of theW1W2 andt t̄ final states is
still in a further perspective.
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APPENDIX: BASIC KS ÕGPS SPINORS AND PHOTON
POLARIZATIONS

The arbitrary massless spinorul(p) of momentump and
chirality l is defined according to the KS methods@24,25#.
In the following we closely follow the notation of Ref.@2#
~in particular we also usez5z↓). In the above framework
every spinor is transformed out of the twoconstant basic
spinorsul(z), of opposite chiralityl56, as follows:

ul~p!5
1

A2pz
p” u2l~z!, u1~z!5h” u2~z!,

h2521, ~hz!50. ~A1!

The usual relations hold:z”ul(z)50, vlul(z)5ul(z),
ul(z) ūl(z)5z”vl , p”ul(p)50, vlul(p)5ul(p),
ul(p)ūl(p)5p”vl , wherevl5 1

2 (11lg5). Spinors for the
massive particle with four-momentump ~with p25m2) and
spin projectionl/2 are defined similarly:

u~p,l!5
1

A2pz
~p”1m!u2l~z!,

v~p,l!5
1

A2pz
~p”2m!ul~z!, ~A2!

or, equivalently, in terms of massless spinors

u~p,l!5ul~pz!1
m

A2pz
u2l~z!,

v~p,l!5u2l~pz!2
m

A2pz
ul~z!, ~A3!

where pz[ p̂[p2z m2/(2zp) is the light-cone projection
(pz

250) of thep obtained with the help of the constant au
iliary vector z.

The above definition is supplemented in Ref.@2# with the
precise prescription of the spin quantization axes, the tra
lation from spin amplitudes to density matrices~also in vec-
tor notation!, and the methodology of connecting productio
and decay for unstable fermions. We collectively call the
rules the global positioning of spin~GPS!. Thanks to these
we are able to easily introduce polarizations for beams
implement polarization effects for final fermion decays~of
t-leptons,t-quarks!, for the first time also in the presence o
the emission of many ISR and FSR photons.
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The GPS rules determining the spin quantization fra
for the u(p,6) andv(p,6) of Eq. ~A3! are summarized a
follows.

~a! In the rest frame of the fermion, take thez axis along
2zW .

~b! Place thex axis in the plane defined by thez axis from
the previous point and the vectorhW , in the same half-plane a
hW .

~c! With the y-axis, complete the right-handed system
coordinates. The rest frame defined in this way we call
GPS frame of the particular fermion.

See Ref.@2# for more details. In the following we sha
assume that polarization vectors of beams and of outgo
fermions are defined in their corresponding GPS frames

The inner product of the two massless spinors is defi
as follows:

s1~p1 ,p2![ū1~p1!u2~p2!,

s2~p1 ,p2![ū2~p1!u1~p2!52@s1~p1 ,p2!#* .
~A4!

The above inner product can be evaluated using the Kle
Stirling ~KS! expression

s1~p,q!52~2pz!21/2~2qz!21/2@~pz!~qh!2~ph!~qz!

2 i emnrszmhnprqs# ~A5!

in any reference frame. In particular, in the laboratory fra
we typically usez5(1,1,0,0) andh5(0,0,1,0), which leads
to the following ‘‘massless’’ inner product

s1~p,q!52~q21 iq3!A~p02p1!/~q02q1!

1~p21 ip3!A~q02q1!/~p02p1!. ~A6!

Equation~A3! immediately provides us also with thein-
ner productfor massive spinors

ū~p1 ,l1!u~p2 ,l2!5S~p1 ,m1 ,l1 ,p2 ,m2 ,l2!,

ū~p1 ,l1!v~p2 ,l2!5S~p1 ,m1 ,l1 ,p2 ,2m2 ,2l2!,
~A7!

v̄~p1 ,l1!u~p2 ,l2!5S~p1 ,2m1 ,2l1 ,p2 ,m2 ,l2!,

v̄~p1 ,l1!v~p2 ,l2!5S~p1 ,2m1 ,2l1 ,p2 ,2m2 ,2l2!,

where

S~p1 ,m1 ,l1 ,p2 ,m2 ,l2!

5dl1 ,2l2
sl1

~p1z ,p2z!

1dl1 ,l2
S m1A2zp2

2zp1
1m2A2zp1

2zp2
D . ~A8!
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In our spinor algebra we shall exploit the completeness r
tions

p”1m5(
l

u~p,l!ū~p,l!, p”2m5(
l

v~p,l!v̄~p,l!,

k”5(
l

u~k,l!ū~k,l!, k250. ~A9!

For a circularly polarized photon with four-momentumk
and helicitys561 we adopt the KS choice~see also Ref.
@58#! of the polarization vector30

@es
m~b!#* 5

ūs~k!gmus~b!

A2ū2s~k!us~b!
,

@es
m~z!#* 5

ūs~k!gmus~z!

A2ū2s~k!us~z!
, ~A10!

where b is an arbitrary light-like four-vectorb250. The
second choice withus(z) ~not exploited in@24#! often leads
to simplifications in the resulting photon emission amp
tudes. Using the Chisholm identity31

ūs~k!gmus~b!gm52us~b!ūs~k!12u2s~k!ū2s~b!,
~A11!

ūs~k!gmus~z!gm52us~z!ūs~k!22u2s~k!ū2s~z!,
~A12!

we get two useful expressions, equivalent to Eq.~A10!:

@e”s~k,b!#* 5
A2

ū2s~k!us~b!
@us~b!ūs~k!

1u2s~k!ū2s~b!# ~A13!

@e”s~k,z!#* 5
A2

A2zk
@us~z!ūs~k!2u2s~k!ū2s~z!#.

In the evaluation of photon emission spin amplitudes,
shall use the following important building blocks—the el
ments of the ‘‘transition matrices’’U andV defined as

30Contrary to other papers on Weyl spinor techniques@24,59#, we
keep here the explicitly complex conjugation ine. This conjugation
is canceled by another, following Feynman rules, but only for o
going photons, not for a beam photon, as in the Compton proc
see Ref.@60#.

31For b5z the identity is slightly different because of the add

tional minus sign in the ‘‘line-reversal’’ rule, i.e.,ūs(k)gmus(z)

52 ū2s(z)gmu2s(k), in contrast to the usualūs(k)gmus(b)5

1ū2s(b)gmu2s(k).
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ū~p1 ,l1!e”s* ~k,b!u~p2 ,l2!5US k

s D F p1p2

l1l2
G5Ul1 ,l2

s ~k,p1 ,m1 ,p2 ,m2!,

~A14!

v̄~p1 ,l1!e”s* ~k,z!v~p2 ,l2!5VS k

s D F p1p2

l1l2
G5Vl1 ,l2

s ~k,p1 ,m1 ,p2 ,m2!.

In the case ofus(z) the above transition matrices are rather simple:32

U1~k,p1 ,m1 ,p2 ,m2!5A2F A2zp2

2zk
s1~k,p̂1!, 0

m2A2zp1

2zp2
2m1A2zp2

2zp1
, A2zp1

2zk
s1~k,p̂2!

G , ~A15!

Ul1 ,l2

2 ~k,p1 ,m1 ,p2 ,m2!5@2Ul2 ,l1

1 ~k,p2 ,m2 ,p1 ,m1!#* , ~A16!

Vl1 ,l2

s ~k,p1 ,m1 ,p2 ,m2!5U2l1 ,2l2

s ~k,p1 ,2m1 ,p2 ,2m2!. ~A17!

The more general case withus(b) looks a little bit more complicated:

U1~k,p1 ,m1 ,p2 ,m2!5A 2

s2~k,b!

3F s1~ p̂1 ,k!s2~b,p̂2!1m1m2A2zb

2zp1

2zk

2zp2
m1A2zb

2zp1
s1~k,p̂2!1m2A2zb

2zp2
s1~ p̂1 ,k!

m1A 2zk

2zp1
s2~b,p̂2!1m2A 2zk

2zp2
s2~ p̂1 ,b! s2~ p̂1 ,b!s1~k,p̂2!1m1m2A2zb

2zp1

2zk

2zp2

G ,

~A18!
a

ll

it

s.
with the same relations~A16! and ~A17!.
In the above the following numbering of elements in m

tricesU andV was adopted

$~l1 ,l2!%5F ~11 ! ~12 !

~21 ! ~22 !G . ~A19!

When analyzing~multi! bremsstrahlung amplitudes we sha
also often employ the following compact notation:

UF pkp

l1sl2
G5Ul1 ,l2

s ~k,p1 ,m1 ,p2 ,m2!,

VF pkp

l1sl2
G5Vl1 ,l2

s ~k,p1 ,m1 ,p2 ,m2!. ~A20!
11300
-
When analyzing the soft real photon limit we shall explo

the following importantdiagonalityproperty:33

UF pkp

l1sl2
G5VF pkp

l1sl2
G5bs~k,p!dl1l2

, ~A21!

bs~k,p!5A2
ūs~k!p” us~z!

ū2s~k!us~z!

5A2A2zp

2zk
ss~k,p̂!, ~A22!

which also holds in the general case ofus(b), where

bs~k,p!5
A2

s2s(k,b)S s2s~b,p̂!ss~ p̂,k!

1
m2

2z p̂
A~2bz!~2zk!D . ~A23!

32Our U andV matrices are not the same as theM matrices of Ref.
@25#, but rather are products of several of those.

33Let us also keep in mind the relationb2s(k,p)5
2@bs(k,p)#* , which can save time in the numerical calculation
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