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Coherent Ising machines—optical neural networks operating

at the quantum limit
Yoshihisa Yamamoto1,2, Kazuyuki Aihara 3, Timothee Leleu3, Ken-ichi Kawarabayashi4, Satoshi Kako1,4, Martin Fejer2, Kyo Inoue5 and

Hiroki Takesue6

In this article, we will introduce the basic concept and the quantum feature of a novel computing system, coherent Ising machines,
and describe their theoretical and experimental performance. We start with the discussion how to construct such physical devices
as the quantum analog of classical neuron and synapse, and end with the performance comparison against various classical neural
networks implemented in CPU and supercomputers.
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INTRODUCTION

Optimization problems with discrete and continuous variables,
some of which belong to NP-hard or NP-complete class in
complexity theory, are ubiquitous in numerous important areas,
including operations and scheduling, drug discovery, wireless
communications, finance, integrated circuit design, compressed
sensing, and machine learning. Despite rapid advances in both
algorithms and digital computer technology, even modest sized
NP-hard/NP-complete problems that arise in practice may be very
difficult to solve on modern digital computers. One alternative to
current von-Neumann-computer-based methods for solving such
problems is a neural network realized with analog electronic
circuits and other systems.1–4 Another approach of contemporary
interest is the adiabatic quantum computation (AQC)5 and
quantum annealing (QA).6,7 Sophisticated AQC/QA devices are
already under development,8–11 but providing dense connectivity
between qubits remains a major challenge12 with serious
implications for the efficiency of AQC/QA systems.13

Networks of degenerate optical parametric oscillators (DOPOs)
are an alternative physical system, with an unconventional
operating mechanism,14–17 for solving the Ising problem,18–20

and by extension many other combinatorial optimization pro-
blems.21 Formally, the N-spin Ising problem is to find the
configuration of spins σi 2 �1;þ1f g i ¼ 1; ¼ ;Nð Þ that minimizes
the energy function H ¼ �

P

1�i<j�N Jijσiσj �
P

1�i�N hiσi , where
the particular problem instance being solved is specified by the
N × N matrix J (with elements Jij) and the N-dimensional vector h
(with elements hi).
In DOPO Ising machines, the up-spin and down-spin are

represented by the positive and negative in-phase amplitudes,
i.e. σi ¼ Xi= Xij j. Then, the energy function H is mapped to the
effective loss, photon decay rate, of the DOPO network by
implementing the mutual coupling proportional to Jij between
two DOPOs and injecting the dc field proportional to hi to
individual DOPO.14 The ground state of the Ising Hamiltonian

corresponds to an oscillation mode with the minimum network
loss. At the pump rate below an oscillation threshold, every DOPO
is in a squeezed vacuum state which is interpreted as linear
superposition of σi = +1 (positive amplitude or up-spin) and σi = −1
(negative amplitude or down-spin) so that the probability
amplitudes for 2N spin configurations are all identical, as shown
in Fig. 1a. At the threshold pump rate, the ground state with a
minimum loss reaches a threshold first and oscillates as a single
stable mode, which triggers the stimulated emission of photons
and cross-gain saturation for all the other modes, as shown in
Fig. 1b. Thus, the solution of the Ising problem can be found by
simply detecting the single oscillation mode.14

The input states into all DOPOs are vacuum states,
0j i1 0j i2; � � � 0j iN . The essential quantum operations are the
collective (not individual) symmetry breaking at DOPO threshold,
which translates all DOPOs to either positive amplitude αj i or
negative amplitude �αj i coherent state in a correlated way.
Finally, the computational results are read out by optical
homodyne detectors. A block diagram of the CIM operation is
shown in Fig. 1c.
We have realized such a system with a scalable architecture that

uses a measurement-feedback circuit in place of optical
delay lines, which were used in earlier experiments.15,22,23 Our
measurement-feedback-based DOPO Ising machine allows con-
nections between any spin and any other spin, and is fully
programmable.24,25 Fully connected superconducting Ising
machines have been also proposed recently.26,27

CLASSICAL VS. QUANTUM NEURAL NETWORKS

Nonlinear devices that have a characteristic input–output relation
shown in Fig. 2a represent a typical gain function of neurons in
classical neural networks (CNN).1,2 When an input signal level is
weak, the neuron linearly amplifies this input signal and thus
compensates for unavoidable linear loss in the network. When the
input signal level exceeds a certain threshold value ath, however,
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the output signal level is clamped at a constant value bs. This
nonlinear input–output relation is essential for CNN to find a
stable operating point which manifests a solution for a given
mathematical problem. In this model, each neuronal state is
expressed by a continuous variable ai, which obeys a continuous
time evolution governed by

d

dt
ai ¼ �ai þ f aið Þ � ∂V

∂ai
þ gi ; (1)

where the first term of R.H.S. of Eq. (1) expresses the linear loss
and the second term describes self-feedback with the nonlinear
gain function f shown in Fig. 2a. Note that a time is normalized
by the decay rate of a neuron excitation. The third term represents
the mutual coupling among neurons and the interaction
potential V implements a given mathematical problem. We
emphasize that a simultaneous mutual coupling between neurons
without introducing undesired instability or oscillation is made
possible by the gradient descent character of the third term. The
nonlinear gain function f is often implemented as a coupling
coefficient for the third term of mutual coupling instead of the
second term of self-feedback.1,2 An essential feature of the CNN is,
however, independent of the location of the nonlinear gain

function. Finally, the fourth term, gi, expresses a noise driving force
associated with the decay and the nonlinear gain for a neuron
excitation.
The classical picture behind Eq. (1) is that each neuron has an

unpredictable but definite value ai at a given time even though
the network is randomly driven by internal and/or external noise.
This is a correct physical picture of a neural network when thermal
noise is much larger than quantum zero-point noise i.e. kBT�ħω.
However, if the opposite is true, i.e. ħω�kBT, the interpretation of
Eq. (1) must be altered. It should be considered as a c-number
stochastic differential equation (CSDE), which is derived from and
fully equivalent to the density operator master equation for the
quantum neural network.16,17 Now, the variable ai does not
represent any physical quantity of the neuron but rather it is
merely an eigenvalue (α or β) of the coherent states used in the
quasi-probability density to expand the density operator, such as a
positive P(α,β) representation16 or Wigner representation.17 In
order to compute the expectation value of any physical quantity
of the neuron, we must first reconstruct the density operator by an
ensemble of many trajectories of ai generated by the CSDE.
Whenever ħω�kBT, we must take this quantum approach to reach
a correct answer.

Fig. 1 Principle and sequence of operations of coherent Ising machines (CIM). a, b Principle of coherent Ising machines (CIM). When a DOPO
network gain increases to reach the minimum loss rate of a ground state, a single-mode oscillation occurs at the ground state. c A block
diagram of the CIM operation
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Fig. 2 Basic properties of quantum neurons. a The nonlinear input–output relation of a neuron in classical neural networks. b A degenerate
optical parametric process. Quantum noise distributions of DOPA at below the threshold (c) and DOPO at above the threshold (d)
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A quantum neuron (or quantum neural network) is character-
ized by the following three properties and in this way, it is distinct
from a classical counterpart:

1. A quantum neuron is prepared in a superposition state of
different neural excitations so that a quantum parallel search
can be implemented.

2. A network of quantum neurons makes a decision to reach a
final computational result through correlated and collective
symmetry breaking at a critical point of phase transition.

3. A network of quantum neurons amplifies the above quantum
solution to a classical signal via bosonic final state stimulation.

As shown in the subsequent sections, we will show the above
three properties are indeed realized by DOPO and their networks.
The most important advantage of the DOPO-based quantum

neural network compared to its classical counterpart is that each
neuron (DOPO) is prepared in linear superposition of different in-
phase amplitude eigenstates, i.e. squeezed vacuum state and so a
quantum parallel search can be implemented to the whole
optimization process. This is the crucial computational resource
for CIM.

QUANTUM NEURONS

Degenerate optical parametric amplifiers and oscillators

Any phase-sensitive amplifier (PSA) has an input–output relation
similar to that shown in Fig. 2a due to its inherent gain saturation
effect. We focus here on the degenerate optical parametric
amplifier (DOPA) based on the two photon emission process
shown in Fig. 2b. A particular device is composed of a second-
order nonlinear crystal placed in an optical cavity. The nonlinear
crystal absorbs one pump photon at a frequency 2ωs and

simultaneously emits two signal photons at a frequency ωs.
A pertinent interaction Hamiltonian28 is expressed by

H ¼ �hκ ây2s âp þ â2s â
y
p

� �

: (2)

Here âsðâysÞ and âpðâypÞ are the annihilation (creation) operators for
the signal and pump fields, and κ is a parametric coupling
constant. The simultaneously generated two signal photons are a
conjugate pair in a sense that they have a positive correlation in
the in-phase amplitudes X̂ð¼ ðâs þ â

y
sÞ=2Þ and a negative correla-

tion in the quadrature-phase amplitudes P̂ð¼ ðâs � â
y
sÞ=2iÞ. As a

result of such positive and negative correlations in X̂ and P̂,
constructive and destructive interference happens between the
two signal photons along the X-axis and P-axis, respectively. As a
result of such quantum interference, if a DOPA is input by an
external vacuum state (zero-point fluctuation), the zero-point
fluctuation is amplified and deamplified along the X-axis and
P-axis, respectively, as shown in Fig. 2c. The resulting state is called
a squeezed vacuum state, which is a minimum uncertainty wave
packet and satisfies the Heisenberg uncertainty principle with
equality, ΔX̂2

� �

ΔP̂2
� �

¼ 1=16, just as the vacuum state.
The phase-sensitive amplification/deamplification mentioned

above is not a rare phenomenon in nature. One classical example
is a swing driven by a person as shown in Fig. 3a, where a person
(corresponding to the pump in DOPA) completes a full cycle
(up–down–up) while a swing (corresponding to the signal in
DOPA) makes only a half cycle (left-to-right). Note that the phase
of the pump and that of the signal should be mutually locked in
order to realize an amplitude amplification process, as shown in
Fig. 3b. This corresponds to the situation that the in-phase
amplitude X̂ is amplified. You can easily imagine from your
childhood memory what you did in order to stop the swing when
you must go home. You stood up at the center of the swing

,

⁄2
t

signal (in-phase amplitude) ( )

signal (quadrature phase amplitude)

pump 

(a) (b)

(c)

Fig. 3 A phase sensitive amplifier. a A phase-sensitive amplification/deamplification process of a swing, in which a person makes a full cycle
(up–down–up) but a swing makes only half cycle (left-to-right). b The corresponding phase relation between the person’s drive y(t) and the
swing oscillation θ(t). c The in-phase and quadrature-phase amplitude noise of the DOPA at below threshold30
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period and crouched at both ends. Then, the swing (signal)
amplitude is attenuated. This corresponds to the situation that the
quadrature-phase amplitude P̂ is deamplified.
The OPO has a long history of development at Stanford

University.29 In the coherent Ising machine (CIM), a periodically
polled lithium-niobate (PPLN) waveguide device is used as such a
PSA for signal pulses. The first experimental demonstration of
deamplification (squeezing) and amplification (anti-squeezing) for
optical pulses in vacuum states using this particular device was
reported in 1995.30 Figure 3c shows the suppressed quadrature-
phase amplitude noise (squeezing) and enhanced in-phase
amplitude noise (anti-squeezing) by the PPLN waveguide DOPA.
It is a general property of the squeezing devices that the degree of
squeezing (vacuum noise deamplification) is reduced by experi-
mental system’s imperfections, in particular, a linear optical loss,
but that the degree of anti-squeezing (vacuum noise amplifica-
tion) is not reduced so much by linear optical loss. Suppose a PSA
output has a 20 dB of squeezing, 4 ΔP̂2in

� �

¼ 10�2 , for the
quadrature-phase amplitude and 20 dB of anti-squeezing,
4 ΔX̂2

in

� �

¼ 102 , for the in-phase amplitude. An optical linear loss
L degrades the degree of squeezing and anti-squeezing according
to

ΔX̂2
out

� �

¼ L ΔX̂2
in

� �

þ 1� Lð Þ 1
4
; ΔP̂2out
� �

¼ L ΔP̂2in
� �

þ 1� Lð Þ 1
4
:

(3)

If there is a 3 dB of linear loss after the PSA, the degree of
squeezing is only ~3 dB while the degree of anti-squeezing is still
~17 dB. Note the Ising spin is represented by the in-phase
amplitude rather than the quadrature-phase amplitude. Therefore,
the quantum parallel search in the CIM is based on the anti-
squeezed quantum noise of the in-phase amplitude rather than
the squeezed quantum noise of the quadrature-phase amplitude,
so that the operation of CIM is inherently robust against an optical
loss.
The input–output relation of the DOPA for an increasing signal

power above the saturation level approximately reproduces the
nonlinear response function f(a) shown in Fig. 2a.31 A physical
mechanism behind this gain saturation is the depletion of the
pump power, which triggers a reverse energy flow, i.e. two signal
photons are absorbed simultaneously in the nonlinear crystal to
generate one pump photon. When the input signal power
becomes sufficiently large, the reverse energy flow from the
signal to the pump is switched on and the linear amplification
process must stop. In our case of constructing quantum neurons, a
related but slightly different nonlinear effect is employed to
amplify a solution state at a microscopic level to that at a
macroscopic level, which we will explain next.
If the parametric amplifier gain exceeds the signal decay rate

from the cavity, the system can sustain a steady-state field by
creating a finite average amplitude along the X-direction. The
center position of a quantum wave packet in the (X,P) phase space
is no more X ¼ P ¼ 0 but there emerges a non-zero X value, as
shown in Fig. 2d. This is the oscillation threshold point. The device
pumped at above the oscillation threshold is called a DOPO. The
probability for creating a positive X value and negative X value is
randomly selected by 50–50% probability, which is known as
spontaneous symmetry breaking and is an ubiquitous feature for
any second-order phase transition phenomena.32 In the language
of dynamical systems theory, the DOPO threshold represents the
supercritical pitchfork bifurcation. The two stable states with
positive and negative X values correspond to the firing and non-
firing states of a classical neuron or up-spin and down-spin states
of an Ising problem. A similar mechanism, dissipative quantum
bifurcation machine, was discussed recently in the context of
Josephson junction qubits.33–35 When the input signal level to the
DOPA is varied while the pump rate is fixed at below the
oscillation threshold, the output signal level is first linearly

amplified and then eventually reaches the oscillation state with
a clamped amplitude due to gain saturation. In this way, the
nonlinear input/output relation shown in Fig. 2a is realized in the
transition from DOPA to DOPO in our quantum neurons.
Why are DOPOs referred to as quantum neurons and how are

they different from classical neurons? We will present the answers
to these important questions in the next section.

Linear superposition

A set of photon number eigenstates nj i can expand an arbitrary
state of the field as an orthonormal set. The wavefunction of a
squeezed vacuum state (see Fig. 2c) can be mathematically
constructed as a superposition of photon number eigenstates
with even eigenvalues:

ψsvj i ¼ c0 0j i þ c2 2j i þ c4 4j i þ � � � : (4)

A simple physical reasoning behind Eq. (4) is explained as
follows: The photon number of an intense pump field exhibits
large quantum uncertainty, typically on the order of Δn̂2h i � n̂h i
for a coherent pump field. Therefore, we cannot extract which-
path information, even in principle, whether the number of
absorbed pump photons in the nonlinear crystal is zero, one, two
… at a given time. Because one pump photon is converted into
two signal photons, those cases correspond to the output signal
field in 0j i; 2j i; 4j i; � � � photon number eigenstates. Because of
the lack of which-path information, the proper expression for the
quantum state of the output signal field of DOPA must be a
superposition of those states. Except for an irrelevant phase factor,
the probability amplitudes c0,c2,c4,� � � have an identical phase, for
instance, positive real numbers.36 In the (X, P) phase space, the
different photon number eigenstates constructively interfere with
each other along the X-axis, while they destructively interfere with
each other along the P-axis.
Alternatively, a squeezed vacuum state can be mathematically

constructed as a superposition of quadrature amplitude eigen-
states Xj i, which are the eigenstates of the Hermitian operator X̂ :

ψsvj i ¼
Z 1

�1
C Xð Þ Xj idX: (5)

It is not difficult to show that the different in-phase amplitude
eigenstates constructively interfere with each other in the small P-
regions centered at P ¼ 0, while they destructively interfere with
each other in the large P-regions. Therefore, more anti-squeezing
(enhanced quantum noise) along the X-axis realizes more
squeezing (reduced quantum noise) along the P-axis.
It is worth pointing out that a statistical mixture of in-phase

amplitude eigenstates

ρ̂mix ¼
Z 1

�1
P Xð Þ Xj i Xh jdX (6)

instead of Eq. (5), covers the same range of the eigenvalues X but
requires an infinite amount of energy to realize, since the
localization of the state along the P-axis near P ¼ 0 is now
impossible due to the lack of phase coherence between different
Xj i eigenstates. The infinite uncertainty along the P-axis means an
infinite energy. A squeezed vacuum state, represented by Eq. (5)
and produced by the DOPA, allows a quantum parallel search with
a finite energy, while a classical mixed state, represented by
Eq. (6), does not allow such a quantum parallel search.
A particularly unique quantum feature of the DOPA/DOPO is

that the aforementioned superposition survives not only below
the threshold but also above the threshold to some extent if the
cavity loss is small. At well above the oscillation threshold, the
DOPO produces either 0-phase or π-phase coherent field as shown
in Fig. 2d. However, a DOPO at just above the oscillation threshold
maintains the superposition of 0-phase and π-phase states, in
spite of finite photon leakage from the resonator.37–39 This is
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possible because a hypothetical measurement performed for a
leaked signal field cannot identify which phase the DOPO selects
due to the enhanced quantum noise along the X-axis and also
small separation between the two states. The anti-squeezed in-
phase amplitude noise realizes a so-called “quantum erasure” for
this hypothetical which-path measurement.
The evidence for the above statement is shown in Fig. 4a.40

Here we consider a CIM consisting of synchronously pumped
DOPO pulses circulating in a fiber ring cavity.24,25 The density
matrix elements Xjρ̂ X 0jh i in the (X+X′, X−X′) phase space for two
out-of-phase (anti-ferromagnetically) coupled DOPOs are plotted,
where the pump rate is just above the threshold. In Fig. 4a, the in-
phase amplitude probability distribution Xjρ̂ Xjh i, which is given as
the horizontal slice at X−X′ = 0, and the quantum coherence
Xjρ̂ �Xjh i between the two in-phase amplitude eigenstates Xj i
and �Xj i, which is given as the vertical slice at X+X' = 0, clearly
show macroscopically separated coherent states αj i and �αj i
maintain quantum coherence.40 Figure 4b compares the density
matrix elements Xjρ̂ X 0jh i for a superposition state, 1=

ffiffiffi

2
p

αj i þ �αj ið Þ,
and a mixed state, ρ̂ ¼ 1=2 αj i αh j þ �αj i �αh jð Þ, in the same (X+X′,
X−X′) phase space, respectively. We can conclude from Fig. 4a that the
two DOPOs are approximately in Schrödinger’s cat states and yet
their centers of gravity are negatively correlated due to out-of-
phase coupling. That is, the DOPO1 (above) is biased toward a
positive amplitude, while the DOPO2 (below) is biased toward a
negative amplitude. Figure 4c shows the Wigner function of the
DOPO state. The oscillatory behavior and negative values of the
Wigner function are another manifestation of the quantum
coherence between αj i and �αj i states.40 Such a highly non-
classical feature is quickly destroyed by increasing a cavity loss.
However, it should be emphasized that the superposition of Xj i
eigenstates with positive and negative eigenvalues in a squeezed
vacuum state, represented by Eq. (4), is rather robust against a
cavity loss as mentioned above so that the resulting quantum
parallel search survive in a low-Q cavity.

Amplitude and phase error correction capability given by phase-
sensitive amplification

Fluctuations are induced in the DOPO fields by the external phase
and amplitude noise injection. Both the amplitude and phase of
the DOPO field are continuous variables so that the standard error
detection and error correction techniques cannot be applied.
Fortunately, the phase-sensitive amplification/deamplification
mechanism of DOPO can stabilize the phase to either 0 or π as

long as the phase error is small compared to ±π/2.15 Moreover, the
amplitude error can be also suppressed by the gain saturation
mechanism of the DOPO. If the signal amplitude is increased to
above the steady-state value, the pump amplitude is more
strongly depleted which, in turn, recovers the steady-state
amplitude through a reduced parametric gain. The opposite is
true when the signal amplitude is decreased to below the steady-
state value. The deterministic amplitude decay due to optical
linear loss can be compensated for by the average gain. In this
way, the output amplitude is stabilized through the balance
between the linear cavity loss and the saturated gain in DOPO,
while the phase is stabilized by the phase-sensitive deamplifica-
tion of DOPO. This is schematically shown in Fig. 5.
The DOPO provides a unique opportunity as a robust analog

memory against external noise injection. We can stably store the
analog information at quantum limited accuracy with the above-
mentioned mechanisms.

QUANTUM SYNAPSES

We wish to implement a target Hamiltonian as a cost function
(effective loss) of the network consisting of quantum neurons. Our
target Hamiltonian is the following Ising model:41

H ¼ �
X

i<j

Jijσiσj �
X

i

hiσi ; (7)

where the Ising spin σi takes either +1 (up-spin) or −1 (down-spin).
As described above, we wish to represent σi = 1 or σi = −1 by the

P

X

deamplifica�on

a�er amplitude
and phase 
error

amplifica�on

a�er phase sensi�ve 
amplifica�on/deamplifica�onphase error

amplitude 
error

before amplitude
and phase error

Fig. 5 Amplitude and phase error correction in DOPO. The
amplitude error is corrected by saturated amplification along the
X-axis and the phase error is corrected by phase-sensitive
deamplification along the P-axis
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Fig. 4 Quantum states of DOPO fields at the threshold. a The density matrix elements X ρ̂j jX 0h i of the two out-of-phase coupled DOPO pulses
in a high-Q ring cavity at the threshold pump rate. The in-phase amplitude probability distribution X ρ̂j jXh i and the quantum coherence
X ρ̂j j � Xh i of the two DOPO pulses are given by a horizontal cut at X−X′= 0 and a vertical cut at X+X′= 0, respectively. The round trip loss is

0.1%. b The density matrix elements X ρ̂j jX 0h i for a superposition state, 1=
ffiffiffi

2
p

αj i þ �αj ið Þ and a mixed state, ρ̂ ¼ 1=2 αj i αh j þ �αj i �αh jð Þ. (c) The
corresponding Wigner functions to Fig. 4a40
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positive or negative in-phase amplitude, which corresponds to 0-
phase or π-phase oscillation, respectively (Fig. 2d). The Ising
coupling Jij and the local field hi take continuous (real) values, the
magnitude of which are determined by mapping a given
combinatorial optimization problem on the Ising model.13,21 The
three-dimensional Ising model and the two-dimensional Ising
model with local fields belong to the NP-hard class in complexity
theory.18 Therefore, you can imagine that many hard problems in
the real world can be solved through the Ising model.13,21 In order
to implement the cost function described in Eq. (7) as the effective
loss of the DOPO network, pairs of DOPOs must be coupled with
the coupling constant Jij and also the constant optical field hi must
be injected into each DOPO.14

Optical delay line coupling scheme

In the configuration shown in Fig. 6a, N independent DOPOs are
simultaneously realized as N optical pulses circulating in a single
fiber ring cavity with an internal PSA which is driven externally by
pump pulse trains. Figure 6a shows one experimental scheme to
implement the Ising coupling Jij in the DOPO network, where a
part of each DOPO pulse circulating in a fiber ring resonator is
picked-off at every round trip by the output coupler, amplified by

an external PSA, split into multiple optical delay lines including
intensity and phase modulators and then injected back to the
target DOPO pulse at appropriate timing.15,22,23

The external PSA is provided by another DOPA and boosts the
in-phase amplitude X̂ of a picked-off pulse before it is attenuated
by the beam splitter and modulator loss. Using this technique, we
can implement a relatively large Ising coupling constant (Jij ≲ 1)
even if the system size is fairly large (N≳ 104). Using such N−1
optical delay lines, any (jth) pulse can be connected to any other
(ith) pulse with a coupling constant Jij. Please note that
asymmetric coupling Jij ≠ Jji can be easily implemented in this
scheme and that ~N2 mutual coupling constants can be realized
by (N−1) optical delay lines. Such an all-optical coupling scheme
has been experimentally demonstrated for N = 4 and 16 pulses
using free-space optics with a 4.8 m ring cavity and 250 MHz and
1 GHz repetition frequencies, respectively15,22 and for N = 104

pulses using a planar lightwave circuit and fiber optics with 1 km
fiber ring cavity and 2 GHz repetition frequency.23 In the latter
system, for example, the optical fiber length is 1 km so that a
round trip time is 5 μs while the pulse interval is 0.5 ns, which
leads to N = 104 DOPO pulses inside a single ring cavity.
This optical delay line coupling machine is capable of

producing the quantum noise correlation among the internal

Fig. 6 Two types of coherent Ising machines (CIM). a A coherent Ising machine (CIM) based on the time-division multiplexed DOPO pulses
with mutual coupling implemented by optical delay lines. A part of each pulse is picked off from the main cavity by the output coupler

followed by an optical phase-sensitive amplifier (PSA) that amplifies the in-phase amplitude X̂ of the extracted DOPO pulse. The feedback
pulses, which are produced by combining the outputs from N−1 intensity and phase modulators, are injected back to the target DOPO pulse
by the injection coupler.15,22,23 b A CIM with a measurement-feedback circuit. A small portion of each DOPO signal pulse is out-coupled
through the output coupler, and its in-phase amplitude is measured by optical balanced homodyne detectors, where LO pulse is directly
obtained from the pulsed pump laser. Two detector outputs are converted to digital signals and input into an electronic digital circuit, where
a feedback signal for the ith DOPO signal pulse is computed. The feedback pulse also taken from the pump laser is modulated in its intensity

and phase to achieve the target amplitude proportional to
P

j Jij
~Xj and coupled into the ith signal pulse by an injection coupler. Flows of

optical fields and electrical signals are shown as solid and dashed lines, respectively.24,25 c A partially reduced DOPO1 wave packet by the
approximate measurement and a displaced DOPO2 wave packet by the feedback injection implements an anti-ferromagnetic order even after
a single measurement-feedback
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DOPO pluses.16,17 In the section Quantum features of CIM,
we will discuss this point in detail using the two measures for
evaluating quantum noise correlation: quantum entanglement
and discord.

Measurement-feedback coupling scheme

An alternative coupling scheme to implement the Ising coupling Jij
is shown in Fig. 6b.24,25 Instead of directly connecting the DOPO
pulses with optical delay lines, we can measure approximately the
in-phase amplitude of the internal DOPO pulse by the optical
balanced homodyne detectors. If the inferred in-phase amplitude
of the jth DOPO pulse is represented by ~Xj , the feedback pulse to
the ith DOPO pulse should have an in-phase amplitude
proportional to

P

j Jij
~Xj . The complicated task of the synchronous

computation of the vector-vector multiplication between Jij and ~Xj ,
which must be completed in the pulse interval of 100 ps – 1 ns, is
achieved by a single measurement-feedback circuit consisting of
an analog-to-digital converter, a field programmable gate array
(FPGA), a digital-to-analog converter and optical amplitude/phase
modulators.24,25 The feedback pulse used as an input to the
optical modulator and the local oscillator pulse used for optical
homodyne detection are both provided by a part of the pump
laser output, as shown in Fig. 6b.
Such a measurement-feedback coupling scheme (Fig. 6b) is

equivalent to an optical delay line coupling scheme (Fig. 6a)
except for the following advantage/disadvantage. The advantage
of the measurement-feedback scheme is that all-to-all coupling of
the order of ~N2 connections can be implemented by a single
measurement-feedback circuit, so that the daunting task of
constructing N−1 optical delay lines and stabilizing their delay
lengths (or optical phase) with an error much less than the optical
wavelength can be avoided. In addition, many-body Ising-type
interactions, such as H ¼ �P

Kijkσiσjσk , can be readily imple-
mented. The disadvantage of the measurement-feedback scheme
is that the FPGA circuit must complete ~Ο(N) vector–vector
multiplication and addition within each pulse interval. This
imposes a limitation on the machine size N and the pulse
repetition frequency. On the other hand, the optical delay line
coupling scheme enjoys its inherent high-speed operation with a
pulse repetition frequency limited only by optical device
performance.
There is a subtle but important difference in the operational

principles from quantum mechanical viewpoints between the
optical delay line coupling and measurement-feedback coupling
schemes. The measurement-feedback scheme does not produce
any entanglement among DOPO pulses. The total density operator
stays in the product state of individual DOPO pulse density
operators, because the coupling is provided by the local operation
and classical communications (LOCC). However, the
measurement-feedback scheme is capable of implementing the
non-unitary state reduction to pump out a spurious entropy from
the network and prepare each DOPO pulse close to the
Heisenberg limit (minimum uncertainty wave packet) induced
by quantum measurements. The wave packet is actually non-
Gaussian at above threshold, which contributes to enhanced
quantum tunneling in the quantum parallel search process.
Figure 6c shows schematically this scenario. Suppose the two

DOPOs are connected by the anti-ferromagnetic Ising coupling
constant J21 < 0. At the pump rate near threshold and before
measurement feedback, the two DOPOs are independently in
squeezed vacuum states. If the DOPO1 is measured and a positive
amplitude is obtained (~X1>0), the center position of the DOPO1
wave packet is shifted to the positive side and the variance is
reduced, but a long tail exists toward X1 = 0 and X1 < 0 (non-
Gaussian). Simultaneously, the center position of the DOPO2 wave
packet is shifted to the negative side by injecting a feedback pulse
with an amplitude of J21~X1. In this way, the anti-ferromagnetic

order is implemented in the two quantum states even with a
single measurement-feedback step.

MAPPING OF AN ISING HAMILTONIAN TO DOPO NETWORK
LOSS

In this section, the in-phase amplitude xj(t) of the jth DOPO is
considered as a classical variable. The simple classical picture
presented in this section still captures an essential part of the
mapping principle.

Pitchfork bifurcation

We consider in this section simple equations of motion that
capture the essential computational principle for the sake of
clarity. We consider the dynamics of N analog variables xj, with xj
∈]−∞, +∞[and j∈{1,⋯, N}, given as follows:

_xj tð Þ ¼ � ∂V

∂xj
; (8)

with

V ¼
X

l

Vb xj
� �	 


þ ϵVl xð Þ; (9)

where Vb(xj) is the archetype bistable potential in xj with Vb xj
� �

¼
� 1

2 αx
2
j þ 1

4 x
4
j and Vl(x) the analog version of the Ising Hamiltonian

with Vl(x) = −∑jωjlxjxl. Here t = (γs/2)τ is the unitless time normalized
by the signal field lifetime 2/γs, γs is the signal photon decay rate,
p = α + 1 = Fp/Fth is the unitless pump rate normalized by the
solitary DOPO threshold pump photon flux Fth ¼ γs

ffiffiffiffiffi

γp
p

=4κ, γp is
the pump photon decay rate, κ is the parametric coupling
constant, xj = Xj/As is the normalized in-phase amplitude, and As ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γsγp=2κ
2

q

is the saturation amplitude which is equal to the actual

DOPO oscillation amplitude at the normalized pump rate p = 2. α
= −1 + p is the bifurcation parameter given by the normalized
decay rate (−1) and linear gain (p) for the signal field. Moreover,
the parameter ϵ is small enough such that 0<ϵ � 1. Note that the
Ising coupling constant ωjl can be arbitrarily chosen under this
constraint on the parameter ε. Equation (8) describes the
dynamics of a gradient descent system. Note that the equations
of motion for a solitary DOPO are given as _xj ¼ αxj � x3j when ε =
0, which represents the normal form of the supercritical pitchfork
bifurcation.
In the uncoupled case, i.e., ε = 0, the potential Vb is monostable

with xj = 0 and bistable with xj = ±
ffiffiffi

α
p

when α < 0 and α > 0,
respectively. In the coupled case when 0<ϵ � 1 and α is large
enough, the state of each variable xj can be considered as
approximately binary and can be mapped to the Ising spin. In
particular, the Ising spin configuration {σj}j is associated to the
state {xj}j of the system described in Eq. (8) by considering that σj is
equal to the sign of xj, i.e., σj = xj/|xj|.
When α increases over a critical threshold value, there is a

breaking of symmetry and the states xj become either positive or
negative. The emergence of the first non-zero stable steady state
can be studied by considering linear stability analysis at the origin,
i.e., the Jacobian matrix J associated with Eq. (8) and computed at
the state xj = 0, ∀ij. This Jacobian matrix is given as follows:

J ¼ αI þ ϵΩ; (10)

where Ω is the matrix with components ωjl and I the identity
matrix.14,42 The destabilization of the zero state corresponds to the
emergence of the first non-zero stable steady state after the
symmetry breaking and occurs when the maximal eigenvalue of
the Jacobian matrix J, noted λ1, is equal to zero. The eigenvalue λ1
is given as λ1 ¼ αþ ϵμ1, where μ1(>0) is the maximal eigenvalue
of the matrix Ω, which we consider unique for the sake of
simplicity. The first non-zero steady state becomes stable when λ1
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= 0, i.e., when the bifurcation parameter α is equal to αc given as
follows:14,42

αc ¼ �ϵμ1: (11)

As the bifurcation parameter α increases further above the
threshold αc, other states become stable and the system develops
a complex attractor landscape. Note that Eq. (11) suggests that αc
< 0 in general.

Condition for successful mapping

The linear stability analysis of the zero state allows determining
the bifurcation parameter αc for which the zero state becomes
unstable. Moreover, the eigenvector associated with the eigenva-
lue λ1 indicates the locations of the first non-zero stable steady
states just after the bifurcation has occurred but, in general case,
these locations do not correspond to the ground-state configura-
tions of the Ising Hamiltonian. However, it can be noticed that,
under the particular condition that all analog amplitudes |xj| are
equal, the first non-zero stable steady states are mapped
rigorously to the ground-state configurations of the Ising
Hamiltonian.42 Indeed, the steady-state condition of Eq. (8) is
given as follows when xj = σjx, ∀ij, with x > 0:

_xj ¼ 0 ) αxj � x3j þ ϵ

P

l≠j

ωjlxl ¼ 0

) α� x2 þ ϵ

P

l≠j

ωjlσlσj ¼ 0:

(12)

Thus, the homogeneous squared amplitude x2 can be written as
follows:

x2 ¼ α� 2ϵ

N
H; (13)

with the Ising Hamiltonian H without a dc field. When α� 2ϵ
N
H<0,

the only solution of Eq. (12) is x = 0. As α increases, the first non-
zero steady state appears at the minimal value of the function 2ϵ

N
H

as shown in Eq. (13). As shown in Fig. 1a, b, the ground-state
configurations of the Ising Hamiltonian appear as a single
oscillation mode. In a nutshell, the first non-zero stable steady
states of Eq. (12) encode for the ground-state configurations of the
Ising Hamiltonian if the steady-state amplitudes |xj|,∀j, are all
equal.

Effect of the amplitude heterogeneity

In more general case, the amplitudes |xj| are not equal and the
mapping between the first stable steady-state configurations and
the minima of the Ising Hamiltonian does not hold.14 In practice,
approximate solutions to various combinatorial optimization
problems can still be obtained under this approximate map-
ping.14,42 In order to quantify the distance between the case of
exact mapping and more general case, i.e., when amplitudes are
homogeneous and heterogeneous, respectively, we quantify the
amplitude heterogeneity using the quantity δx defined as follows:

δx ¼

ffiffiffiffiffiffiffiffiffi

hδ2j i
q

hx2j i
; (14)

with δj ¼ x2j � hx2i and hx2i ¼ 1
N

P

j

x2j . The quantity δx corre-

sponds to the coefficient of variation of the squared amplitudes.

For α > 0 and ϵ � 1, the amplitudes xj can be expressed as xj ¼
x

0ð Þ
j þ ϵx

1ð Þ
j þ O ϵ

2ð Þ with x
ð0Þ
j ¼ σj

ffiffiffi

α
p

and x
ð1Þ
j ¼ 1=2

ffiffiffi

α
pð ÞP

l

ωjlσl

using the perturbation theory in order to find an approximate
solution to the steady-state equation (12). Thus, the squared

amplitudes can be expressed as follows in the general case:

x2j ¼ x
ð0Þ
j þ ϵx

ð1Þ
j þ O ϵ

2ð Þ
h i2

¼ αþ ϵ

P

l

ωjlσjσi þ O ϵ
2ð Þ:

(15)

Using Eq. (15), we can express x2j as follows:

x2j ¼ x2j

D E

þ δj þ O ϵ
2

� �

; (16)

with δj ¼ ϵ σjhj � σjhj
� �� �

, hj = ∑l ≠ jωjlσl, and x2h i ¼ α� 2ε
N
H. We

can remark that the homogeneous case, for which there exists
exact mapping between the first non-zero stable steady states and
the ground-state configurations of the Ising Hamiltonian, is the
limit of the general case when δj → 0. Thus, the approximate
mapping of the Ising Hamiltonian results from the variations of
the squared amplitudes δj.
Experimentally, δj → 0 can be achived by additional

measurement-feedback control. That is, CIM measures x2j at each
round trip and computes δj ¼ x2j � αþ 2ε

N
H. This error signal is

negatively fed back to the jth pump pulse or directly to the jth
DOPO pulse to suppress δj.
Figure 7a shows the modulated threshold gain αc due to the

mutual coupling ωij and the success probability Ps of finding a
ground state vs. the normalized pump rate p for an N = 8 Ising
problem, in which each vertex has three edges and there is no
Zeeman term (MAX-CUT-3 problem).14 In this problem, each
vertex has three edges with the constant weight ωij = −0.1 as
shown in Fig. 7b. At high pump rates p≥ 1.3, the possible value of
αc is minimum for the ground state and increases monotonically
with the order of excited states. That is, the mapping is successful.
However, the threshold gain αc of the first excited state decreases
to below that of the ground state at p < 1. This unexpected result
stems from the heterogeneity of the DOPO amplitudes. Figure 7b
shows the steady-state amplitude (by circle size) and phase (by
color) of each DOPO for the first excited state at p≲ 1. Five of the
total eight DOPOs mutually couple without destructive inter-
ference so that they can store large amplitudes. On the other
hand, the remaining three DOPOs mutually couple with destruc-
tive interference. By keeping amplitudes in these three DOPOs
small, the whole network realizes an effective field decay rate even
smaller than that of the ground state. Consequently, the first
excited state oscillates at a smaller pump power than the ground
state, which leads to the malfunction of the DOPO network.
At above the threshold (p≥ 1), the first excited state is

metastable so that the oscillation at the first excited state switches
to the oscillation at the ground state by quantum tunneling with a
finite lifetime.43 This is why the success probability Ps increases
from p = 1 to p = 1.3. However, if the pump rate is too high (p >
1.3), the potential barrier becomes too high to tunnel from a local
minimum to a global minimum, which stabilizes the false
oscillation mode at the first excited state. This is the reason why
Ps decreases at p > 1.3 in Fig. 7a.
We remark that a technique to ensure equal amplitudes of

DOPOs is actually realized by using an error detection and
correction method so that the ground state of the Ising
Hamiltonian is selected by a single oscillation mode.

EXPERIMENTAL CIMS

Optical delay line coupling CIM

The first experimental CIM implements N = 4 Ising spins with a
free-space multiple-pulse DOPO and achieves all-to-all connec-
tions with N−1(=3) optical delay lines.15 The Ising coupling
constants are uniform and anti-ferromagnetic type (Jij < 0). When
the pump power is increased gradually, the machine finds one of
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three degenerate ground states of this complete graph with equal
probabilities as shown in Fig. 8a. On the other hand, if the Ising
coupling is switched-off, the machine randomly picks 1 of the
8 states by spontaneous symmetry breaking.
The second experimental CIM implements N = 16 Ising spins

with a free-space multiple-pulse DOPO and connect them sparsely
to realize one-dimensional ring or Möbius-Ladder graph config-
uration using two or three optical delay lines, respectively.22 The
Ising coupling constants are uniform. Again, the machine finds
one of the degenerate ground states with almost equal
probabilities. These two CIMs have a 100% success probability
to find ground states and achieve the random sampling capability
for the degenerate ground states.
The third experimental CIM implements N = 10,000 Ising spins

with a fiber DOPO and realizes one-dimensional ring.23 The
success probability as a function of system size N normalized by
the correlation length x0 and pump rate p normalized by the

threshold pump rate p0 agrees fairly well with the theoretical
model48 as shown in Fig. 8b.

Measurement-feedback CIM as exact solvers

A setup of the measurement-feedback based CIM, where N = 100
DOPO pulses are fully connected by a single measurement-
feedback circuit, is installed at Stanford University.24 A fraction
(~10%) of each pulse intensity is picked off and its in-phase
amplitude X̂j is measured by balanced optical homodyne
detectors. Then, a feedback signal for the ith DOPO pulse,
P

j

Jij~Xj , is computed by an FPGA. This signal is imposed on the
feedback optical pulse for the ith DOPO pulse by intensity and
phase modulators. Finally, the injection coupler combines the
feedback optical pulse and the ith DOPO pulse. Similarly, a
feedback optical pulse for the jth DOPO pulse, whose amplitude is
proportional to

P

i

Jji~Xi is prepared and injected to the jth DOPO

Fig. 8 Performance of optical delay line coupling CIM. a Final state histogram for 1000 runs in N= 4 CIM for the MAX-CUT-3problems.15 b
Success probability as a function of problem size N and pump rate p for the one-dimensional ring model23
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Fig. 7 The DOPO network with amplitude heterogeneity. a The modulated threshold gain αc of several modes and the success probability Ps
vs. the normalized pump rate p when ωij= −0.1 for the worst-case instance with N= 8 vertices. b The inhomogeneous oscillation amplitudes
for the first excited state at a pump rate p= 0.8. The size and color of the circle represent the amplitude and phase of each DOPO14
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pulse. After one round trip, the full Ising Hamiltonian is
implemented via N injected feedback pulses. Note that asym-
metric Ising coupling Jij ≠ Jji can be readily implemented in this
scheme. On the other hand, a Zeeman term hi can be
implemented by injecting a constant optical pulse which is
produced by appropriate amplitude and phase modulation of the
master oscillator output.
Figure 9a shows the observed success probability of finding a

ground state of the Möbius-Ladder graph as a function of the
graph size.24 Multiple 100-run batches were performed for each
graph size and the standard deviations are plotted as error bars.
Figure 9a also show the histograms of obtaining the low-energy
excited states as well as the ground states. In the case of N = 100,
the CIM can find the ground state out of ~1030 solution candidates
with a probability of 21 ± 9%. Note that the amplitude hetero-
geneity is not actively suppressed in this experiment. It is
theoretically predicted that the success probability is ~100% for
the problem size up to N = 100 when the DOPO amplitudes are
kept uniform.

Measurement-feedback CIM as approximate solvers

A similar setup of the larger-scale CIM, where N = 2000 DOPO
pulses are fully connected by a single measurement-feedback

circuit, is implemented at NTT.25 Major changes from the Stanford
CIM24 are the fiber length increased from 300m to 1 km and the
pulse repetition frequency increased from 100MHz to 1 GHz.
Figure 9b shows the observed Ising energy vs. computation

time for the MAX-CUT problems in N = 2000 complete graphs with
all-to-all connections.25 It is impossible to find the ground state for
this size of the complete graph with a current digital computer.
We used the 87.8%, even in worst case, approximate solution
obtained by the semi-definite programing (SDP)20 as a benchmark
target. The experimental CIM reaches this target with 70 μs,25

while the simulated annealing (SA) implemented in the state of art
Central Processing Unit (CPU) reaches the same target with 2.1 ms.
Table 1 compares the computational time of experimental CIM
with those of four different types of classical algorithms
implemented on either CPU or supercomputer (PEZY-Shobu) at
Riken.44 The results summarized in Fig. 9b and Table 1 well
constitute the evidence for a novel speedup of CIM. Figure 9c
shows the histograms of the final energies (or cut values) for the
SDP which achieves the best theoretical accuracy at the present
time, SA which is the most popular heuristic at the present time,
and CIM. The CIM also shows the better performance than SA and
SDP in accuracy, too. The computation times for SDP, SA, and CIM
are 100 s, 50ms, and 5ms, respectively, in this accuracy
measurement.

(a)

(b) (c)

SDP

SA CIM

Fig. 9 Performance of measurement-feedback coupling CIM. a Results with the measurement-feedback CIM for various-size Möbius-Ladder
graphs. (upper) Observed probability of obtaining a ground state of the Möbius-Ladder graph in a single run, as a function of the size N of the
graph. Multiple 100-run batches were performed for each graph size to obtain the standard deviations, which are shown as error bars. (Lower)
Histograms of obtained solutions in 100 runs for the graphs shown in the insets.24 b Time evolutions of Ising energy obtained with CIM (blue
curve) and SA (black curve) when solving the complete graph K2000. The dotted line corresponds to the target Ising energy of −60,278
obtained with GW-SDP.25 (c) Cut values obtained for the MAX-CUT problem on 2000-node graphs with the CIM, SA, and GW-SDP
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QUANTUM FEATURES OF CIM

Optical neural network at the quantum limit

One of the unique features of optical neural networks is the
continuous crossover of their operational modes from quantum
limit to classical limit. In this section, we will present various
numerical results showing the difference between the two
regimes and shedding a light on the quantum-to-classical
crossover.
Figure 10a shows the trajectory of the variances 2 ΔX̂2

� �

and
2 ΔP̂2
� �

for the DOPO field in the measurement-feedback CIM
consisting of two anti-ferromagnetically coupled spins.40 A
minimum uncertainty state at the Heisenberg limit satisfies
ΔX̂2
� �

ΔP̂2
� �

¼ 1=16, which is shown by the dashed line in Fig. 10a.
The CIM with a high-Q or low-Q cavity, in which a round trip loss is
either 10% (−0.5 dB) or 50% (−3dB), continuously excites the
quantum states which are close to the Heisenberg limit, as shown
by red or blue line in Fig. 10a. On the other hand, optical neural
networks at thermal noise limit (kBT�ħω) should operate in the
classical regime defined by 2 ΔX̂2

� �

� 1=2 and 2 ΔP̂2
� �

� 1=2,
which is shown by the shaded area in Fig. 10a.
The success probability Ps of finding the ground state of an N =

16 one-dimensional Ising spin model, in which only nearest
neighbor anti-ferromagnetic interaction exists, is numerically
evaluated for various values of the temperature parameter nth =
kBT/ħω and the result is shown in Fig. 10b.17 Here the optical delay
line coupling CIM is assumed. In this numerical simulation, the
pump rate is abruptly increased from p = 0 to p = p0 at t = 0. In the
case of ħω�kBT (quantum noise limit), the squeezed vacuum state
allows the quantum parallel search during a transient time before
the steady-state amplitude is formed. The transient time decreases
with the final pump rate p0, so that the maximum success

probability is achieved at a final pump rate just above the
threshold value, p0 ’ pth ¼ 1, which allows the DOPO network to
have a sufficient time to search for the solution by creating the
quantum noise correlation. If the final pump rate p0 is far above
the threshold, the coherent field with random 0-phase or π-phase
is formed quickly in each DOPO through spontaneous symmetry
breaking, before the quantum search establishes the sufficient
quantum noise correlation and identifies a correct solution. The
quantum tunneling is not strong enough to overcome
the potential barrier separating 0-phase and π-phase when the
oscillation field is strong. In this way, the DOPO network is trapped
in one of the excited states (local minima). This reasoning explains
the monotonic decrease in Ps for nth�1 as a function of p(≥ 1) in
Fig. 10b.
In the case of ħω�kBT (thermal noise limit), the squeezed

thermal state, which is formed before reaching the threshold, does
not allow the quantum parallel search during a transient time
before the steady-state amplitude is formed. This is because the
quantum coherence between the states Xj i and �Xj i is ruined by
the destructive interference among different photon number
eigenstates in a thermal state. The maximum success probability is
achieved at a final pump rate p0�pth = 1, where the coherent
mean-field is produced and searches for a solution. This mode of
operation requires that the mean-field amplitude is larger than the
thermal noise amplitude. This is an operation regime of classical
neural network (CNN).

Three-step quantum computation at criticality

The three-step quantum computation of the optical delay line
coupling CIM is illustrated in Fig. 11a. The success rates to find
either one of the two degenerate ground states in N = 16 one-

(a) (b)
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Fig. 10 CIM operating at the quantum and classical limits. a The trajectory of 2 ΔX̂2
� �

and 2 ΔP̂2
� �

of the high-Q and low-Q cavity CIM
consisting of two anti-ferromagnetically coupled spins.40 b The success probability of finding a solution for an N= 16 one-dimensional Ising
spin model for various values of the temperature parameter nth ¼ kBT=�hω

17

Table 1. Four types of classical neural network models implemented as algorithms in CPU or supercomputer (PEZY-Shobu) and the computational

time to reach the 87.8% accuracy level provided by Goemans–Williamson semi-definite programing44

Coherent Ising machine Experimental CIM 0.07ms Virtual CIM 100 s

Classical neural network Deterministic Stochastic

Discrete variable Hopfield Network (HN) 0.924 (ms) by CPU Simulated Annealing (SA) 2.10 (ms) by CPU

Continuous variable Hopfield-Tank Neural Network (HTNN) 7.04 (ms) by SC Langevin Dynamics (LD) 100 (ms) by SC

CPU: Intel Xeon, E3–1225 v3, 3.2 GHz. Supercomputer: PEZY-SC, 733 MHz, 1024 cores. The computational time by experimental CIM23 and virtual CIM using the

CSDE and replicator dynamics are also shown, where 16 PEZY-SC are used in parallel to implement the virtual CIM
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dimensioned Ising spins with anti-ferromagnetic coupling are
plotted as a function of normalized computation time t/tc, where
tc is a round trip time.17 The pump rate is linearly increased from
below threshold to above threshold. The success rate for a
random guess is Ps ¼ ð1=2Þ16 ’ 10�5. After a few round trips, the
success rates are increased by two orders of magnitude due to the
formation of quantum noise correlation and this trend continues
to t/tc = 60, where the average photon number per DOPO pulse
reaches n = 1 and the collective symmetry breaking is kicked-in.
One ground state is selected, while the other is not. The
probability to find the selected ground state increases exponen-
tially while that to find the unselected ground state decreases
exponentially. This exponential increase in the success rate is
made possible by the bosonic final state stimulation and the
associated cross-gain saturation. The quantum parallel search at
below threshold, the collective symmetry breaking at threshold,
and the quantum-to-classical crossover at above threshold are the
three major steps in CIM.

Quantum entanglement

In the above example of an N = 16 one-dimensional ring
consisting of anti-ferromagnetically coupled Ising spins, the
ground state should have a negative correlation between the in-
phase amplitudes Xi and Xi±1 of neighboring DOPOs. This
observation motivates us to define an EPR-like operator,

ûþ ¼ X̂1 þ X̂2 þ � � � þ X̂16; (17)

v̂� ¼ P̂1 � P̂2 � � � � � P̂16; (18)

to demonstrate the entanglement that exists in the DOPO
network. Since ûþand v̂� commute, the simultaneous eigenstate
for ûþ and v̂� should exist and such a state satisfies
Δû2þ
� �

¼ Δv̂2�
� �

¼ 0. On the other hand, if all DOPOs are
independent (separable), it is shown that Δû2þ

� �

þ Δv̂2�
� �

� 8.17

This means that if Δû2þ
� �

þ Δv̂2�
� �

<8, such a system has the
entanglement due to mutual coupling. Figure 11b demonstrates
that the optical delay line coupling CIM indeed establishes the
quantum entanglement in the system over a wide range of the
computation time (or pump rate).17

Quantum coherence

Figure 12a–d show the contour maps of the density matrix
elements X ρ̂j jX 0h i of the measurement-feedback CIM consisting of
two DOPOs with anti-ferromagnetic coupling as a function of

normalized computation time N = t/tc.
40 In a high-Q cavity with a

round trip loss of 0.1% (Fig. 12a), the DOPO state near threshold (t/
tc = 60) is indeed in a Schrödinger cat-like state. However, in a low-
Q cavity with a round trip loss of 50% (Fig. 12d), the DOPO state
evolves from a vacuum state at t/tc = 0, a squeezed vacuum state
at threshold to a coherent state at above threshold. The quantum

Quantum parallel search
Quantum-to-classical 
crossover

Collective 
symmetry breaking

Computation time t

= ∼ (random guess)

ytili
b

a
b

or
p

ss
ecc

u
S

(a) (b)

Standard quantum limit

Entangled state

Simultaneous eigenstate of and 

Computation time t

N = 16

∆
+

∆

Fig. 11 Three-step quantum computation and entanglement in CIM. a The success rates to find the two degenerate ground states of the N=
16 1D Ising spins with anti-ferromagnetic coupling vs. normalized time t/tc. b The total variance of the EPR-like operator vs. normalized time t/
tc, where ξ ¼ ωij is the mutual coupling constant and r is the squeezing parameter17

Fig. 12 Evolution of the density operator in CIM. The contour maps
of typical conditional density matrices X ρ̂j jX 0h i of two oscillators
governed by the measurement results xm with (a) T= 0.999, (b) T=
0.99, (c) T= 0.9, and (d) T= 0.5 at round trips of N= 0, 30, 60, 150 in
front of the PSA, where T is the transmission coefficient per round
trip
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states of the DOPO seem to stay always in Gaussian states in
Fig. 12d, which is actually not the case as we will discuss in the
next section. In any case, the quantum coherence X ρ̂j j � Xh i,
represented by the vertical slice, always exists in the CIM, no
matter how large the cavity loss is.

Non-Gaussian wavepackets

The archetype bistable potential Vb xj
� �

¼ � 1
2 αx

2
i þ 1

4 x
4
i at above

threshold has a steep potential for large |xj| values but a shallow
potential barrier for small |xj| values when the DOPO is pumped
not far above the threshold, i.e. 0 < αt1. As a result of this
asymmetric potential profile, the DOPO wave packet has a rapidly
decaying tail for large |xj| values and slowly decaying tail for small
|xj| values.
Figure 13a shows the time evolution of skewness ΔX̂3

� �

of the
two DOPO fields.45 At below threshold, ΔX̂3

� �

is close to zero,
which is expected for a Gaussian state. At threshold, however,
ΔX̂3
� �

of the two DOPO fields depart to opposite directions, which
indicates that the internal DOPO state has a slowly decaying tail
toward a central potential and a rapidly decaying tail toward outer
potential. Such a non-Gaussian state allows more frequent
quantum tunneling before the final decision is made as
demonstrated in the simulation result shown in Fig. 13b.45 This
switching behavior is a characteristic quantum parallel search of
CIM, which is in sharp contrast to that of a hypothetical machine
supporting Gaussian states (Fig. 13c).45 In this case, the two
DOPOs never switch their polarities due to the suppressed
quantum tunneling.

Gottesman–Knill theorem

Not all quantum dynamics are difficult to simulate by classical digital
computers. Some of representative and important quantum

processes, including entangled state generation and purification,
can be efficiently simulated by classical methods, so that such a
quantum system alone is unlikely to achieve a computation power
exceeding the current states of art in digital computing technology.
Gottesman and Knill were the first to point out this subtle

distinction between classical and quantum information proces-
sing.46 The statement of the Gottesman–Knill theorem can be
summarized as follows:
If a quantum process starts with

1. computational basis states, such as ground states
0j i1 0j i2� � � 0j iN ,

2. employs a limited set (Clifford group) of unitary gates such as
Hadamard gates, phase gates and controlled-NOT gates,and
ends with

3. projective measurements along the computational basis
states 0j i 1j if g,

such a quantum process can be efficiently simulated by classical
digital computers. A reader who is familiar with the famous Shor’s
factoring algorithm knows that it requires implementation of a
fractional phase which is not included in the above Clifford group
constraint, so that the Shor algorithm is outside of the above
limitation.
A continuous variable (harmonic oscillator) version of the above

theorem was developed by Bartlett et al.47 The statement of this
theorem runs as follows:
If a quantum process with harmonic oscillators starts with

1. Gaussian states, such as coherent states αj i1 αj i2� � � αj iN ,
2. employs a limited set of unitary gates such as squeezing gates

and displacement gates,and ends with
3. projective measurements of one quadrature amplitude (by

homodyne detection) or two quadrature amplitudes (by
heterodyne detection),

∆

(a) (b)

(c) (d)

Fig. 13 Non-Gaussian states in CIM. a Time evolution of ΔX̂3
� �

of the in-phase amplitudes of the two DOPO fields. b Time evolution of ⟨X̂⟩

under the replicator dynamics generated by the ensemble over 10,000 runs. c Time evolution of ⟨X̂⟩ under the Gaussian approximation. d The
success rates for fining a ground state of N= 16 one-dimensional Ising spin problem by the exact and Gaussian approximation45
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such a quantum process can be efficiently simulated by classical
digital computers.
If we consider the above theorem against the CIM, we can

identify the gain saturation (or two photon absorption) and single
photon loss as the two essential quantum dynamics which make
the CIM difficult to simulate efficiently by classical methods. The
gain saturation term, �x3j , and the dissipation term, αxj, in Eq. (12)
produce a non-Gaussian state and provide the non-classical
nature to CIM. Indeed, as shown in Fig. 13d, the success rate to
find a ground state of N = 16 one-dimensional Ising spin problem
based on the exact theory is higher than that based on the
Gaussian approximation.45

SUMMARY

Optical neural networks can operate at the quantum limit (kBT/ħω
�1) at room temperatures and realize a quantum parallel search
based on squeezed vacuum states. Such CIM are composed of the
two constituent devices: quantum neurons and quantum
synapses.
Quantum neurons are provided by degenerate optical para-

metric amplifiers/oscillators, which realize the quantum parallel
search at below the oscillation threshold, the decision making at
the threshold based on collective symmetry breaking, and the
quantum-to-classical amplification of computational results at
above the threshold using bosonic final state stimulation.
Quantum synapses are provided by either direct coupling with
optical delay lines or indirect coupling with a measurement-
feedback circuit. They utilize distinct computational resources:
quantum noise correlation (entanglement) in the optical delay line
coupling CIM and measurement-induced wave packet reduction
to non-Gaussian states in the measurement-feedback CIM.
CIM can solve various combinatorial optimization problems by

mapping them on NP-hard Ising problems. Optical neural
networks at the quantum limit (CIM) can outperform those at
classical regime by exploiting superposition states for quantum
parallel search of solutions. The gain saturation and single photon
loss are the two indispensable elements to make CIM hard to
simulate by classical methods. These two dissipation processes
and associated fluctuations from external reservoirs are crucial
resources to accelerate the search process.
CIM is based on single-mode squeezing and oscillation at

degenerate frequency. This preferred mode of operation is made
possible by employing a pump rate not far above the oscillation
threshold and a narrow bandpass filter in a fiber ring cavity.
Nonlinear dynamics of DOPO in various parameter ranges,
including crossover from degenerate to non-degenerate modes,
are presented in refs. 31, 48, 49.
Another type of optical neural networks, coherent XY

machines, have been recently demonstrated using coupled
lasers,50,51 non-degenerate OPOs,52 and polaritons.53 The Kura-
moto model and the continuous optimization problems, in
general, can be potentially implemented on these machines.

Data and code availability

All relevant data and codes are available from the authors upon
request.
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