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Coherent Integration Loss Due to White
Gaussian Phase Noise

Mark A. Richards, Senior Member, IEEE

Abstract—We develop a simple analytic expression for the
change in coherent weighted integration gain due to a white
Gaussian error or noise in the phase of the integrated samples.
Our expression is shown by simulation to be very accurate for
any reasonable value of phase noise standard deviation. The
result is useful in estimating the performance impact on coherent
signal processing systems of oscillator noise, residual motion
compensation errors, and other system imperfections that are
manifested primarily as phase errors.

Index Terms—Coherent integration, integration loss, phase
noise, radar, sonar.

I. DERIVATION OF COHERENTINTEGRATION ERROR

CONSIDER a series of complex data samples
where and are constants, but

the sequence are independent and identically distributed
(i.i.d.) zero-mean Gaussian random variables with standard
deviation . We consider to be the desired measurement
and to be a phase error. Phase errors frequently arise from
phase deviations in the local oscillators of radar, sonar, and
communication systems, uncompensated sensor motion errors,
and other sources. The Gaussian model for phase errors is a
common assumption [1], and it has been shown that oscillator
phase errors are in fact Gaussian under widely applicable
assumptions [2]. Note that the power (magnitude-squared) of

is . A weighted coherent sum of such data values is
formed as

(1)

where the are known deterministic weights. Equation (1)
can model a wide variety of signal processing algorithms that
involve coherent integration. Examples include coherent detec-
tion based on multiple samples, clutter cancellation, linear fil-
tering, and computation of the discrete Fourier transform. The
power in is the random variable

(2)
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We are interested in estimating the change in the power of the
coherently integrated and detected sampledue to the phase
noise. This change is a significant performance metric in many
systems, e.g., radar moving target indication [3], [4]. The power
in the coherent sum in the absence of phase noise ( ) is
just . In the coherent integra-
tion case when , this simplifies to . As another
example, a radar clutter canceller always has , so the
power is zero in the absence of phase noise.

When phase noise is present,is a random variable, and we
must compute its expected value

(3)

where

Because the phase noise samples are i.i.d. and stationary,
we have

(4)
where

(5)

At this point, our problem has reduced to computing.
To proceed, we need to use the specific model of the prob-

ability density function (pdf) of , which we denote .
We use a zero-mean Gaussian with standard deviation

(6)

Strictly speaking, this is not possible: a valid pdf for a phase
measurement must be limited to the interval0, 2 . However, if
the standard deviation is small, then will approach zero
as approaches , and the Gaussian is a useful model. In
practice, we are interested in standard deviations of only a few
degrees, so that corresponds to many standard deviations
out on the tail of the Gaussian distribution.

By definition, we have for

(7)

where the approximation relies again on the variance of the
Gaussian being small, so that the pdf is effectively nonzero only
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in a small region around . Substituting in the definition of
the Gaussian pdf, we obtain

(8)

Integral number 3.323–2 in [5] is

(9)

By identifying

(10)

we can put (8) into the form of (9) and conclude that

(11)

and

(12)

We can now return to , which becomes

(13)

Finally, the mean power of the coherently integrated measure-
ment with phase noise is

(14)

This is the desired result. It is easily computed given the phase
noise variance and the weighting coefficients .

The case where for all is of special interest; this
is the model for coherent integration of samples for detection,
for example. It is common to compute the integration lossin
this case, defined as the ratio of the power when phase noise is
present to the power when it is not

dB. (15)

Fig. 1. Comparison of “exact” formula for the change in integrated power due
to phase noise (16) to the simplified approximation (17) as a function of the
number of samples integratedN . � = 5 .

With , (15) simplifies to

(16)

If is large, we can further simplify (16) to

(17)

Finally, this approximation is especially simple when expressed
in decibels

dB (18)

The basic result of (14) can be used for calculations other than
integration loss. For example, a two-pulse radar clutter canceller
can be modeled by choosing , , and .
The power computed using (14) is then the limit on clutter at-
tenuation due to phase noise. Approximating by the
first two terms of its power series gives the classical approxima-
tions for clutter attenuation found in [3] and [4] (after adjusting
for their use of real, rather than complex, signals). Our result is
applicable over a larger range of phase variance.

Fig. 1 shows the difference in the coherent integration loss
formula (16) for and the large- approximation of (17) as a
function of the number of samples integratedfor the specific
example of 5 . The difference in the predicted mean loss
is less than 0.01 dB for samples. As the phase variance
rises, the value of for which the error in the approximation
is less than 0.01 dB also rises, reaching for 10
and for 20 . However, these are quite large values
of phase error; the approximation of (17) or (18) is very good
for a small number of samples integrated and reasonably small
values of phase error.

II. V ALIDATION BY SIMULATION

A simple MATLAB Monte Carlo simulation has been imple-
mented to validate the estimated loss of (16). A sequence of unit
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Fig. 2. Agreement between simulated and analytically estimated (16) coherent
integration loss due to phase noise.N = 10 samples integrated, 1000 Monte
Carlo trials. (Left ordinate) Simulated and predicted integration loss are nearly
indistinguishable. (Right ordinate) Difference in the two curves. For this case,
it is well under 0.001 dB.

amplitude ( ) complex phasors with a zero-mean Gaussian
phase is generated. The samples are then numerically integrated
(summed). The magnitude-squared of the sum is computed, and
then normalized by the power without phase noise and con-
verted to decibels. Fig. 2 compares this Monte Carlo estimate

of against the analytically predicted value given in (16) for
samples integrated and 1000 Monte Carlo trials aver-

aged. We see that the analytical prediction is an excellent match
to the simulated data. The difference between the two curves in
decibels is plotted against the right ordinate and is well under
0.001 dB for this case. For larger, the variance of the inte-
gration loss is less and the curves are an even closer fit. The
error between simulated and predicted loss for does
not exceed 0.01 dB until the phase noise variance is about 20,
a large value. At this latter level of phase variance, the “3-sigma”
points are 60 , and the approximations to the phase pdf and
the change of integration limits from to , which both
relied on a “narrow Gaussian” pdf, are becoming invalid.
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