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1. Introduction 

Coherent integration has been used in 
matched filter radar signal processing to 
increase target signal to noise ratios. 
Currently radar designers apply a rule of 
thumb that a target must remain in the 
same range resolution cell during the 
coherent integration time. Thus Doppler 
processing depends mainly on the change 
in phase from pulse to pulse. This results 
in limiting either the range resolution or 
Doppler resolution of the radar enabling 
very high range resolution or very high 
Doppler resolution but not both. We 
present here an approach to radar matched 
filtering which does not have these 
limitations and can produce simultaneous 
high range and high Doppler resolution 
matched filter outputs. The new matched 
filter coherently integrates the radar data 
even though the target scatterers move 
through many range resolution cells 
during the coherent integration time.  

The new matched filter uses as its primary 
component a new transformation which 
we call Keystone formatting. Keystone 
formatting provides the ability to match 
filter all scatterers moving through range 
cells with linear velocities regardless of 
their individual velocity magnitudes or 

directions. Intuitively, there is a direct 
relationship between a scatterer’s Doppler 
and linear range migration. The Keystone 
formatting is based on this relationship. 
The processing also includes the capability 
to hypothesize range migration 
acceleration, i.e. quadratic migration, and 
higher order terms as well as to 
accommodate under sampled radar PRF’s 
producing folded Doppler spectrums. The 
processing is in principal transparent to 
any range migration. Although higher 
order range migration can be 
hypothesized, a practical approach would 
be to limit the hypothesis to acceleration 
and foldover. The Keystone formatting 
can be applied prior to these hypothesis to 
reduce computational redundancies.       

2. Theoretical Background and the 

Keystone Transformation 

In this section we show how range 
migration can be compensated, so that 
coherent integration can be obtained of 
target scatterers that have migrated 
through many range cells during a 
integration interval. 

 Consider a radar on an aircraft 
emitting a series of pulses 
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where t = time, k = pulse number, T1 is the 
interpulse period, fc is the carrier 
frequency and, typically*, p(t) is a chirp 
pulse, given by 
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where To is the pulse length and B is the 
bandwidth.  Now suppose this pulse train 
illuminates a moving point scatterer at a 
range R(t), and the received signals are 
recorded in a two-dimensional array 

( )ktts ,′ where 1kTtt −=′  is known as the 
"fast time" and tk = kT1  is known as the 
"slow time".  Then, in terms of these 
variables the received signal after 
downconversion, can be written as 
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where A is a constant that depends on the 
scatterer strength and the scatterer range 
has been assumed to vary negligibly 
during the pulse interval To. 

 The Fourier transform of Equation 
(3) over the fast-time variable can be 
written as 
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*  Although p(t) is represented as a chirp 

pulse, our analysis is valid for arbitrary 
p(t). 

where P(f) is the Fourier transform of p(t').  
Next, we can generalize Equation (4) from 
a single point scatterer to an assemblage of 
N moving point scatterers at ranges Rn(tk), 
which can be used as a simplified model.  
Then Equation (4) becomes 
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 The range Rn(tk) to scatterer n can be 
expanded in a Taylor series about tk = 0 as 
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where ( ) ( )0,0 nnnn RrRr == , etc.  If 

Equation (6) is used in (5) we obtain 
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Now recall that the matched filter in 
range-Doppler space is 
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where ρ is range, fd is Doppler,T is the 
coherent integration interval, and we have 
approximated the summation over pulses 
by an integral.  Then, if (7) is used in (8) it 
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is evident that the term [ ]ctrfi kn   4exp π  

represents a coupling between range and 
Doppler due to linear range migration of 
the scatterers.  This range migration is the 
dominant blurring mechanism that must be 
compensated in order to obtain a high-
resolution matched filter output. This 
effect can be ignored if 

,1<<∆ cRBπ where ∆R is the total range 
migration during the coherent integration 

interval. We can remove the linear range 
migration if we rescale the time axis for 
each frequency by the transformation 

 τ
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If Equation (9) is used in (7) the rescaled 
data in the new (f, τ) domain, eliminating 
higher than quadratic terms is:  
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Figure 1.  Keystone Transformation of the 2-Dimensional Data 
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Thus, the coupling effect of the linear 
range migration has been removed 

Figure 1 shows the remapping process. 
We have called the process “Keystone 
Formatting” due to its Keystone shape. 
The target scatterers can now be matched 
filtered if the acceleration, i.e. nn ra =  can 

be estimated, and corrected by hypotheses  

3. Keystone Formatting of 

Undersampled Data 

Range migration correction using 
Keystone formatting can still be done even 
if the data is undersampled.  Let us ignore 
acceleration and then rewrite Equation 
(10) as 
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is the true Doppler frequency of scatterer 
n. 

 

Now suppose the data is 
undersampled and fbn is the folded Doppler 
frequency of scatterer n.  Then Equation 
(13) can be rewritten as 

1Ffff bndn +=                                      (14) 

where F is the fold factor and f1 = 1/T1 is 
the pulse repetition frequency.  If Equation 
(14) is substituted into (11) we obtain 
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is the undersampled data.  Thus, the 
undersampled data in the (f, τ) domain can 
be corrected by multiplying by 
exp(i2πf1Fτ) after Keystone formatting. If 
the foldover, F, is unknown it must be 
hypothesized.  The foldover correction can 
also be applied before the Keystone 
formatting.  

4. Examples Using Keystone Formatting 

     4.1 Moving Target Matched Filtering 

The effectiveness of the Keystone 
formatting can be shown by synthesizing 
four simultaneous point targets whose 
range migration is shown in figure 3. All 
four targets have  different velocities but 
the same acceleration.  
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Figure 4 shows the target data matched 
filtered in range for each pulse with no 
Keystone formatting or acceleration 
hypotheses. Figure 5 shows the range 
matched filter output after Keystone 
formatting and the correct acceleration 
hypotheses. The range migration has been 
eliminated for all four targets 
simultaneously.  
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Figure 4- Range Migration With No 

Keystone Formatting 
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Figure 5 - Range Migration After 

Keystone Formatting 
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                             Figure 6 
 
Figure 6 shows the 2D range/Doppler 
matched filter output with no Keystone 
Formatting. Figure 7 shows the 2D 
range/Doppler matched filter output after 
Keystone formatting and acceleration 
hypotheses. There is about a 24 dB 
improvement in coherent integration with 
Keystone formatting. 
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Figure 7 

  
4.2 Foldover Example 
 
The target motion shown in figure 3 was 
increased by 8 m/sec producing a fold 
factor of one. Figure 8 shows the Keystone 
matched filter output with a foldover 
hypothsis of zero. 
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Figure 8 

Figure 9 shows the Keystone matched 
filter with the correct fold factor 
hypothesis. 
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Figure 9 

Summary 
 
We have developed and demonstrated the 
Keystone format to simultaneously 
remove linear range migration for all 
targets regardless of their velocities. 
Higher order motion and under sampling 
foldover can be removed by hypotheses.  
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